
. TMAiphaBasic
User's Manual

©-1977 ALPHA MICROSYSTEMS
ALL RIGHTS RESERVED

I would like to express my thanks to the following people
for their assistance in the developrient of AiphaBasic:

Mike Roach for debugging and suggestions
on implementation of new features

Paul Allen Eelstein for the trig package
and advanced mathematical assistance

Bob Hitchcock for operator and applications
oriented suggestions and scaled arithmetic

the myriad of users who pointed out problems
in the earlier versions (scirtetinies not so tactfully)
and most of all to Carolyn
without whom much of this may never have been accomplished.

Dick Wilcox

'AMOS', 'AiphaBasic', and 'AM—lOO'

are trademarks of products
aix) software of

ALPHA MICRDSYSTFjS
Irvine, CA 92714

© 1977 — ALPHA MICR)SYSTEI.IS

ALPHA MICRD
17881-F Sky Park North
Irvine, CA 92714

p

INDEX

INTDUCTIQN '10 ALPHABASIC PAGE 1
ALPHABASIC GENERAL INFORMATION PAGE 3
INTERACTIVE VS CCMPILER MODES PAGE 6
RUNNING BASIC PRAMS PAGE 7

ALPHABASIC VARIABLES PAGE 9
DATA FORMMS PAGE 11
ALPHABASIC EXPRESSIONS PAGE 13
ELMER CASE CHARACTERS PAGE 15
SUBSTRING MODIFIERS PAGE 16

MEMORY MAPPII)G SYSTEM PAGE 18

INTERACTIVE CCtIMAND SUMMARY PAGE 27
PRCRN4 STATFIIENIS PAGE 31
BASIC FUNCTIONS PAGE 37

FORMATTED OUTPUT VIA PRINT USING STATEMENTS PAGE 41
SCALED ARITHMETIC PAGE 43

ALPHABASIC FILE I/O SYSTEM PAGE 45
FILE I/O STATEMENTS PAGE 47

CALL It3G EXTERNAL ASSEMBLY LANGUAGE SUBtYPINE5 PAGE 51
ERDR TRAPPING PAGE 54
SYSTEMS FUNCTIONS PAGE 57
EXPANDED TAB FUNCTIONS (SCREEN CONTROL) PAGE 59
FORMATTED NUMERIC DATA VIA THE "USING" MODIFIER PAGE 60

PRCCESSING INDEXED SEQUENTIAL FILES PAGE 61

CHAINING TO OTHER PR(XRAMS AND SYSTEMS PAGE 68

Note: This manual reflects Aiphasasic version 3.3 release

C

INTRODUCTION 10 ALPHABASIC

Alphasasic is an extension of the popular BASIC language with several features
not found in other implementations. These features not only enhance the
performance of traditional uses of the language but also make business
applications easier to program. COBOL users will find the I/O processing
convenient for data manipulation while the memory mapping system will entice the
assembly language programmers who wish to link up their own external routines.
Floating point hardware in the processor is fully supported making AlphaBasic
faster for mathematical computations than any other BASIC currently implemented
in a microprocessor system.

AlphaBasic runs in one of two modes. Interactive mode operates in thetraditional manner whereby the user creates, alters, and tests his program which
resides totally in memory. This mode is convenient for the creation and
debugging of new programs or the dynamic alteration of exisitng programs.
Compiler mode is more useful for programs which are to be put into productive
use or for testing programs which are too large to fit in memory in theinteractive mode. In compiler mode, the user compiles the program and stores
the compiled object code on the disk. During the actual running of the compiled
program, only the object code and a minimal run—tine execution package need be
in memory thereby conserving space and increasing run speed.

The compiler and the runtime package are both written in reentrant code so that
they may optionally be shared by all users running or debugging programs. Theobject programs created by the compiler are also totally reentrant and sharable
thereby further reducing memory requirements if it is desired to allow several
users to run the same program.

Data formats supported include floating point, string, binary and unformattedvariables. All data formats may be simple variables or array structures. In
addition, the unique memory mapping system allows the user to specify the
ordering of variables in prearranged groupings for more efficient processing.This system is similar to the data formatting capabilities of the COBOL languageand lends itself nicely to business applications where the manipulation of
formatted data structures is of prime concern. Mvanced compiler techniqueshave been used in all areas to give a truly commercial grade processing systemwhich may be easily integrated into a series of programs not limited to the
BASIC language. If the user is running a large number of BASIC tasks in a
timesharing environment, the run—time package is fully reentrant and may beincluded in the resident monitor for a further increase in memory efficiency.
The compiled object programs are also totally reentrant and sharable for users
who are running the same application programs.

Variable names are not limited to the conventional single character and single
digit format but may be any number of alphanumeric characters in length, as longas the first character is alphabetic. This is accomplished by using a dynamictree structure for the storage of reserved words and variable names within thecompiler and is another feature which makes Aiphasasic ideally suited forbusiness applications. Since the source code is compiled and need not be inmemory when the program is eventually run, the length of the variable name isnot a significant concern. Label names may also be used to identify points in
the program for CCYJO and GOSUB branches. Label names are alphanumeric and help

1

to clarify the program structure when used with meaningful definitions.

The following sections will describe AlphaBasic features and operations. It isassumed that the reader is familiar with conventional BASIC language concepts.This initial description is not meant as a tutorial to the novice but rather asan informational packet which will list the supported functions of conventionalBASIC and give more detailed study only to those areas that differ fran thenorm. In all cases, AiphaBasic has been designed to support all features ofconventional BASIC which is currently in use in the microprocessor field. Inthose few areas where no mention is made here of a feature which is normally
considered standard, it is probably due to lack of space (or possibly lack oftime) during the initial writing of this description. The reader is encouragedto contact his local dealer to clear up any specific questions that may ariseuntil such time as more comprehensive documentation is generated on AlphaBasic.

2

ALPHABASIC GENERAL INFORMATION

This section will attempt to explain the general differences encountered in the
AiphaBasic compiler system and to list the currently implemented features or
problems and limitations that are known to exist at this time.

COMPILER OPERATION

The user initiates the AlphaBasic compiler function by entering the command
BASIC while in monitor coninand mode. Once the compiler has been located and
loaded into RAM it will print the READY message and await user input. Although
the system is a compiler in actual operation it has been designed to look as
much like the popular interpreters that are currently on the market. The system
is interactive in nature and the user may enter his source program and edit it
on a line number basis just like the interpretive versions. No fancy editing
techniques are yet available and each line must be changed by entering the line
number and the entire new line. Line numbers must be in the range of 1—65534 tobe valid. The source text is built up in memory as it is entered and is
automatically kept in numerical sequence. Multiple lines (terminated by
line—feed instead of carriage—return) are not supported at this time but will bein the future. No syntax checking is performed when the line is entered otherthan validation of the line number.

When the user enteres the RUN command the source program is compiled in its
entirety and syntax errors reported. The resulting object code is also stored
in memory which results in a much greater initial memory requirement. If noerrors were detected the object code is then executed with no direct referenceto the source code anymore. Any further editing of the source code will set aswitch to automatically force recompilation when the next RUN command isentered.

The user may store the compiled object program on disk by using the SAVE command
with the explicit extension "RUN" appended to the program name. This savedprogram may then later be executed without recompilation by use of the monitor
RUN connarxi which calls upon the runtthe package only.

MULTIPLE STATEMENT LINES

The system supports multiple statement lines by using colons to separate thestatements. The normal rules apply such as REM and DATA statements cannotcontain other statements on the same line. Immediate mode commands may also bemultiple statement lines.

IMMEDIATE MDDE COMMNDS

All lines typed into Alphabasic by the user will be considered for immediate
execution if no line number preceeds the command. System coinliands result in
immediate interpretation and execution and are considered those commands whichresult in a system fucntion but are not ever included in the text of a programitself. Normal program statements may be entered without a line number in which

3

case they will be compiled as a single line program and then immediatelyexecuted. Certain coninands are considered illegal in inrnediate mode and theuser is advised that no error messages are currently implemented to prevent theuser fruit inadvertantly attempting to execute these commands. In sane instancesthe execution of these commands will result in complete system destruction whichmeans you must reboot the entire operating system. This malady will becorrected in a future release.

VARIABLE NAMES

Variable names are not limited to a single letter or a letter and a digit as in
conventional BASIC implementations. A variable name may contain any number ofalphanumeric characters as long as the first one is alpha A—Z. Apostrophes mayalso be used in variable names to improve clarity. Mappedvariables are definedby an explicit type code and therefore do not follow the standard convention ofusing a dollar sign for string variables. Normal (non—mapped) variables areconsidered floating point variables unless they are terminated by a dollar signin which case they are considered string variables. Subscripting follows thestandard conventions of other BASIC's by enclosing the subscripts withinparenthesis. Some examples of legal variables follow:

A

NUMBER
STRIN3$

MASTER' INVENIORY' RECORD
HEADER1
Mct4' ALWAYS 'LIKED' YOU'BEST
Z1234567

PRCERPI4 LABELS

Aiphasasic allows the use of program labels to identify points in the program.A program label is composed of 1 or more alphanumeric characters of which thefirst must be alpha A—z. Apostrophes may also be used within labels forclarity. Labels, when used, must be the first itxne on a line and must beterminated by a colon (:). A label may be followed by a program statement onthe same line or it may be the only item on the line. Labels operate similar toline numbers for (IO and ostJs statements and make the program easier todocument - An example of label usage follows:
10 START' PIfl3RAM:
20 INPUT "ENTER TWO NUMBERS TO GET SUM: ",A,B30 PRINT A;"+";B;"="A+B
40 IF A+B<>0 QYIO SUM'NOP'ZEWJ
50 PRINT "SUM IS ZERD"
60 aao START' PiY3RAr4
70 SUM'NOr'ZERJ: PRINT "SUM IS N(YI' ZERD"
80 0310 START'PWYRAJ4
90 END

4

MEMORY ALLCCATICZ%J

The compiler system allocates memory dynamically during editing, compiling, and
execution of the user program. Currently there is no check made to insure thatthe user is not running out of memory in his allocated partition and chances arepretty good that memory overrun will result in a system crash. We realize that
this is a grave restriction and there are several technical reasons why this
condition is not checked for and reported as an error. I will not bore you with
the gory details on this except tO insure you that it will be implemented in afuture production relase of AlphaBasic. In the meantime you can kinda keep tabson memory usage with the MEM(X) function which will deliver back various usagesof memory during program developuent. See the section on functions for moredetail on this.

EXPANDED SOURCE 'IEXT MODE

klphaflasic normally scans the source text in expanded mode (version 3.2) which
dictates that reserved words (verbs, functions, connands, etc) be terminated bya space or a character that is illegal in variable names. This allows labelsand variables to begin with reserved words. In other words, the variable namePRIN'ThIASTER will not be interpreted as PRINT ?.WSTER in expanded mode. In thismode the statement FOR A=l 'ID 10 cannot be written as FORA=lI%Jl0. There are twocommands which the user may apply to switch back and forth between normal andexpanded modes:

EXPAND I sets syntax scanner to expanded mode
NOEXPAND I sets syntax scanner to normal mode

AlphaBasic initializes itself in the expanded mode. Note that the mode in which
a program is compiled has nothing to do whatsoever with the resultant objectcode which is generated either in size or execution speed.

5

INTERACTIVE VS C)MPILER MJDES

AlphaBasic may be run in one of two modes of execution. Interactive mode dealsdirectly with the user on a one—for—one basis allowing ditect editing of thesource program in memory and testing of that program in a debug mode. This isthe mode that most BASIC interpreters operate in and the one that most users ofBASIC are already familiar with. In addition to the normal commands there aresaiie unique features that make AlphaBasic more useful in a debug mode.

In interactive mode the entire canpiler as well as the user source program mustbe stored in memory for operation. Editing of the source program takes place inthe conventional manner by typing each line with its line number first. Linesare kept in sequence autanatically by the internal editing routines. Each timea change is made in the source program a switch is set which indicates that the
program must be reccmpiled before it can be executed. Any time the user entersa command which results in program execution (RUN, CONT, or single—step) thisswitch is tested and if set, the program is cctnpiled in memory and the objectcode generated in its own special area of memory also. It is this object codethat is then executed by the run—time package which also must be in memoryduring interactive operations.

Ccwmands which do not have a line number are considered immediate mode caiimandsand are executed inuiediately. Actually, the statement is canpiled and executionis applied against the currently existing set of defined variables. New
variables are defined as required by immediate mode commands. Certain commandsare meaningless in immediate mode and are therefore not allowed (FOR, NEXT,
etc). Multi—statement lines are lines which contain more than one commandseparated by colons and are allowed in immediate mode as well as in the source
program.

A unique feature which is very useful for debugging is the single—step ccnmand.Each time the line—feed key is entered with no data on the line, the next
instruction in the program is listed and then executed. Control is thenreturned to the user terminal for inspection of variables or alteration of thesource program before continuing execution. Note that any alteration of thesource program results in recanpilation before the single—step coninand isactually executed.

Calipiler mode differs fran interactive mode in that the program is canpiledfirst and then the object code is stored on disk with a special save coninand.The object code may then be run at any time in the future requiring that onlythe run time package be in memory along with the object code itself. Neitherthe canpiler proper nor the program source code is required for execution incanpiler mode resulting in a large cutback in memoEy requirement. This mode isalso ideal for sequential autanatic processing of multiple programs within asystem structure. IN this mode, BASIC programs may be freely mixed withassembly language programs for maximan efficiency and flexibility.

6

RUNNING BASIC PX3RAM5

AlphaBasic supports the ability to compile and run programs without having toreread the source program by saving the compiled code on disk and using theruntime package to run that code at any later time. There are two maincomponents in the compiler system named BASIC. P3 and RUN. PRG. These programsreside in the system library (CSKO:[1,4J) and are called into memory as they arerequired. BASIC.P is the compiler and contains the code which scans thesource program in memory and creates the runnable object program also in memory.All system ccrnmands such as LIST, tOAD, SAVE, etc. are also processed in this
program. RUN.PR3 is the runtime package and contains the code and subroutineswhich perform the actual execution of the compiled object code from memory.This object code can be fran the compilation phase during interactive programdevelopment or it can be from the direct loading of a saved object code file onthe disk.

The runtisne package (RUN.PRG) is free—standing and may run without referencingthe compiler program (BASIC.pwJ). The compiler, however, will first insure thatthe runtime package is present in memory and load it if necessary since it draws
upon several of the internal runtime routines during compilation. The user mayoptionally build his monitor with the runtime package resident for sharing by
all users. Those users which then run in the interactive mode will also benefit
since BASIC. P will locate RUN. PH in the monitor memory and not have to load
it again into the user memory. The compiler itself may also be included in themonitor but due to the size of it this is not normally done unless the majority
of the users will be doing program development and testing (such as a schooltraining program teaching BASIC)

'It run in the interactive mode (the mode most familiar to us due to otherversions of BASIC) the user types the conirtand "BASIC" on his terminal and thecompiler and runtime programs are both located and loaded into memory asrequired. The LOAD connarid may then be used to load source programs into memoryfor editing, compilation and test. The SAVE command may be used to save eitherthe source program or the compiled object program on disk for later use. Sourceprograms have the extension "RAE" while compiled object programs have theextension "RUN". Note that there is no way to recover the source text fran the
compiled object code so the normal rule is to save both of them either on thesame or different disks. Running in the interactive mode always involves thecompilation and running of a source program which is in memory and neverincludes running a saved object code program directly.
To run a compiled program the user must be in monitor mode. Monitor mode may beentered from the interactive compiler mode above by exiting the compiler via theBYE command typed on the terminal. Once the monitor mode is obtained the userenters the RUN coimiand followed by the name of the object program to be run.The runtime package is located (and loaded from disk i necessary) and thenstarted. The runtime package then initializes user memory and locates the userprogram specified in the RUN calunand. This program has the extension "RUN" andmay be either in memory already or be loaded from the user disk area. Loadingof the program is automatic by the runtime package if the program is not inmemory. The program is then executed and continues until the end or untilaborted by the user typing a control—c on his terminal.

7

Note that the WIN command serves two different functions depending on whetherthe user is in monitor mode or in interactive BASIC mode. In monitor mode theRUN command is used to execute a compiled BASIC program which has beenpreviously stored on disk or loaded into memory explicitly. The coninand RUNPAYL will run the PAYROL.pjy compiled program and then exit back to monitormode without ever enterirg the compiler itself. In interactive BASIC mode theP13W command will compile and run the current source program which the user isediting and testing. The user should note these differences.

tchile we are on the subject of running source programs versus compiled objectprograms, there is one more restriction that the user should note. The CHAINstatement causes one program to terminate execution and turn control over to thenext program in sequence. This chained program must be a compiled objectprogram or it will not be found. There is no mechanism to load a source programand then compile it for the CHAIN statement's use. The object program modulemay, however, be already in memory or it may be on disk in which case it will beloaded automatically. If the chained program is already in memory there will beho wait time due to loading from the disk. The object program module may bedoaded into memory by the monitor LOAD command (different from the AlphaBasicWAD command).

Note also that the compiled object program is totally reentrant and sharablebetween several users so that any programs that are commonly used as eithercomplete programs or chained links may be stored in monitor memory forhigh—speed access.

8

ALPHABASIC VARIABLEs

Variable names may be any number of unique alphanumeric characters and are notlimited to a single character or character—digit pair as in other versions ofBASIC. The first character of the name must be alphabetic and the variable namemust not begin with any reserved word used in BASIC. Apostrophes may also beused in variable names to improve clarity. Mapped variables may take on anytype format regardless of the name terminator. Unmapped variables assume thetype code as in other versions of BASIC. String variables are specified byappending a dollar sign to the name and integer variables are specified byappending a percent sign to the name. Refer to the section on data formats formore detail on these options.

NUMERIC VARIABLES

The normal mode of processing mathematical variables (as opposed to stringvariables) is in 11—digit accuracy which might be termed "single—and—one—half"
precision compared to normally accepted standards. This is due to the hardwarefloating point instructions which are implemented in the WD—16 microprocessorchip set used in the AM—lOt) computer. Integer and binary variables are alsoconsidered numeric variables but are always converted to floating point formatprior to performing mathematical operations on them. All printing of mathvariables is done under normal. BASIC format with the significance being variableunder user control from 1 to 11 digits. The SIGNIFICANCE statement is used toset up this value.

STRING VARIABLES

AlphaBasic supports string variables in both single and array modes. The memorythat is allocated for each string variable is the number of bytes representingthe maximum size that the string is allowed to expand to. Each string isvariable in size within this maximum limit and a null byte is stored at the endof each string to indicate its current actual size. At the start of eachcompilation the default size to be used for strings is 10 characters maximum.The STPSIZ statement may be used within the program to alter the value to beused for all new string variables which follow. Future releases of the compilersyntax will allow individual string definitions to have their own size
specification without the need to change this default value.
String variables are manipulated in the same manner as in other versions ofBASIC and may be concatenated by use of the plus sign between two strings.String variables may be assigned values by enclosing string literals in quotes.String functions such as LEFT$, RIGHT$, MID$, etc. are implemented to assist in
manipulating portions of strings or substrings. In addition, a powerful
substring modifier may be used to operate on portions of strings withinexpressions. A seperate section is devoted to this unique option of AlphaBasic.

Unformatted variables are also considered string variables when they are used inexpressions or printed. Be careful with this one! If the unformatted variableis mapped to contain subfields which are not in string format, it will cause

9

some very strange results when printed or used in expressions. This is becauseno conversions are performed on the subfields of an unformatted variable; it isused in its entirety exactly as it appears in memory.

VARI ABLE ARRAYS

Arrays may be numeric or string variables and are allocated dynamically duringexecution when the DIM statement is encountered in the program. Duringexecution if no DIM statement has been encountered when the first reference tothe array is made, a default array size of 10 elements for each subscript levelis used. This means that all DIM statements must be executed in the programprior to any actual references to the array.
Arrays may be any number of levels deep but practicality dictates somereasonable limit of 20 or so. Each level is referenced by a subscript value
starting with element 1 and extending to element N. Once an array has been
dimensioned by a DIM statement it may not be redimensioned by a subsequent DIMstatement in the same program. At ho time may the number of subscripts vary inany of the references to any element in the array. The number of subscripts ineach element reference must also match the number of subscripts in the
corresponding DIM statement which defined the array size.

10

DATA FORMATS

AiphaBasic has been designed with the goal of flexibility in interfacing with•other language processors within the AMOS operating system and primarily aimedtowards assembly language programs where the data fran a BASIC program must bemanipulated in a way that is either infeasible or inefficient for another BASICprogram to do. In order to accanplish this goal, the data formats must beclearly defined and understandable by the user who wishes this information.Data will normally be output to one or more disk files to be passed on toanother BASIC program or to an assembly language program for further reductionor processing. Data may also be output in a print image format for printing bythe operating system print spooler job. It is our intention to provide allrequired information on the internal formats and workings of AlphaBasic so that
the user will find the task of interfacing the software outputs to be
straightforward. This initial description is not meant to be the final result
of the internal documentation effort, but merely an introduction to the basicdesign theory behind the canpiler.

All variables in use by the application program are stored in a dynamicallyalterable area within the user program area. The areas that change duringprogram execution are those which are set aside for arrays and variable size
strings. Simple variables do not change position once they are assigned storagepositions. Assignment of storage is normally done as each variable is
encountered in the source program. The user has the option of overiding thisassignment by the memory mapping system which will be described later. Eachvariable is assigned as one of the following data format types and onceassigned, may not be changed within the same program.

FL/DATING POINT — all numeric variables are assigned as this type unlessotherwise specified in the program. The standard precision in use by thissystem would probably be called "single—and—one—hf" since it lies midwaybetween what has been accepted as single and double precision formats. Thereason for this is that the hardware floating point instructions all work inthis format and so we may as well make use of the extra precision whereverpossible. Floating point numbers occupy six bytes of storage and are in the
same format as dictated by the hardware instructions FADD, FSUB, FMUL, FDIV, aridFOIl'. Of the 48 bits in use for each 6—byte variable, the high order bit is thesign for the mantissa. The next 8 bits represent the signed exponent in
excess—l28 notation giving a range of approximately 2.9*lO_39 thru l.7*l0"38.
The remaining 39 bits contain the mantissa which is normalized with an implied
high—order bit of one. This gives an effective 40—bit mantissa which results in
an accuracy of 11 significant digits.

STRING — used for the storage of alphanumeric text data. String variables maybe assigned fixed lengths for efficiency and speed or may be left to dynamicallyvary in size as the data changes. Fixed length string variables require onebyte of storage for each character and may be fixed in position using the memorymapping system. Dynamic length string variables may not be mapped into memorysince their position may shift during execution. Mi indexing scheme is definedto the user if it is absolutely necessary for him to locate these strings withan external routine.

11

BINARY — binary variables are similar to integer variables in other
implementations of BASIC. A binary variable may be frau 1 to S bytes in length
and may be signed when all 5 bytes are specified. When less than 5 bytes are
specified for the size (in a MAP statement) the binary value may be loaded as a
negative number but will always be returned as a positive number of full
magnitude with the upper bit (preloaded as the sign) taking on its specific•
value in the equivalent positive binary variable. For instance, a 1—byte binary
may be loaded with positive numbers from 0 thru 255 (decimal) or negative
numbers fran —l thru —128 but the negative numbers will be returned as the
positive values of 128 thru 255 respectively. Only 5—byte binary variables will
return the original sign and value when loaded with a negative number.

Binary variables may be used in expressions but they are slower than floating
point variables because they are always converted first to floating point format
before any mathematical operations are performed on them. Binary variables are
useful in integer and logical (Boolean) operations or for storing values in
small amounts of memory (floating point numbers always take 6 bytes of memory
regardless of their values). All logical operations performed within
expressions (AND, OR, XOR, NOT etc.) cause the values to be first converted to
signed 5—byte binary format before the logical operation is performed. The
value —1 represents a 40—bit mask of all ones and it is this value which is
returned as the result of any relational comparison between two expressions or
variables.

INTFX3ER — integer variables and constants are specified by appending the
variable name with a percent sign (%) which is the standard convention in use by
other BASIC's. AlphaBasic generates floating point variables and performs
automatic integer truncation for all integer variables specified in this manner.
Integer constants are generated as their equivalent floating point values and
are included only for compatibility with existing program structures. Since
integer variables are effectively floating point variables with an additional
INT conversion performed, they are actually slower than regular floating point
variables. This is opposite from most other BASIC's which usually store integer
variables as 2—byte signed values and perform special integer arithmetic on
them. True integer variables may be defined by using the MAP statement and the
"B" binary type code.

UNFORMATTED — defines a fixed size area of storage used to contain absolute
unformatted data which may be in any of the above formats. This format will
normally be used in the mapping system to define contiguous storage which is
subdivided into multiple variables of different formats. No conversion ever
takes place when moving data to and from this format. Unformatted variables are
treated as string variables when used in expressions.

* Note that dtamic length string variables are not yet implemented.

12

ALPHABASIC EXPRESSIONS

Expressions in AlphaBasic follow the same format used by other popular versions
of BASIC. Parentheses are used to designate hierarchy within expression terms
and the normal mathematical hierarchy prevails in the absence of parentheses.
The following mathematical operators are recognized by AlphaBasic:

+ unary plus or addition
— unary minus or subtraction
* multiplication
/ division

raise to power
** raise to power

string literal
NOT logical not
AND logical and
OR logical or
XOR logical xor
EQV logical equivalence
MIN minimum value
MAX maximum value
= equal

less than
> greater than
<> unequal
>< unequal
it unequal
<= less than or equal
=< less than or equal
>= greater than or equal
=> greater than or equal

OPERAWR PRECEDENCE

The precedence of operators determines the sequence in which mathematical
operations are performed when evaluating an expression that does not have
overriding parenthesis to dictate hierarchies. AlphaBasic uses the
following operator precedence:

exponentiation
unary plus and minus
multiplication and division
addition and subtraction
relational operations (comparisons)
logical AND, OR, XOR, EQV, MIN, MX
logical NOT

MODE INDEPENDENCE

Expressions may contain arty mixture of variable types and constants in any
arrangement. AlphaBasic performs autanatic string and numeric conversions as

13

necessary to insure the result is in the proper format. For example, if two
strings are multiplied together they will first be automatically converted to
numeric format before the multiplication takes place. If the result is then to k /

become a string it will be reconverted back to string format before the
assignment is performed. In other words, the statement P4 = * "345" is
perfectly legal and will work correctly. This is a powerful feature which can
save much programming effort when used correctly.

There is an ambiguous situation which arises fran this mode independence. The

plus symbol (+) is used both as an addition operator for numeric operations and
as a concatenation operator for string operations. The value of 34+5 is equal
to 39 but the value of "34"+"5" is equal to the string "345". The operation of
the plus symbol is unambiguaous in its operation but may take a little thought
to figure out its exact usage in all situations. A few examples might help.

If the first operand is numeric and the second is string we convert the
second to numeric and perform addition.

34 + "5" equals 39

If the first operand is string and the second operand is numeric we
convert the second to string and perform concatenation.

"34" + 5 equals "345"

The above two examples apply only when we are not "expecting" a particular
type of variable or term. This generally occurs only in
a first level PRINT expression. At other times we are expecting a
specific type of variable and the conversion of the first variable will
be performed prior to inspecting the operator (plus sign). The operation
of the plus sign is then implicitly specified by the result of the
first first variable. Take the following example:

5 * "34" + 4

The multiplication operator (*) forces us to expect a numeric term to follow.
The "34" string is therefore immediately converted to numeric 34 and
multiplied by the 5. The plus sign then performs numeric addition instead

concatenation. The result is in numeric format and will be converted if
its destination is a string.
If this approach seems confusing you should try a few examples of your own on
the system to see what the results are. Remember, any potentially ambiguous
expression may always be forced to one or the other type by use of the Sm and
VAL functions.

14

TflER CPSE CBARACTE

Beginning with release 3.1 Alphaflasic supports lower case letters (a—z) in both
the input source program and in the runtime execution of programs. The line
editor built into the interactive system will now accept and store source input
text in lower case characters if desired. Lower case letters when used within
variable names and labels will be unique and separate from the corresponding
upper case letters. In other words, the variable "a" is separate from the
variable "A" and the variable "Tom" is separate fran the variables "9DM" and
"torn". Lower case letters may be used as the first character of a variable name
or program label just as upper case letters may be.

Reserved words are treated somewhat differently from the above system. When a
reserved word is expected, the syntax parser temporarily translates all lower
case letters to upper case and then checks for a reserved word match. If the
word is not a reserved word the translation is not retained and the lower case
letters are used for variable name matches. The following statements are all
considered to be identical:

FOR A = 1 20 100 STEP 2
For A = 1 To 100 Step 2
For A = 1 to 100 step 2
for A = 1 to 100 step 2

Lower case letters used within string literals (inside quotes) will be retained
and printed as lower case. Lower case letters which are entered into string
variables by means of the INPUT statement will also be retained as lower case
letters. The entire string processing system now supports lower case
characters.

Note that all lower case characters are considered greater than any upper case
character due to their position in the ASCII colating sequence. 2b assist in
processing and comparing input which contains lower case letters the UCS(X)
function has been implemented. This function will return a string which is
identical to the argument string (X) with all lower case characters being
translated to upper case. The inverse function LCS(X) will return a stUng with
all upper case characters being translated to lower case.

15

SUBSTRU3 MODIFIERS

Alphasasic supports a unique method of manipulating substrings. A substring is
defined as a portion of an existing string which may be as snail as a single
character or as large as the entire string. Substring modifiers allow the
substring to be defined in terms of character positions within the string,
relative to either the left or right end of the string. The length of the
substring is defined either in terms of its beginning arid ending positions or in
terms of its beginning position and its length.

Substrings are defined by referencing the desired string followed by the
substring modifier. The substring modifier is two numeric arguments enclosed
within square brackets. The substring modifier takes on two distinct formats:

[beginning—position ,ending—position]
[beginning—position; substring—length]

The first format defines the substring in terms of its beginning and ending
positions within the string and uses a comma to separate the two arguments. The
second format defines the substring in terms of its beginning position within
the string and its length using a semicolon to separate the arguments. The
second format basically performs the same function as the MID$ function.

The beginning and ending positions may are defined as character positions within
the string relative to either the left or right end. A positive value
represents the character position relative to the left end of the string with
character position 1 representing the first (leftmost) position. A negative
value represents the character position relative to the right end of the string
with character position —l representing the last (rightmost) position. Assume
the following string has the letters ABCDEF in it. The positions are defined in
terms of positions 1 through 6 (left—relative) or positions —l through —6
(right—relative)

A B C D E F (6 characters within main string)
1 2 3 4 5 6 (left—relative position values)

—6 —5 —4 —3 —2 —l (right—relative position values)

Allowing negative values for right—relative positions provides the ability to
pick out digits within a numeric string without having to calculate the total
size of the string first and then work fran the left.

The substring—length argument used by the second format may also take on
negative values for a more flexible format. Normally the length is a positive
value which represents the number of characters counting the beginning position
and incrementing the index to the left. A negative length causes the index to
move to the right and returns a substring whose last character is the one marked
by the beginning—position argument. Confusing? Perhaps a few examples may
clarify the use of substring modifiers. Assume the main string is A$ and it
contains the above example of "ABCDEF". The following substrings will be
returned:

A$[2,4] equals BCD
A$[2;4] equals BCDE

16

A$[3,3] equals C

A$[3;31 equals CDE

A$[—3,—2] equals DE

A$[3,—2] equals CDE
A$[3;—2] equals BC

A$[—3;—2] equals CD
A$[4;l) equals C
A$[4;—l] equals C

Any position values or length values which would cause the substring to overflow

out of either end of the main string will be truncated at the string end.

A$[3,l0] equals CDEF
A$[—14,34] equals ABCDEF

The main string to which the substring modifier is applied is actually any
expression and need not be a defined single string variable.

= (A$+B$+C$),[2;lO]
= ("ABLE"+A$4-"34") [4,101

The mode independence feature allows substring modifiers to be applied to
numeric expressions. A string is returned but if the destination is a numeric
variable another conversion will be made on the substring to return a numeric
value.

Q = (AB) [2,5]
PRINP X[3,4]

Substring modifiers may be applied to subscripted variables or expressions
containing subscripted variables. The substring modifiers are independent
functions not to be confused with subscripts.

= A$(3,4) [2,5]

= (A$(l)+B$(3)) [—5,31

Substring modifiers return a string value. These may be used the same as
strings in expressions.

= P4 + B$[2;5] + (A$[2,2] + C$) [—5;—3]

Substring modifiers may be applied to the left side of an assignment in order to
alter a ubstring within a string variable. Only that portion of the string
defined by the substring modifier will be changed. The other characters in the
string will not be altered. This may not be applied to numeric variables.

A$[2,4] =

In the above example, if A$ had contained "ABCDEF" before the assignment was
executed the result in P4 would be "AQRSEF".

17

MEMORY MAPPING SYSTEM

AlphaBasic derives much of its versatility and speed from the fact that it is a
true compiler in its execution mode. Memory storage is allocated during
compilation for all defined variables in an area that is contiguous and
predictable. All variables are referenced by the compiled program code through
an indexing scheme. Each variable in the working storage area contains an item
in the index area which contains all information needed to define and locate
that variable. The working storage area therefore contains only the pure
variables themselves without any associated or intervening descriptive
information. The index area is a separate entity physically located before the
working storage area in memory.

The allocation of the variable storage area for any program is predictable and
normally done as each variable is encountered during compilation. Since this
scheme is not easily followed by the user, a different method must be derived
which can override normal allocation processes for those users who wish to have
the variables allocated in a predetermined manner. The disk I/O system also
requires that the variables used be' in a specific relationship to each other
when used in the more advanced modes. The MAP statement has been incled in
AlphaBasic for the purpose of allocating variables in a specific manner. MAP

statements are non—executable at run time but merely direct the compiler in the
definition and allocation of the referenced variables. Each M7\P statement
contains a unique variable name to which the statement applies. When the
compiler encounters this statement it allocates the next contiguous space in
working storage as required and assigns it to that variable name. The type of
the variable is also specified in this statement and may be used to override the
standard naming conventions of BASIC. All variables not defined in a MAP
statement will then automatically be assigned storage in sequence for total
compatibility with existing standards.

As has been noted previously, this memory mapping system is primarily required
for advanced disk I/O techniques and to assist in linking with assembly language
routines. Special functions are provided to deliver the absolute addresses of
these areas as parameters during assembly routine calls. By knowing the layout
of the variables in memory, the user need only pass the base address of the area
to the routine and the routine can then reference all needed variables by
indexing techniques. The mapping system does have another distinct advantage to
the sophisticated prograniner in the allocation of arrays. With the MAP
statement the user has the ability to override the standard array allocation
scheme and force the allocation to proceed in a more flexible manner.
Conventional BASIC arrays are allocated in contiguous memory for each
subscripted variable encountered. AlphaBasic allows several variables to be
combined in a single contiguous array which can provide efficiency in the
manipulation of associated data structures.

MAP STATEMENT FORMAT

Briefly, the MAP statement has the following syntax:

MAPn variable—name(dimensions), type, size, value, origin

18

MAPn represents the hierarchy of the mapped variable for nesting purposes within
other variables of a higher level. It must be within the range of MP3P1 through
MAR16. As each mapped variable is assigned it will be automatically included as
a part of those variables with a higher level. Level numbers are actually
backward with MARl being the highest level and MAR16 being the lowest (or
innermost) level in the nesting scheme. Levels need not be sequential as they
are assigned. That is, a MAP5 statement may immediately follow a MAP2 statement
without having dunmy MAP3 arid MAP4 statements intervening if desired. This

nesting scheme closely parallels the data division format in the (DBOL language.

To eliminate potential allocation problems all MARl level variables will be
forced to begin on an even address. This allows insuring that certain binary
and floating point variables will begin on word boundaries if desired for
assembly language subroutine processing. The AM—ba instruction set performs
most efficiently when word data is aligned on word boundaries. Also, floating
point variables will always be aligned to word boundaries.

VARIABLE NAME

The variable—name is the name to be given the variable for referencing within
the program and must follow the rules for Alphaeasic variables. Since the type
may be explicitly specified, the user need not follow the normal conventions
such as requiring that the string variable names be followed by a dollar—sign
for identification. If the variable name is followed by a set of subscripts
within parenthesis then the variable will be assigned as an array with the
dimensions specified by the subscripts just as if a DIMENSION statement had been
used to assign the array. For example, the statement MAP1 A,F assigns a single
floating point variable called "A" but the statement MAP1 A(5,lO),F assigns a
floating point array with 50 elements in it (5 X 10) just as if the statement
DIM A(5,l0) had been executed. Note that since these mapped arrays are assigned
memory at compile time and not at run time, the subscripts must be decimal
numbers instead of variables.

TYPE CODE

The type code is a single character code which specifies the type of variable to
be mapped into memory. The following variable types are implemented in
AlphaBasic:

X — unformatted absolute data variable
S — string variable
F — floating point variable
B — binary unsigned numeric variable

If no explicit type code is entered, unformatted data (type X) is assumed.

Unformatted data is absolute in memory and is usually only used to reference a
group of other variables as one unit. Until more specific details on data
handling are determined, unformatted data variables should only be moved to
other unformatted data variables. For all practical purposes, unformatted data
variables are treated like string variables except that they are not terminated
by a null byte, only by the explicit size of the variable.

19

(3

String variables are terminated either by the explicit size of the variable or

by a null byte (0) if the string is shorter than the allocated size. Moving a
long string to a short one truncates all characters which will not fit into the

new string variable. Moving a short string to a long one causes the remainder

of the long variable to be filled with null (0) bytes so that the actual data

size of the string will be preserved for concatenation and printing purposes.

Floating point variables are the normal numeric variables used for mathematical
calculations. AiphaBasic supports only one—and—one—half precision floating
point variables which require 6 bytes of memory each and give 11—12 digits of
precision. Floating point variables must begin on an even address and the MAP
statement processor will leave a blank byte between any floating point variable

and the variable it follows in memory if that variable ended on an odd address.
This probably would only cause concern during the mapping of record structures
for I/O transfers.

Binary variables may range in size from 1—5 bytes giving fran 8—39 bits of
binary unsigned numeric data or 40 bits of binary signed data. This is handy
for the storage of snall integer data such as flags in a single byte or for the
storage of memory references as word values with a range of up to 65535 in two
bytes. Binary variables are manipulated just like floating point variables with
conversions to and fran the floating point format being automatic for
calculations. Since all binary variables are converted to floating point format
before performing any arithmetic calculations, binary arithmetic is actually
slower than normal floating point arithmetic and is used mainly for compacting
data into files and arrays where the floating point size of 6 bytes is
inefficient, when conversions from floating point to binary are done, any data
that will not fit within the defined size of the target variable will merely be
lost with no error message given. Range checks, where required, are the
responsibility of the programiter prior to moving a floating point number to a
binary variable area. The best way to understand this is to play with a few
examples in irediate mode.

Please take note that the use of binary numeric variables is not allowed in some
instances. FOR—NEXT loops may not use a binary variable as the target variable
although they may be used in the FPCM, '10 and STEP value expressions. The
record number key in a random mode OPEN statement must be floating point als.
The result variable of a ICOKUP statement must be floating point.

SIZE

The size parameter in the MAP statement is optional but if used, it must be a
decimal number specifying the number of bytes in the variable. If it is omittedit will default to 0 for unformatted and string types, 6 for floating point
types, and 2 for binary types. The size parameter of floating point variables
must be 6 or omitted.

VALUE

An initial value may be given to any mapped variable by including any valid
expression in the value parameter. This value may be a numeric constant, a
string constant, or a complete expression including variables. Remember,

20

however, that the expression is resolved when the MAP statement is executed at
runtime and the current value of any variable within the value expression is the
one used to calculate the assignment result. MAP statements may be executed
more than once if it is desired to reload the initial values.

Note that if the size parameter is omitted (such as for floating point
variables) but the value parameter is used there must be an extra conina to
indicate the missing size parameter.

MAP1 PI,F,,3.14159
MAP1 HOLIIDAY,S,lO ,"CHRISIt4AS"

The first example preloads the value 3.14159 into the floating point variable
called P1. The second example preloads the letters CHRISThAS into the string
variable called HOLIDAY.

ORIGIN

In some instances it may be deirable to redefine records or array areas in
different formats so that they occupy the same memory area. For instance, a
file may contain several different record formats with the first byte of the
record containing a type code for that record format. The origin parameter will
allow you to redefine the record area in the different formats to be expected.
when the record is read into the area the type code in the first byte can be
used to execute the proper routine for the record type. Each different routine
can access the record in a different format by the different variable names in
that format. All record formats actually occupy the same area in memory. This
feature directly parallels the "redefine" verb in the COBOL language data
division.

Normally, a MAP statement causes allocation of memory to begin at the point
where the last variable with the same level number left off. The origin
parameter allows this to be modified so that allocation will begin back at the
base of some previously defined variable and therefore overlay the same memory
area. If the new variable is snaller than the previous one (or the exact same
size) it will be totally contained within the previous one. f it is larger than
the previous one it will spill over into newly allocated memory or possibly into
another variable area of the same level depending on whether there were more
variables following it. (Play with this one a while to get the hang of it)

The origin parameter must be the last parameter on the line and takes the format
@TAG where TAG is a previously defined mapped variable on the same map level.
If size and value parameters are not included in this statement they may be
omitted with no dummy comas if desired.

The following statements define three areas which all occupy the same 48—byte
memory area but which may be referenced in three different ways:

100 MPPl ARJAY
110 P4AP2 INDEX(8),F
200 MAP1 ADDRESS,@ARRAY
210 MAP2 STREET,S,24
220 MAP2 CITY,S,14

21

230 MP3P2 STATE,S,4
300 MPPl IflJBLE'ABRAY, @ARRAY
310 MAP2 UNIT(6)
320 MAP3 CODE,B,2
330 MAP3 RESULT,F

Statements 100—100 define an array with 8 floating point elements for a total of
48 bytes in memory. Statements 200—230 define an area with three string
variables in it for a total of 42 bytes. Normally this area would follow the
48—byte ARRTY area in memory but the origin parameter in statement 200 causes it
to overlay the first 42 bytes of the ARRAY area instead, Statements 300—330.

define another array area of a different format with 6 elements, each element
being canposed of one 2—byte binary variable (CODE) and one floating point
variable (RESULT). The origin parameter in statement 300 also causes this area
to overlay the ARRAY area exactly.

Caution: The above scheme allow variables to be referenced in a different
format than when they were entered into memory. If you load the 8 elements
INDEX(l) through INDEX(S) with floating point values and then reference the
variable STPEEYI' as a string you will get the first four floating point
variables, INDEX(l) through INDEX(4), which will look very strange in string
format!

EXAMPLES

The following two statements produce identical arrays:

100 DIM kl(l0)
110 MAP1 Al(l0),F

Both statements produce arrays containing ten floating point variables
referenced as Al(l) thru Al(lO). Statement 110, however, will define its
placement in memory in relation to other mapped variables. Similarly, the two
statements at 300 and 310 produce the same two—dimensional array as the
statement at 200:

200 DIM B1(5,20)
300 MAP1 BX(5)
310 MAP2 81(20) ,F

Inspect the following statements:

400 DIM Cl(lO)
410 DIM 01(10)
500 MA.Pl OC(l0)
510 MAP2 C1,F
520 MAP2 Dl,F

The statements at 400 and 410 produce two arrays each with ten variables. The
statements at 500, 510 and 520 produce one array with twenty variables in it.
The variables will still be referenced as Cl(1) thru C1(10) and D1(l) thru
Dl (10) but their placement in memory is quite different. The Cl variables will
be interlaced with the Dl variables gWing Cl(l), D1(l), C].(2), 01(2), C1(3),

22

Cl(lO), D1(lO). There are also ten unformatted variables CX(l) thru CX(1O)
which each contain the repective pairs of Cl—Dl variables in tandem.
Referencing one of these CX variables will reference a 12—byte unformatted item
cartposed of the Cl—Dl pair of the same subscript. This type of formatting would
be useful in sophisticated techniques only.
The following define a more canpiex area:

100 MAP1 ARRAY!
110 MAP2 UNITX(5)
120 MAP3 SIZA,B,2
130 MPJP3 SIZB,B,2
140 MAP3 NItYT,F
150 MAP3 FLThG(10) ,B,l

160 MAP3 CNANE,S,20
170 MA.P2 IOTAL,F
180 MAP! THING,F
190 MAP1 WORK1,X,40

The area that is allocated by the above statements requires a total of 252 bytes
of contiguous memory storage. A total of 3 levels are represented in various
formats. Statement 100 defines a level 1 unformatted area called ARRAY! which
is subdivided into two level 2 items. Statement 110 defines the first of these
which is an area called UNITX. The optional dimension indicates that 5 of these
identical areas exist which must be referenced in the program by the subscripted
variable names UNITX(l) thru UWITX(5). Each one of these areas is then further
subdivided into five level 3 items (statements 120—160). Since the level 2 is
subscripted because it occurs 5 times, so must each of the level 3 items be
subscripted. There are 5 variables named SIZA(1) thru SIZA(S) occuring once in
each of the respective variables UNITx(1) thru UNITX(5) . The same holds true
for the variables SIZB, N'Iclr, and CNJME. Statement 150, however, creates a
special case since it contains a dimension also. Normally this would create an
area of 10 sequential bytes referenced as FLAG (1) thru FLAG(lO) . In our
example, however, this 10—byte area will occur once in each of the higher level
areas of UNITX(1) thru UNITX(5). This implicitly then defines a
double—subscripted variable ranging from FLAG(].,1) thru FLAG(5,lO). Statement
170 causes the allocation to return to level 2 where one floating point variable
is allocated.

The total storage requirement for the level 1 variable ARRAY1 canes out to 206
bytes as follows: 40 bytes for each of the five areas UNITX(1) thru tJNITX(5)
plus 6 bytes for the one variable IYYTAL. Notice that since 'IOTAL starts a new
level 2 it does not occur 5 times as do the level 3 items which canprise
UNITX(l) thru UNITX(5).

Following the above mess in memory cane two more variables defined in statements
• 180 and 190. THING is a normal floating point variable which occupies 6 bytes
and WDRK1 is an unformatted area whose size is 40 bytes. Note that since WDRK1
was not subdivided into one or more level 2 items a size clause was required to
explicitly define its storage requirements. 'Ibtal storage used by the above
series of statements (100—190) is 252 bytes.

Note that the variable UNITX(1) refers to the 40—byte item canprised of the
variables (in order) SIZA(1) , SIZB(l) , NTOP(l) , FLPG(l,l) thru FL1G(1,l0) , and
CNANE(l). Moving the variable UNITX(1) to another area such as WDRK1 will

23

transfer the entire 40—bytes with no conversions of any data. fl can be seen
that although this mapping system includes advanced prograutning practices, it
provides the user with a degree of flexibility never before offered in a BASIC
language implementation.

USING THE MAP STATEMENTS

Map statments may be used in immediate mode as a learning tool to see how the
variables are allocated. They are not designed to be practical in the ininediate
mode, however, and are best used by putting them into a program file and
ccrnpiling the program. In the ininediate mode, if an error occurs in the syntax
of the statement, the variable will have already been added to the tree and you
will not be able to repeat the map statement again.

MAP statements should normally come at the beginning of the program before any
references to the variables being mapped. Ifa reference is made to the
variable before it is mapped (such as LET A = 5.8) the variable will be assigned
by the normal variable allocation routines arid the MAP statement will then give
an error since the variable is already defined. rs a convenience, all MAP1
statements force allocation to the next even byte boundary so that binary word
data can be assigned properly if desired.

Due to the canplexity of the syntax checking used for the MAP statement, no
syntax analysis is performed on them until the program is canpiled (unless the
MAP statement is used in the inuediate mode). If you wish to check the syntax
of your progress during the entering of a group of MAP statements you may force
ccxnpilation and syntax checking of your partial program with the Ct(4PILE
ccxnmand. This will indicate your progress so far and also define all mapped
variables up to this point so that you may interrogate then with the "@" cam'iand
described in the following section.

LOCATING VARIABLES DURING DEBUGGING

Since the mapping scheme is new and fairly ccxnplex to understand fully, a
conmarid has been implemented which will assist you in locating the mapped
variables and in understanding the allocation techniques used by the Alphaeasic
memory mapping system. It is valid only as a system caunarid and has no meaning
if used within a program text. The cc*umand has the general format of an atsign
(@) followed by a variable name. If the variable name is not followed by a
subscript, the system will search for the requested variable and print out all
parameters about the variable for you on the terminal. This may actually be two
definitions since the variable "A" may actually be two different variables, one
which is a single floating point number and one which is a subscripted array.
The information returned about the variable will be the type of variable
(string, binary, etc), the dimensions of the array if the variable is indeed an
array, the size of the variable in bytes, and the offset to the variable fran
the base of the memory area used to allocate all variables. If you enter a
reserved word (such as @PmRT) the system will tell you that the name is a
reserved word. Pemember that the current system will not allow you to begin a
variable name with a reserved word so that PRINTSUM is also considered a
reserved word at this time.

24

The general format of the definition line which is returned by the system is:

fmemory—type} {variable—type} {diiuensions}, {SIZE n}, {location}

Memory—type is the method of allocation used for the variable being defined.
FIXED variables are those which have not been defined by a W'JP statement and

were allocated automatically by the compiler when they were referenced in the
program. This is the normal method used by other BASIC versions to allocate
variables. DYNAMIC variable arrays are those arrays which were allocated by a
DIM statement or by a default reference to a subscripted variable. MAP1 through

MAP16 variables and variable arrays are those which were defined in a MAP
statement.

Variable—type is the type of the variable and may be UNFOPMATPED, STRING,

Ft/DATING POINT, or BINARY.

If the variable is an array the dimensions will be listed after the variable
type code in the format ARRAY (n,n,n) where n,n,n are the values of the
subscripts in use by the array. If the array is dynamic and has not been
allocated yet the subscript v4ues will be replaced by the letter "X" to
indicate that they are not known at this point. Remember that any variable
defined in a MAP statement which is in a lower level to another variable will
inherit all subscripts from that higher level variable.

The size of the variable will be given in bytes. In the case of arrays, the
size will represent the size of each single element within the array.

The location of the variable is a little tricky to explain since it is actually
an offset to the base of a storage area set aside for the allocation of user
variables. As each new variable or array is allocated it will be assigned a
location which is relative to the base of this storage area. The location
information is given here to help you understand the relative placement of the
variables in the mapping system and does not represent the actual memory
locations which they occupy. There are two distinct areas in use for variables
and thus the offsets of the variables will be to one of these two areas. All
FIXED and MAP1 through MAP16 variables are allocated in the fixed storage area
while all DYNAMIC arrays are allocated in the dynamic array storage area. As
dynamic arrays are dimensioned and redimensioned their position may shift around
relative to one another and relative to the dynamic storage area base.
Variables in the fixed storage area will never change position relative to each
other or to the storage area base.

Array location information is given only pertinent to the base of the array
itself which is the location of the first element within the array. The actual
range of locations used by the array may or may not be contiguous in memory
depending on whether overlapped dimensioning techniques are being used in the
MAP statements. Simple (non—array) variables are defined as a location range
which tells exactly where the entire variable lies within the storage area. If

you want to find out where a particular element of an array is located you may
follow the variable—name by the particular subscript values (decimal numbers
only) of the element you wish to locate, given the two commands:

@A(4,l2)

25

The first cctmnand liii give information about the array "A" while the second
coitrnani will define the exact location of element A(4,12) within the array "A".

Keep in mind that this "@" command is to assist you in following the allocation
of variables, particularly in more complex mapping schemes. A few minutes at
the terminal with immediate mode MAP statements followed by "@" commands will
help you see how the mapping scheme works.

26

Itfl'ERA.CTIVE (DMMAND SUMMARY

Whenever AiphaBasic is not either compiling or executing a program it will be in
interactive canmand mode which means it is waiting for a command from the user
terminal to initiate sane action. The action taken depends on the type of• input
entered by the user which will fall into one of the following main categories:

1. Edit command which begins with a valid source line number
2. Program statement for immediate execution (no line number)
3. Interactive system coninand resulting in a controlled action

Edit commands will allow the creation and editing of a source program in memory

on a single line basis. The line number must be first followed by the program
statement which will d the line to the source format in proper numerical
sequence. If the line contains only the line number, the line will be deleted

from the program. No fancy character editing commands are implemented in this
version.

Program statements without line numbers result in the immediate compilation and
execution of the statement entered. These program statements will be covered in
another section. The remainder of this section will briefly list the available
interactive commands and the corresponding action performed.

NEW

This command clears out all current source code, object code, user symbols and
variables. It effectively initializes the compiler to accept new source program
statements or imrrgnediate mode statements.

LIST

The source program (if any) is listed in numerical sequence on the user
terminal. If no line numbers follow the LIST command the entire program will be
listed. The listing may be aborted by entering control—c on the terminal which
will return the user to interactive command mode. If one line number follows
the LIST command only that line number will be listed. If the command is
followed by two line numbers separated by a comma, space or other non—numeric
character, only those lines which fall within the range bounded by the two
numbers will be listed.

DELETE

The DELETE command is used to delete groups of source lines from the program
text. If the command is followed by a single line number, only that line will
be deleted. If the command is followed by two line numbers separated by a
comma, space or other non—numeric character, all lines of text which fall
between the two line numbers inclusive will be deleted from the text.

27

SAVE

The entire source program is saved on the disk in the user's file area. The
user must enter the name of the program (1—6 characters) following the SAVE
command. The program will be saved with the extension "BAS" and will be in
ASCII format which may be listed or edited with the normal system programs
outside of AlphaBasic. If a previous version of the program (same name) already
exists on the disk in the current user's file area that program will first be
deleted before the new program is saved. No backup file will be automatically
created. In actual practice, the program name may be a full system file
specification if desired.

The SAVE command may also be used to save the compiled object program on disk
for later running without recompilation. ¶LD save the object program the user
enters the program name followed by the explicit extension "RJN" which causes
the program to be compiled if necessary and then the object program to be saved
on disk. The following two examples will show how the SAVE catimand is used to
save first the source program and then the object program:

SAVE PAYDL (saves source as PAYJCL.BAS)
SAVE PAYROL.RUN (saves object as PAYK)L.RIJN)

LOAD

The specified program whose name must follow the LOAD command is located on disk
in the current user'sfile area and then loaded into memory for editing or
execution. This is the reverse of the save function above. The program is
expected to be in ASCII format with the default extension "BAS" unless
explicitly entered as otherwise. If the program cannot be located an error
message will result. In actual practice, the program name may be a full file
specifier if desired.

The load command does not clear the text buffer before it loads the requested
file and therefore may be used to concatenate or merge several programs or
subroutines together to be saved as a single program. The separate routines
must not duplicate line numbers in the other routines that they are to be merged
with or else the new line numbers will overlay the old ones just as if the file
had been edited in fran the user terminal. The NEW cc'nznand should be used prior
to any load command if it is desired to insure that the text buffer is clear.

CY4PILE

The current source program in memory is compiled and the object code built up in
another area of memory. Control then returns to interactive camiand mode. The
compiled program is not executed. Compilation effectively sets all variables to
zero and deletes all variables that may have been generated as a direct result
of immediate mode commands.

28

JN

This is the normal way to initiate the running of the existing program in
memory. A check is first made to see if the program has been compiled since the
last editing change to the source code and if it has not been, an automatic
compilation phase takes place to insure the object code is up to date. All
variables are reset to zero (strings are reset to null) and the compiled object
code is then executed. Execution may be interrupted at any time by typing a -

control—c on the user terminal. This control—c status is tested only at the
beginning of each new source line so multiple statement lines will not be
interrupted until all statements on that line have been completed.

CONT

The execution of the program is continued from wherever it last left off. This
is normally done after a control—c interrupt, a program STOP statement, a
breakpoint interrupt, or a single—step sequence. A program may not be continued
after it has come to the end of the statements.

CONTROL-C

Depressing the control and c keys simultaneously will interrupt any program that
is currently runnjng and return to coninand interpretive mode. If a program was
being executed the line number about to be executed will be printed vai the
message "INTERRUPTED AT LINE nnnn". The program may be continued by the CON']? or
single—step commands or it may be restarted from the beginning by the RUN
coirmand.

SINGLE—STEP (line—feed key)

The single—step function is a feature not found in other versions of BASIC but
is very useful in debugging programs and in teaching the principles of BASIC
programming to newcomers. The single—step function causes the current line in
the program to be listed on the user terminal and then executed. Any output
generated by the execution of a PRINT statement will then follow on the next
line. After the line has been executed the execution pointer is advanced to the
next line and control returns to the user in the interactive command mode.
Successive single—step coninands may be used to follow the program through its
paces. Single—step is legal after program STOP statements, breakpoint
interrupts, control—c interrupts, and other single—step functions. Note that
the single—step function is performed by hitting the line—feed key and not by
actually entering the words "single—step".

BREAK

This is a feature not normally found in other versions of BASIC which allows the
user to set breakpoints on one or more line numbers in a program. During
execution if a line that has a breakpoint set on it is encountered the program
will suspend execution and the message "BREAK NP LINE nnnn" will be printed.
The system will then be in interactive caintand mode to allow the inspection or

29

changing of variable values. This suspension of execution occurs before the
line that has the breakpoint set on it is executed. There is no limit to the
number of breakpoints that may be set in one program. There is no additional
overhead paid in execution speed when breakpoints are set. Breakpoints may be
cleared by placing a minus sign in front of the line number or by compiling the
program which always clears all breakpoints. If no line numbers follow the
BREAK camnand all current breakpoints will be listed on the user terminal. For
example:

BREAK Lists all currently set breakpoints
BREAK 120 Sets a breakpoint at line 120
BREAK —120 Clears the breakpoint at line 120
BREAK 120,130,40,500 Sets breakpoints at lines 120,130,40, and 500
BREAK —50,60 Clears the breakpoint at 50 and sets one at 60

Once a breakpoint has been reached the user may optionally continue the
execution of the program by either a CDRP command or a single—step command. The
breakpoint ranains set after it has been reached until explicitly cleared by
another BREAK or CDMPILE command.

DELETE

The DElETE command is used to delete groups of source lines from the program
text. If the conutand is followed by a single line number, only that line will
be deleted. If the command is followed by two line numbers separated by a
coinna, space or other non—numeric character, all lines of text which fall
between the two line numbers inclusive will be deleted from the text.

BYE

This says goodbye to basic and returns the user terminal to monitor ccmmand
mode. Any program left in memory is lost forever so you may want to save it
first using the SAVE command.

30

PRX3RAN STATE14ENTS

The source program contains statements which are executed in sequence, one at atthe as they are encountered. Each of these statements normally starts with averb followed by optional variables or statements modifiers. This section will
list the program statements that are supported by AlphaBasic and give some
examples where necessary for clarity.

LET

Assigns a calculated value to a specific variable during execution of the
program. It is unique in that the actual word "LET" may be omitted if desired.

LET AS = 12.4
LET SUM(4,5) = Al+SQR(B].)
LET C$ = "JANUARY"
AS = 12.4
SUM(4,5) = Al+SQR(Bl)

= "JANUARY"

(3010

The (3010 statement transfers execution of the program to a new statementlocation. This statement location must be either a line number or a labeldefined somewhere in the program. The line number or label must follow the GOlD
statement in the program. The (3010 statement may be broken apart as GO 10 ifdesired.

GOSUB — CALL — RETURN

Calls a subroutine which starts with the line number or label following the
GOSUB or CALL verb. The subroutine exits via the RETURN statement which returns
control to the statement following the GOSUB or CALL statement. Executing a
RF7IUPN statement without first executing a GOSUB statement will result in an
error message. Both GOSUB and RETURN are currently illegal in immediate mode.
Note that the CALL verb is merely another way of specifiying GOSUB for those
programmers used to this verb from other languages.

cv.Gcyio
The ON (3010 statement allows multi—path (3010 branching to one of several points
within the program based on the result of evaluating an expression. The actual
format is:

ON expression (3db pointl, point2, point3, ... pointw

The expression can be any valid expression which will be evaluated down to a
positive integer result. The result will then be tested to branch to pointl if
1, point2 if 2, point3 if 3, etc. If the result is zero, negative or greater

31

than pDintN the program will fall through to the next statement, The points(pointl through pointN) may be line numbers, labels or any misture of the two.

ON ... GOSUB

The ON GOSUB statement parallels the ON 0320 statement in format and operatjonexcept that pointl through pointN represent entries to subroutines that will beexecuted based on the result of the expression evaluation. As with the ODSUBstatement, the verb CALL may be used in place of the verb GOSUB giving an ONCALL statement.

READ - DATA - RES1ORE

These calls allow data to be an integral part of the source program with amethod for getting this data into specific variables in an orderly fashion.DATA statements are follod by one or more literal values separated by commas.String literals need not be enclosed in quotes unless the literal data containsa comma. All data statements are placed into a dedicated area in memory nomatter where they appear in the source program. READ statements are followed byone or more variables separated by ccnrias. Each time a read statement isexecuted the next item of data is retrived fran the DATA statement pool aridloaded into the variable named in the read statement. If there is no more dataleft in the data pool an error message results and the program is aborted. TheRESIORE statement is used to initialize the reading of the data pool fran thebeginning again.

DATA 1,2,3,4,5
DATA 2.3,O.555,cqFJ STRfl,E,"4,4"
READ A,B,C
READ A$
READ C(2,3),B$(4)
RESIDRE

The READ statement is also used for reading data from random access files. Fordetails on this refer to the section describing the file I/O system.

Allows data to be entered fran the user terminal and loaded into specificvariables at execution time. The rwpryr statement contains one or more variablesseparated by camnas. When the INPUT statement is executed a single questionmark is printed on the user terminal to signal the request for data entry.Numeric variables require the data to be in one of the acceptable floating pointformats. String variables require the data to be an ASCII string of characters.If multiple variables are used in one INPUT statement the user is expected toenter multiple values separated by carras sufficient to satisfy the number ofvariables called out. If insufficient data is entered a double question markwill be printed to signal the need for additional data.
INPUT Al
INPUT B$,C$,Q(8)

32

If the user enters a blank line (carriage—return only) in response to a requestfor input, the previous values of all variables will remain unchanged and theprogram will proceed to the next statement. This effectively bypasses theentire input statement (or the remainder of a partial data request). If acontrol—c is entered in response to a request for data the input statement isbypassed (as with a carriage—return) and the program is interrupted at the nextstatement following the input statement. The program may be resumed by the CONTor single—step commands.

The user may cause his own prompt character or character string to be printed inplace of the standard question mark by enclosing the string in quotesimmediately following the INPUT verb.

INPUT "ENTER YOUR NAME: ",A$
INPUT "ENTER 3 VALUES FOR X, Y AMO 2: ",X,Y,Z

The INPUT statement is also used for reading data fran sequential files. Fordetails on this refer to the section describing the file I/O system.

INPUT LINE

The INPUT LINE statement operation is identical to that of the INPUT statementwith the exception that input into a string variable will accept the entire lineup to but not including the carriage—return and line—feed. This allows commas,quotes, blank lines and other special characters to be input without the needfor quotes around them. The INPUT LINE statement may be used in sequential fileprocessing as well as the standard terminal input statement. The question markprompt character is never printed for an INPUT LINE statement but the user mayinclude his own prompt string as in the INPUT statement above. Sane examples ofthe statement are:

INPUT LINE A$
INPUT LINE "ENTER YOUR FULL NAME, PLEASE: ",NAME
INPUT LINE #2, LINE'OF'INPUT

PRINT

The print statement performs the same as other versions of BASIC and will not bedetailed extensively in this first printing. Multiple variables or literals areprinted on the same line separated by commas or semicolons. Commas cause thenext variable to be printed in the next zone while semicolons cause thevariables to be printed with no separating spaces. If the line ends with asemicolon the carriage return will be suppressed so that the next PRINTstatement executed at some later time will resume printing on the same line.For compatibility with other popular BASIC implementations, Aiphasasic alsorecognizes the single question mark as an alternate form of the PRINT verb.

PRINT USING is supported for formatted output and is described in anothersection reserved for that purpose alone.

The PRINT statement is also used for writing data to sequential files. For

33

details on this refer to the section describing the file I/O system.

(
FOR - NEXT - STEP

These statements allow the execution of loops within the program and follow the
same format and restrictions as other forms of BASIC. The variable used may besubscripted if desired. If no S'FEP modifier is used the step value is assumedto be a positive 1. The variable name may be anitted in the NEXT statement ifdesired in which case the previous FOR statement will be the one that is
incremented. All normal rules for nested loops and entering or exiting franwithin the loops apply here as in other BASIC versions. FOR and NEXT statementsare illegal in inutediate mode.

FOR A = 1 10 10
FOR B = Al/Bl 10 Cl STEP 2
FOR A = 10 10 1 STEP —l

IF — THEN — ELSE

The conditional processing features in AlphaBasic give a wide variety of formats
which duplicate just about all functions performed by other versions of BASIC.The formats that are acceptable are:

IF <relative expression> THEN <line number>
IF <relative expression> THEN <line number> ELSE <line number>
IF <relative expression> <statement>
IF <relative expression> <statement> ELSE <statement>
IF <relative expression> THEN <statement>
IF <relative expression> THEN <statement> ELSE <statement>

The above formats may be nested to any depth and rather than go into detail wesuggest that you play around with them to determine the actual restrictions thatexist. Sane examples:

IFA=STHflJUO
IF A>l4 THEN 110 ELSE 220
IF B$="END" PRINT "END OF TEST"
IF IOTPIL > 14.5 GCY1D 335
IF AA=5 AND BB=6 IF CC=7 PRINT 567 ELSE PRINT 56 ELSE PRINT "ICNE"IF A=1 PRINT 1 ELSE IF B=2 THEN 335 ELSE 345

DIM

The dimension statement defines an array which will be allocated dynamically atexecution time. There is no limit to the number of subscripts that may be usedto define the individual levels within the array. The statement DIM A(20)defines an array with 20 elements referenced as A(l) through A(20). Multiplearrays may be dimensioned by a single DIM statement by separating them with
conTuas.

Subscripts are evaluated at execution time and not at canpile time thereby

34

allowing variables to be used as subscripts instead of fixed values. The
statement DIM A(B,C) will allocate an array whose size will depend on the actual
vaules of B and C at the time the DIM statement is executed.

String arrays may also be allocated such as DIM A$ (5). The size of the arraywill depend on the current default string size in effect as specified by the
last STRSIZ since each element in the array must be this number of bytes.

Arrays may be redimensioned during the execution of the program if desired. Thenumber of subscripts must remain the same but the number of elements in each
level of the array may be changed. Each redimensioning of an existing arrayeffectively erases the old array first and then allocates a new array with all
elements zeroed out.

DIM A(l0)
DIM C(8,8), C$(lO,4)
DIM TES'r(A,B*4)
DIM A(B(4))

SIGNIFICANCE

The significance statement allows the user to dynamically change the default
value of the numerical significance of the system for unformatted printing. Thesignificance value can be any value from 1 through 11 and will represent the
maximum number of digits to be printed in unformatted numbers. Rounding off tothe specific number of digits will be performed only prior to the actualprinting of the result. The statement SIGNIFICANCE 8 will set the number ofprintable digits to 8. The value is interpreted at run time and therefore maybe any valid numeric expression including variables if desired. The current
significance of the system. is ignored when PRINT USING is in effect.

Note that the signifcance statement only affects the final printed result of all
numeric calculations. The calculations themselves and the storage ofintermediate results is always performed in full 11—digit precision to minimize
propagation of errors.

The significance of the system is initially set at 6 digits when the system isfirst started. This is equivalent to standard single—precision formats used inmost of the popular versions of BASIC. The significance is not reset by the RUNcoirruand and therefore may be set in ilimediate mode just prior to the actualrunning of a test program. Of course, any SIGNIFICANCE statements encounteredduring the execution of the program will reset the value.

STRSI Z

The string size statement sets the default value for all strings which are
encountered for the first time during the compilation phase. Initially, the
default value of all strings in the absence of a STRSIZ statement is 10 bytes.
The statement STRSIZ 25 would cause all newly allocated strings which follow to
have a maximum size of 25 bytes instead of 10 bytes. This includes the
allocation of string arrays. The size value is evaluated at compilation timeand therefore must be a single positive integer.

35

RANI)DMIZE

Resets the random number generator seed to begin a new random number sequencestarting with the next PND(x) function call.

Slop

Causes the program to suspend execution and print the message "PR(XRAM STOP ATLINE nnnn" and then return control to the user in the interactive coirmand mode.The user may then continue with the next statement in sequence by executing aCONT corrnrtand or with single-step coninands.

Causes the program to terminate execution and return to the READY mode • The ENDstatement does not terminate compilation of the program nor is it required atthe end of the program.

OTHER VERBS

AlphaBasic supports other verbs which are described in separate sections to morefully go into the details of their operation. The following verbs are describedelsewhere:

SCALE — scaled arithmetic modifier
CHAIN — executes a new program or ccnnand file
CN ERROR — controls error trapping and processing
OPEN — opens an I/O file for processing
CLOSE — closes an I/O file to further processing
WRITE — write a record to a random access fileKILL — deletes a file from disk
ALLOCATE — allocates a random access file on disk
LOOKUP — searches for a file and returns its size
XCALL• — executes an external, assembly language subroutine•ISAM — facilitates processing of indexed sequential files

36

BASIC FUNCTIONS

The following is a ljst of the currently impleplented functions Which areavailable for use in expressions. Note that the mode independence feature ofthe expression processor will perform autanatic conversions if a numericargument is used where a string argument is expected and vice versa.

EXP(X)

Returns the constant e (2.71828) raised to the power X.

LOS(X)

Returns the natural (base e) logarithm of the argument X.

rn3lo

Returns the decimal (base 10) logarithm of the argument X.

SQR(X)

Returns the square root of the argument X.

INr(x)

Returns the largest integer less than or equal to the argument X.

FIX(X)

Returns the integer part of X (fractional part truncated).

FACr(X)

Returns the factorial of X.

ABS(X)

Returns the absolute value of the argument X.

SGN (X)

Returns a value of —1, 0 or 1 depending on the sign of the argument X. Gives —1if Xis negative, 0 if Xis 0 and 1 if x is positive.

37

RND(X)

Returns a random number: generated -by a pseudo—random number generator based on aprevious value knot as the "seed". The argument X dontrols the number to bereturned. If X is negative it will be used as the seed to start a new sequenceof numbers, if X is zero or positive the next number in the sequence will be
returned depending on the current value of the seed (this is the normal mode).
The RPN]XtlIZE statement may be used to create a seed which is truly random and
not based on a fixed beginning value set by the system.

MR4(X) -

Returns a positive integer value which specifies the number of bytes currentlyin use for various memory areas used by the compiler system. The most coninonuse of this is with an argument of 0 which returns the number of free bytes leftin the user memory partition. This MEM(0) call duplicates the action performedby the FRE (X) function in other versions of BASIC. Other values of the argumentX return memory allocations which pertain to various areas in use by thecompiler and may or may not be of use to you. The byte counts returned for thevarious values of X are:

0 — Free memory space remaining in current user partition
1 — Total size of current user partition
2 — Size of source code text area

-

3 — Size of user label tree -

4 — Size of user symbol tree (variable names and user function names)
5 — Size of compiled object code area
6 — Size of data pool resulting from all compiled DATA statements
7 — Size of array index area (dynamic links to variable arrays)
8 — Size of variable storage area (excluding arrays)
9 — Size of file I/O linkage and buffer area

Note that the parameters for values above 1 may change as new versions of the
compiler are developed. Also, some of these values will be meaningless whenrunning the runtime object module in compiled mode.

EOF(X)

The WF function returns a value giving the status of a file whose file numberis X. The file is assumed to be open for sequential input processing. Thevalues returned by the BDF function are:

—l if the file is not open or the file number X is zero
U if the file is not yet at end—of—file during input calls
1 if the file has reached the end—of—file condition

Due to the method used by the AMOS operating system for processing files, theEOF status will not be valid until after an INPUT statement which reaches theend—of—file condition. Any INpuT statements which reach EDF will return numericzero or null string values forever more. This means that the normal sequence

38

for processing sequential input files would be to INPUT the data into thevariables ar then test the EOF(X) status before actually using the data inthose variables.

FXJF should only be tested for sequential input files. Files open for output orfor randctn processing will always return a zero value.

LEFr(A$,X) or LEFT$(A$,x)

Returns the leftmost X characters of the string expression A$.

RIGHT(A$,x) or RIGHTs (A$,x)

Returns the rightmost X characters of the string expression A$.

MID(A$,x,y) or MID$(A$,X,y)

Returns the substring composed of the characters of the string expression A$
starting at the Xth character and extending for Y characters. A null string
will be returned if X > LEN(A$).

LEN(A$)

/

Returns the length of the string expression A$ in characters.

INSTR(X,A$,B$)

Performs a search for the substring B$ within the string A$ beginning at the Xthcharacter position. it returns a value of zero if B$ is not in A$ or the
character position if B$ is found within A$. Character position is measured
from the start of the string with the first character position represented asone.

ASC(A$)

Returns the ASCII decimal value of the first character in string A$.

CHR(X) or CHR$ (X)

Returns a single character string having the ASCII decimal value of X. Only one
character is generated for each CHR or CHR$ function call.

39

STR(X) or STR$(X)

Returns a string which is the character representation of the numeric expressionX. No leading space is returned for positive numbers.

VP1L (A$)

Returns the numeric value of the string expression A$ converted under normalBASIC format rules.

SPACE(x) or SPACE$(x)

Returns a string of X spaces in length.

TRIG FUNCTIONS

The following trig functions are Eliplemented in full 11—digit accuracy:
SIN(X) Sine of X
CDS(x) Cosine of X
ThN(X) Tangent of X
ATh(X), Arctangent of X
ASN(X) Arcsine of X
ACS(x) Arccosine of X
DNIN(x,y) Double arctangent of X,Y

40

FOR4AnED OUTPUT VIA PRINT usirs STATEMENTS

The PRINT USING statement is an extension of the standard PRINT statement whichallows the output to be formatted into specific character positions suitable forbusiness reports, formal, text applications, and the like. The format of thestatement appears as follows:

PRINT USING <string>, <list> (output to terminal)
PRINT #<fi],e>, USING <string>, <list> (output to file)

The string expression is used to control the formatting of the variables as theyare enrountered in the print list and must match the format of the variables tobe printed. The string may be either a string constant, a string variable, or astring expression which is interpreted as an exact image of the line to beprinted. The list is the sequence of variables or expressions to be printed
using all the rules of the standard PRINT statement. All characters in the
formatting string will be printed as they appear except for the special
formatting characters which will be described below. The string is continually
scanned over and over until the' list of print items is exausted. The formatting
characters and their usage in the string are described in the following
paragraphs:

EXCLAMPATIaI MARK

An exclamation mark (I) in the format string causes the first character of the
corresponding string variable to be printed in the corresponding space. The
rest of the string variable if it exceeds one character will be ignored.

BACKSLASHES

Two backslashes (\) in the format string define a string field whose size equals
the number of characters enclosed by the brackets plus the brackets themselves.
Normal BASIC syntax dictates that the characters between the backslashes be
spaces but Alphaeasic will accept any characters. If the string variable to be
printed exceeds the size of the specified string field the excess characters
will be ignored. If the string variable is shorter than the specified string
field, trailing blanks will be added to fill out the correct field size.

NUMERIC FIEL

Digit positions within formatted numeric fields are specified in the format
string by the pound—sign (#) using one for each position desired, both in front
of and behind the decimal point. One decimal point is allowed to define the
explicit alignment of the digits within the numeric field format. Normally,numeric fields are right justified with leading blanks being used to fill in fordigit positions that are not required in front of the decimal point. Unused
digit positions behind the decimal point are filled with trailing zeros. If the
numeric field specified in the format string is too small to contain the numeric
variable to be printed, the field will be printed with a leading percent—sign
(%) indicating the overflow. This will be followed by the number in standard
BASIC format.

41

If the format field specifies any digit positions in front of the decimal point,at least one digit is always output before the decimal point itself. Ifnecessary, this digit is a zero.

Note that other special characters (described in the following paragraphs) alsodefine numeric digit positions in addition to performing special formattingfunctions.

ASTERISK FILL

If a numeric field in the format string begins with a double asterisk (**) anyleading spaces that would normally be output in front of a number will bereplaced by asterisks. This is quite useful in printing checks, for instance.
The double asterisk also defines two digit positions.

FLOATING DDLLAR SIGN

If a numeric field in the format string begins with a double dollar sign ($$) adollar sign will be printed ilnuediately preceding the first digit of the number.The double asterisk also defines two digit positions, one of which is taken upby the dollar sign itself.

The above two special functions may be combined by starting the numeric formatfield with the symbols "**$" combines the asterisk fill ard floating dollar signfunctions described above. This combination also defines three digit positions,one of which is taken up by the dollar sign itself.

TRAILING MINUS SIGN

If a numeric field is terminated by a minus sign in the format string, the signof the output number is printed following the number instead of before it. Ifthe number is negative, a minus sign will be printed. If the number is zero orpositive, a blank will be printed. Note that if the trailing minus sign is notused, space must be provided in the numeric field for the sign to precede thenumber if it is negative.

If the numeric format field contains one or more commas in front of the decimalpoint, a conna will be inserted every three digits to the left of the decimalpoint when the number is printed. Each ccituna also defines one digit position inthe format field. Coinnas appearing after the decimal point will be treated asprinting characters.

EXPONENT IAL FOPMAT

Exponential format may be specified by following the numeric field designationwith four up—arrows (") which defines the space taken up by the E NN exponentvalue. As with other numerical formats, any decimal point arrangement isallowed and the significant digits are left justified with the exponent beingadj us ted as necessary.

42

SCALED ARITHMETIC

AlPhaHaSic uses a floating point format which gives an accuracy of 11significant digits. Unfortunately, this accuracy is absolute only when dealingwith those numbers which are total integers in the first 11 positions to theleft of the decimal point. This fact stems from the conversions that arerequired from decimal input to the binary floating point format used in thehardware. For most business users, the actual range of numbers contains twodigits to the right of the decimal point and nine digits to the left of thedecimal point. When the fractional part of the number is converted betweendecimal and binary formats, a small but significant error is sometimesintroduced which may propogate into large inaccuracies when dealing withabsolute dollars—and—cents values.

AlphaBasic incorporates a scaling feature which helps to alleviate theseproblems by storing all floating point numbers with a scale offset. This offsetmay be used to effectively designate where the 11 absolute accuracy digits arelocated in relation to the decimal point. This is done by multiplying everyinput number by the scaling factor and then dividing it out again beforeprinting. This is a simplified explanation and many other checks andconversions are done internally to scaled numbers but that is the general idea.
The scaling factor represents the number of decimal places that the 11—digit"window" will be effectively shifted to the right in any floating point number.For example, the most common application is in a business environment where thescaling factor of 2 would be used to give absolute 11 place accuracy whichextends 2 places to the right of the decimal point. This means that the valueof 50.12 will be multiplied by the scaling factor of 2 digits (100) and storedas the floating point value of 5012. Since this value is an integer, it hasabsolute accuracy. Just before printing this number it will be divided by the
scaling factor to reduce it to its intended value of 50.12 and everybody ishappy.

Other little conversions had to be included into the system to take care of allthe little subtle effects of storing scaled numbers. For example, whenconverting scaled numbers to integer or binary format, the number must beunscaled first before conversion. When two scaled numbers are multipliedtogether the result is a number which must be unscaled once. Division of twoscaled numbers creates exactly the opposite problem. Dealing with scalednumbers for exponential, logarithmic and trigonometric functions creates evenmore exotic problems. All these conversions are done automatically byAlphaBasic and so the programmer is relieved of the task of keeping track ofthem.

Scaled arithmetic will normally be entered at the start of a program and will
continue in effect throughout the program. The statement for setting theprogram into scaled mode is:

SCALE n

The scaling factor "n" must be a decimal digit in the range of —30 to +30 andmay not be a variable since scaling is done at compile time for constant valuesas well as at runtime for input and output conversions. Negative scaling moves

43

the 11—digit window to the left and for most cases will not be of use to theaverage prograniner.

A few words of caution are in order here. Once the SCALE statement has beendetectecj during ccinpilation, all constant values that follow are scaled by thescaling factor so that they are stored properly. In addition, a runtime camnandis generated in the executable program which cauSes the actual scaling to beperformed on input and print values when the program is running. If two or moredifferent SCALE statements are executed in the same program, saite very strangeresults may cane out unless the user is totally familiar with what is happeningin regards to compile time and run time conversions. We suggest that you playwith this one a bit before delving into it full steam.

One other word of caution. Floating point numbers that are stored in files bythe sequential output PRINT statement will be unscaled and output in ASCII withno problems. Floating point numbers that are written to random access files byusing the WRITE statement will not be unscaled first and any program that readsthis file as input had better be operating in the same scaling mode or elseapply the scale factor explicitly to all values from the file. Binary andstring values, of course, are never modified regardless of the scaling factorcurrently in use.

44

ALPHABASIC FILE I/O SYSTEM

AlphaBasjc supports both sequential and random access disk files. Data mayoptionally be written in ASCII or packed binary formats. Files created byAlphaBasic programs are compatible with all other system utility formats and maybe interchangeably introduced into and manipulated by programs written in otherlanguages. Conversely, files created by other languages and system utilitiesmay be read and manipulated by programs written in AlphaBasic.
Files are created and referenced by the general statements OPEN, CLOSE, INPUT,PRINT, READ, and WRITE. All file references are done by a file number which maybe any legal integer value from 1 to 65535. There is no absolute limit to thenumber of files that may be open at any given time in a program but since eachfile requires a certain amount of memory there is a practical limit to thisnumber based on available memory. The file number always follows the verb inany file I/O statement and may be any legal numeric expression which is precededby a pound sign (#). File number zero is defined as the user terminal and islegal in file statements to allow generalized programs to be written which mayselectively output to either a file or to the terminal at run time.

All open files are automatically closed (if not closed explicitly by a CLOSEstatement) when the program exits or when a CHAIN statement is executed. No twofiles may be opened with the same file number at the same time but after a filehas been closed another file may be reopened using the same file number ifdesired. All file statements are valid in ilunediate mode but any open files areautomatically closed before each new PUN ccnnnand is executed thereby preventingfiles which were opened by an inujediate statement to be written or read bystatements within an executable program. Under the current version of.AlphaBasic, each open file requires about 580 bytes of free memory for buffersand control blocks. Future releases will allow more than one file to share the
same buffer area therby reducing the execution memory requirements.

SEQUENTIAL ASCII FILES

Sequential disk files are the easiest to understand and to implement inAlphaBasic. Data is written in ASCII format and all numerics are stored asASCII string values. Carriage—returns and line—feeds are included in the outputfile as a result of the print statement formatting but are bypassed when thefile is read by another program. The data files created by AiphaBasicsequential I/O functions normally have the extension "DAT" unless otherwiseexplicitly stated in the OPEN statement. These files are normal ASCII
sequential files in all respects and may be manipulated by the text editor, theprint spooler, or any of the other system utilities.

Data is written to sequential ASCII files by using the PRINT statement with afile number (non—zero) following the verb in standard I/O statement format.Data is read back from sequential ASCII files by using the INPUT statement in asimilar manner.

45

RPNEXJM ACCESS FILES

Random access files are more complex than sequential files but offer a much moreflexible method for storing and retrieving data in different formats. Randomfiles are written in what is considered unformatted or packed data mode. Allprogram accesses to random files are made via the "logical record" approach. Alogical record is defined as a fixed number of bytes whose format is explicitlyunder control of the program performing the access. Physical records on thedisk are each 512 bytes long and each random file must be preallocated as somegiven number of these 512—byte physical records. Logical records may be anylength from 1 byte to 512 bytes in length. The AlphaBasic I/O system willautomatically compute the number of logical records that will fit into onephysical record and perform the blocking and unblocking functions for you. Forexample, if your logical record size is defined as 100 bytes, then each physicalrecord on the disk will contain 5 logical records with the last 12 bytes of eachphysical record being lost. Therefore, the most efficient use of random filescomes when the logical record size will evenly divide into 512 bytes (32, 64,128, etc).

Random access files are preal1ocatd once using the ALLOCATE statement andgiving the number of physical 512—byte records to be allocated. It is up to theprogrammer to calculate the maximum number of logical records required in thefile and then, using the above description, calculate how many physical recordswill be required to completely contain the number of logical records desired.For instance, assume the logical record size is 100 and you need a maximum of252 logical records in your file. Each physical disk record is 512 bytes andtherefore will contain S logical records. You need 252 logical records sodividing 252 by S gives 50 full physical records plus 2 logical recordsremaining. Since the file must be allocated in whole physical records you willneed 53 physical records which will give you a maximum of 255 logical records.These logical records will be referenced in your program as records 0 through254 since the first record of any random file is numbered record 0.
The logical record size is specified dynamically in the OPEN statement when thefile type is RANEXYVI so it is possible to get things fouled up if you do not havethe record size correct. No logical record size is maintained within the filestructure itself. This fact does make it nice in one respect and that is that afile which is accessed by many programs can have its record size expandedwithout recompiling all programs. Heres how: Assume you have a file which isconsidered the parameter descriptor file for all other files in the entiresystem. This file gives the record size as 100 bytes for the vendor name aridaddress file (as an example) . All programs which reference the vendor filefirst read this parameter file to get the size of the vendor file logicalrecord. The programs then set the size into a variable and use this variable inthe OPEN statement for the record size. Each READ. or WRITE call will thenmanipulate the 100 bytes of data by reading or writing to or from variableswhose size totals 100 bytes. Lets say you now want to expand the file to 120bytes and that most of the programs will not have to make use of the extra 20bytes until sane time in the future. You write a program which copies the100—byte file into a new 120—byte file and update the main parameter file toindicate that the new record size for the vendor file is 120 bytes instead of100. Each program will now open the file using the new 120—byte record size(since it is read in from the parameter file at runtime) but will only READ orWRITE the first 100 bytes of each record due to the variables used by the READand WRITE calls. Got the message?

46

FILE I/O STATEMENTS

OPEN

In order to manipulate data to or frcm a file it must be opened first. The openstatement assigns a unique file number to a file and also specifies the namethat is to be given to an output file or to be used in the locating of an inputfile. The general format is:

OPEN #<file>, <filename>, <mode>, {record—size, record—number—variable}

file — any numeric expression which evaluates to an integer from 0—65535
(0 is defined as the user terminal and treated as such)

filename — any string expression which evaluates to a legal file description
mode — specifies the mode for opening the file:

INPUT — opens an existing file for input operations
OUTPUT — creates a file for output operations
RMWM — opens an existing file for randan read/write

The remaining two options must be used for RANDJM mode only:

record—size — an expression which specifies dynamically at runtime the
logical record size for read/write operations on the file

record—number_varithle — a non—subscripted numeric variable which mustcontain the record number of the desired random access for
READ or WRITE statements when they are executed

Any attempts to read or write to a file which has not been opened will result inan error message and the program will be aborted. The filename string may be asbrief as the name of the file in which case it is assumed to have an extensionof "DAT" and reside in the current user's disk file area. The filename stringmay expand to become a complete file specification if desired giving theexplicit location of the file in another user area and even on another diskdrive. Some examples are:

OPEN #1, "DATFIL", INPUT
OPEN #15, "PAYROL.Thlp", (XJTPUT
OPEN #A, C$, OUTPUT
OPEN #3, "DSK1:OFILE.ASC[200,201", CUTPIJT
OPEN #1, "VENExJR.DAT", RANEOM, 100, RECNUM

The OPEN statement is the only statement which references the file by its actual
ASCII filename in the standard operating system format. All further referencesin the program are made by the file number which is assigned in the OPEN
statement #<file> expression.

CLOSE

The CLOSE statement terminates the processing of data to or from a file. Once a

47

file has been closed, no further references are allowed to that file numberuntil another OPEN statement is executed. Any files that are still open whenthe program exits will be closed autatically. The format of the CLOSEstatement is:

CLOSE #<file>

KILL

The KILL statement erases one file fraB the disk. It does not need a filenumber and no open or close need be performed to KILL a file. The format forthe KILL statement is:

KILL <filename>

As in the OPEI statement, the filename is any string expression which evaluatesto a legal file description.

ICOKUP

The LLXDKUp statement looks for a file on the disk and returns a flag which tellsyou if the file was found and if so, how many records it contains. The formatfor the statement is:

LOOKUP <filename>, <result—variable>

As in the OPEN statement, the filename is any string expression which evaluatesto a legal file description. The result—variable is any legal. numeric variablewhich will receive the result of the search. If the file was not found, a zerowill be returned. If the file was found and is a sequential file, a positivenumber will be returned which is the number of records in the file. If the filewas found and is a randan (contiguous) file, a negative number will be returnedwhich is the number of records in the file. In either case, the number ofrecords represents physical 512—byte disk records and must be divided by theblocking factor for randm files if the number of logical records is desired.

ALLOCATE

The ALLOCATE statement is used to preallocate a contiguous file on disk whichmay then be opened for randcn processing. An attempt to allocate a file whichalready exists will result in an error message. A randaii file need only beallocated once and may then be opened for randcin reth/write operations as manytimes as desired. The statement format is:

ALLOCATE <filename>, <number—of—records>

As in the OPEN statement, the filename is any string expression which evaluatesto a legal file description. The number—of—records is a numeric expressionwhich represents the number of physical 512—byte disk records to be allocated tothe file.

48

INPUT

Once a file has been opened for input, the data is read from the file by aspecial form of the INPUT statement using a file number which correspo,ns to thenumber assigned in the OPEN statement. The variables in the list may be eithernumeric or string variables but must follow the format of the data in the filebeing read. Weird results will occur if you attempt to read string data into anumeric variable or vice—versa. The general format of the INPUT statement is:
INPUT #<file>, <variable—l>, <variable—2>, ... <variable—n>

During the reading of the input data into the variable list all leading spaceswill be bypassed unless enclosed within quotes just as in the normal form of theINPUT statement. Also, all carriage—returns and line—feeds will be bypassedallowing the file created by the PRINT statements to contain formatted line dataif desired. Coninas, spaces, and end—of—line characters will all terminatenumeric data strings and will then be bypassed.

PRINT

Once a file has been opened for output, the data is written to it by a specialform of the PRINT statement using a file number which corresponds to the numberassigned in the OPEN statement. All techniques usable in the normal form of thePRINT stab-i-tent which outputs to the terminal may be used in the file formincluding PRINT USING for formatted data. The data which is output to the fileis in the exact format that would appear on the user terminal if the file numberhad been omitted. The general format of the PRINT statement along with somevalid examples follow:

PRINT #<file>, <data—list>

PRINT #1, A, B, C
PRINT #4, USING A$, A, SQR(A)
PRINT #Ql, USING "###.##", Al(lO);
PRINT #1, "THIS IS A SINGLE LINE"

READ

The READ statement is used to read a selected logical record from a filewhich has been opened for random access processing. The logical recordwhich is transferred by the system I/O is that whose record number iscurrently in the variable mentioned in the OPEN statement. The format of theREAD statement is:

READ #<file>, <variable—l>, <variable—2>, ... <variable—n>

The variables in the list may be any format but they obviously should match thatof the designated record format. The data will be read into the variables asunformatted bytes without regard to variable type. The data will be transferredinto each variable until the variable has been completely filled and then thenext variable in the list will be filled, and so on. If the record is longerthan the variable list specifies, all excess data in the record will not be

49

transferre.3. An attempt to transfer more data than is in the logical recordsize will result Th an error message. The most efficient use of the random
files comes when the variable or variables used are mapped by the MAP statement
to the exact picture of the record format in use.

WRITE

The WRITE statement is used to write a selected logical record into a file whichhas been opened for random access processing. The logical record which istrnasferred by the system I/O is that whose record number is currently in thevariable mentioned in the OPEN statement. The format of the WRITE statement is:
WRITE #<file>, <variable—l>, <variable—2>, ... <variable—n>

The variables in the list may be any format but they obviously should match thatof the designated record format. The data will be written into the logicalrecord from the user variables as unformatted bytes without regard to variabletype. The data will be transferr4 from each variable until the variable hasbeen completely emptied and then the next variable in the list will be used, andso on. If the record is longer than the variable list specifies, all excessdata in the record will not be modified. An attempt to transfer more data thanis in the logical record size will result in an error message. The mostefficient use of the random files comes when the variable or variables used aremapped by the MAP statement to the exact picture of the record format in use.

50

CALLI EXTERNAL ASSE2IBLY LANGUAGE SUBIflYPINES

External subroutines written in assembly language code may be called from anyAlphaBasic program using the XCALL statement. The syntax for this statement isas follows:

XCALiJ routine,argi.unent—l,argnt_ argument—n

The routine to be called is an assembly language program which has beenassembled using the MAC assembler. The resulting PRG program file must thenbe renamed to give it the assumed extension SBR indicating this is a subroutineand not a runnable program. When the XCA statement is executed by theAlphaBasic runtime system, the named subroutine will be located in memory andthen called as a subroutine. AlphaBasic first saves all registers and then setscertain parameters into these registers for use by the external subroutine. Theaddresses of the arguments are calculated and entered into an argument list inmemory along with their sizes and type codes. The base address of this list isthen passed to the user routine in register R3.
The arguments may be one of two basic forms. A variable name may be used inwhich case the argument entry in the list will reference the selected variablewithin the user impure area. This variable is available to the calledsubroutine for both inspection and modification. The argument may also be anexpression (numeric or string) in which case the expression is evaluated and the
result is placed on the arithmetic stack (referenced by ItS). This result isthen referenced in the argument list entry instead of a single variable. it isavailable for inspection only since the stack is cleared when the subroutineexits.

The user routine is free to use and modify all six general work registers
(RU—PS) and may use the stack for work space as required. When the subroutinehas completed its execution a return must be made to the runtime system by
executing the R'IN subroutine return instruction.

RISTER PARAMETERS

The following registers are set up by the runtime system to be used as required
by the external subroutine. They may be modified if desired as they have been
saved before the subroutine was called.

RU — indexes the user impure variable area. RU is used throughout
the runtime system to reference all user variables. Details
on the format of this area are not available at this time andthe user need not be concerned with them. RU may be used asa work register.

R3 — points to the base of the argument list. R3 may be used toscan the argument list for retrieval of the argument parameters.
R4 — points to the base of the free memory area that may be used by

the external subroutine as work space. This is actually the
address of the first word following the argument list in memory

51

and may be used to store a terminator word to stop scanning of
the argument list if desired.

ES — this is the arithmetic stack index used by the runtijue system.The arithmetic stack is built at the top of the user partition
and grows downward as items are added to it. when the externalsubroutine is called, R5 points to the current stack base. Sincethe arithmetic stack may contain valid data, the external
subroutine must not use the word indexed by ES or any wordsabove that address.

AWUMENT LIST FORMAT

The list of arguments specified in the XCALL statement may range fran noarguments at all to a number limited only by the space on the coitnnand line. Topass these arguments to the external subroutine, an argument list is built inmemory which describes each variable named in the list and tells where it can belocated in the user impure area. •The variables themselves are not actuallypassed to the subroutine, but rather their absolute locations in memory are. Inthis way, the subroutine may inspect them and nodify them directly in theirrespective locations. This does not apply to expressions which are built on thestack as described previously.

R3 points to the first word of the argument list which is a binary count of howmany arguments were contained in the XCALL statement. Following this count wordcanes one 3—word descriptor block for each argument specified. If there are noarguments in the XCAa statement, the argument list will consist only of thesingle count word containing the value of zero.
The format of each 3—word block describing one argument is as follows:

Word 1 — variable type code. Bits 0—3 contain the hex type code for thespecific variable: O=unformated, 2=string, 4floating point,6=binary, 8 through E are currently unassigned. Bit 4is set to indicate the variable is subscripted or clear toindicate the variable is not subscripted. Other bits in thetype code word are meaningless.
Word 2 — absolute address of variable in user impure area. Thisaddress is the first byte of variable no matter what is typeor size might be.

Word 3 — size of the variable in bytes.

Note that the above descriptions also apply to the expression arguments with theexception that the results will be located above the address specified by PSinstead of below it.

The argument list is built in free memory directly above the currently allocateduser impure area. P4 points to the word ilTinediately following the last word inthe argument list. The user may scan the argument list and determine its endeither by decrenenting the count word at the base of the list or by scanninguntil the scan index reaches the address in P4.

52

FREE MEMORY USAGE

When the subroutine is called, indexes R4 and R5 mark the beginning and end ofthe free memory that is currently available for use as workspace. This area isnot preserved by the runtine system and the subroutine must not count on itssecurity between XCALL statements. Note that the word at @R4 may be used as thefirst word but the word at @R5 is the base of the arithmetic stack and must notbe destroyed. The last word of free memory is actually at —2(R5) for allpractical purposes.

The runtime system has its own internal memory management system and does notconform to the AMOS operating system memory management. Therefore, the externalsubroutine must not use the GEThEM monitor calls to generate a block of workspace in memory. Also, if any file calls are to be done they must be done withinternal buffers since the INIT call sets up a buffer by using the GENEMmonitor call.

SUBROtyrI LOADING

The version 3.1 release requires that the subroutines being called by the BASICprogram already exist either in system memory or user memory before beginning
execution of the program. These subroutines must be loaded into system memoryby the SYSTEM call in the SYSTEM. INI file or they must be loaded individuallyinto the user memory partition with the WAD command while in monitor commandmode. Note that this is the monitor LOAD conuTiand to load the SBR module whichis vastly different from the WAD command used to load a basic source file onceyou are running AlphaBasic.

Future releases will provide capabilities for loading subroutines and overlaysfrom within the BASIC program itself.

53

ERROR TRAPPING

(T
AiphaBasic allows the user program to trap errors that would normally cause thesystem to print an error message and abort the program run. During interactiveprocessing this would return you to Alphaasic command mode and during compiledrun processing it would return you to to monitor command mode. Use of the ONERROR (3010 and RESUME statements allows these errors to be detected within theuser program and immediate action to be taken when appropriate.

ON ERROR (3010 STATEMEtT

Error trapping is enabled and disabled by using the ON ERROR (3CYO statement inone of two forms. The first form specifies a line number (or label) within the
program. When the program encounters this ON ERROR statement it stores the linenumber and sets a flag enabling error trapping. If an error occurs at any timeafter this control will be transferred to the routine specified by the linenumber. No error message will be printed. Examples of this form of thestatement are:

ON ERROR CXYIO 500
ON ERROR (3010 TRAP 'ROCJPINE

The error routine must then take appropriate action based on the type of error
which caused the trap. The ERR function will return the following data based on
conditions at the time of the error:

ERR(0) = numeric code specifying the type of error detected
ERR(l) = last line number encountered prior to the error
ERR(2) = last file number accessed (pertinent only for file errors)

The second form of the statement disables further error trapping by specifying aline number of zero or leaving the line number of f completely.

ON ERROR (3010 0
ON ERROR 0310

After executing the above form the program will print the standard error messageand abort the program run. A special case exists when the above statement isencountered within an error recovery routine (prior to executing the RESUMEstatement). In this instance the error trapping is disabled and the existingerror is forced to be processed as if no error trapping were ever enabled. Itis recommended that all error trapping routines execute the ON ERROR (3010 0statement for all errors which have no special recovery processing.
Note that if an error occurs within the error trapping routine itself that errorwill be forced and the standard error message will occur. There is no method todetect errors within the error recovery routine.

54

RESUME STATR4ENT

The RESUME statement is used to resume execution of the program after the errorrecovery procedure has been performed. The statement takes on two forms similarto the Cfl ERR auto statement. The first form specifies a line number (orlabel) wihtin the program at which point the execution is to be resumed:
RESUME 410
RESUME TRY' AGAIN

The second form specifies a line number of zero or no line number at all andcauses the execution to be resumed with the statement that caused the error tooccur.

RESUME 0
RESUME

Both forms cause the error condition to be cleared and error trapping to beenabled again.

CONTROL-C TRAPPING

When the operator types a control—c on his keyboard during the execution of anAlphaBasic program the program is suspended at the next statement. Action takenthen depends upon the status of the error trapping flag. If no error trappingis enabled the program is aborted with the appropriate message being printed onthe terminal. If error trapping is enabled the error trapping routine isentered with the code in ERR(0) being set to 1. This feature allows the user toprevent inadvertant aborting of programs during critical times such as fileupdates.

Control—c action is suspended during error recovery processing to prevent
accidental aborting of the program due to an error condition occurring withinthe error routine. The control—c will be detected immediately upon execution ofthe RESUME statement.

55

ER1R CODES RETURNED BY ERR (0)

Code Meaning

1 Control—c interrupt
2 System error
3 Out of memory
4 Out of data
5 NEXT without POR
6 RETURN without GOSTJB
7 RESUME without ER1JR
8 Subscript out of range
9 Floating point overflow

10 Divide by zero
11 Illegal function value
12 XCPJLL subroutine not found
13 File already open
14 10 to unopened file
15 Record size overflow
16 File specification error
17 File not found
18 Device not ready
19 Device full
20 Device error
21 Device in use
22 Illegal user code
23 Protection violation
24 Write protected
25 File type mismatch
26 Device does not exist
27 Bitmap kaput
28 Disk not mounted
29 File already exists
30 Redimensioned array
31 Illegal record number

56

SYSTEM FUNCTIONS

Alphaeasjc supports a unique group of operators called system functions whichprovide the programner with the ability to get to the I/O ports, physical memory(sometimes referred to as PEEK and R)KE) and various system parameters. Thesyntax of a system function parallels that of a standard function with thereserved word representing the desired function followed by optional argumentsenclosed within parenthesis. The major difference is that a system function mayappear on the left side of an assignment statement whereby it represents anoutput or write condition to the system function. System functions used withinexpressions on the right side of an assignment statement will perform an inputor read operation and deliver back a result to be used in the expressionevaluation.

10(X)

The 10 system function allows .the 256 I/O ports to be selectively read from orwritten to. In both cases only one byte will be considered and an outputexpression greater than 255 will merely ignore the unused bits.

10(X) = <expr> !writes the low byte of expr to port XA = 10(x) !reads port X and places the result into A

BYTE(X) and WORD(X)

The BYTE and WORD system functions allow the programmer to inspect and alter anymemory locations within the 65K memory addressing range of the machine. Theseoperations have often been called PEEK and POKE statements in otherimplementations of BASIC. The BYTE functions will deal with 8 bits of data inthe range of 0—255 and the WORD functions will deal with 16 bits of data in therange of 0—65535 inclusive. Any unused bits will be ignored with no errormessage. Note that these commands are not protected and it is possible to pokethe operating system, other users or yourself to death with improper use.
BYTE (X) = <expr> !writes the low byte of expr into memory bc XWOPD(X) = <expr> !writes the low word of expr into memory bc XA = BYTE(x) !reads memory bc X and places the byte into AA - = WORD(x) !reads memory bc X and places the word into A

TIME

The TIME system function requires no argument and is used to set and retrievethe time of day as stored in the system monitor cournwiications area. The timeis stored as a two—word integer representing the number of clock ticks sincemidnight. The prograimijer is responsible for conversions to printable format inthose cases where it 5 required. Gne clock tick represents one interrupt fromthe CPU line clock which is usually 60 hz for domestic systems and 50 hz foroverseas systems. Dividing the time by the clock rate will give the number ofseconds since midnight. Converting this to current time is then accomplished bysuccessive division by 60 to get minutes and again by 60 to get hours.

57

TIME = <expr> I sets time—of—day in system to expr
A = TIME Ireturns time—of—day in clock ticks into A

DATE

The DATE system function is identical to the TIME function except that it sets
and returns the two—word system date. There is no current format defined by
Alpha Microsystems for this date and it may be stored in any format you choose.
Sane coirmon methods are to pick a base date (say 1/1/60) and store the date asthe number of days since that date. Mother method is to store the Julian datewith the year being offset by the appropiate integer amount. The date willstore a positive value of 232 or greater than 4 billion.

DATE = <expr> !sets system date to expr
A = DATE Ireturns system date into A

2 DeMo of use of Alpha Basic DATE routine with "DATE" forMatted date.

10 IIAP1 DATE'HOLDER,B,3
11 MAP1 MMBDYY,,,,I!DATE'HOLDER
12 MAP2 MM,B,1
13 MAP2 DD,B,1
14 MAP2 YY,B,1
15 PRINT
16

20 DATE'HOLDER = DATE
21 PRINT USING "Current date is #*J##/##", IIM,IiD,YY
22 PRINT
30
32 INPUT "Enter new date MM,DD,YY ", fIN, DI', Vy
34 DATE DATE'HOLDER
36 PRINT
38 GOTU 20

58

EXPANDED TAB FUNCTIONS

The TAB function in AlphaBasjc has been expanded past the normal usage toinclude terminal screen handling such as cursor control and other specialfunctions. Th be used only in a PRINT statement, the TAB function operates inthe traditional manner when supplied with only a single numeric argument such asTAB (X). In this case the function causes the carriage to be positioned over tothe "x" column on the current line. When supplied with two arguments such asTAB(X,Y), however, the TAB function performs special CRT functions.

If the value of X is positive the x,y arguments will be treated as (row,colurm)coordinates for positioning the cursor on the terminal screen. The followingcharacters will then be printed beginning in that position. As in other
functions, the X and Y arguments may be expressions. Terminals are assumed tobegin with row 0 (top of screen) and column 0 (left end of each row).

If the value of X is negative the function is interpreted as a special terminalcommand and the command code must be specified as the Y argument. The codeswill be transmitted to the terminal driver (TDV module in 1,6) which will do theactual interpretation and perform the special function. The following list willgive the standard codes in use for the ADM3, SORT and Hazeltime CRF terminaldrivers:

Code Function

0 Clear screen
1 Cursor home (upper left corner)
2 Cursor return (column 0 without line—feed)
3 Cursor up one row
4 Cursor down one row
S Cursor left one column
6 Cursor right one column
7 Lock keyboard
8 Unlock keyboard
9 . Erase to end of line

10 Erase to end of screen
11 Protect field (reduced intensity)
12 Unprotect field (normal intensity)
13 Enable protected fields
14 Disable protected fields
15 Delete line
16 Insert line

The actual routines that perform the screen controls are in the specific
terminal drivers and not in AlphaBasic itself. Therefore, if you have adifferent terminal and you write a driver to perform the above functions for theterminal in use it will operate properly with AlphaBasic with no modificationsto either the compiler or to your programs. Note that mDst terminals do notsupport all of the above commands. Coirniands that are not supported on theterminal in use will merely be ignored by the driver.

59

FORMATTING NUMERIC DATA VIA ThE "USING" MODIFIER

COften it is desirable to format a numeric value without having to iimiediatelyprint it on the terminal or output it to a file. The PRINT USING performs theformatting but the output must be to the terminal or a file which can causeextra code to be generated. Formatted numeric data is handy for creating printimage lines and headers. Sane more exotic operations would allow pre—inspectionof numeric data and string manipulation of that data for specializedapplication• AlphaBasic allows formatting numeric data into its stringequivalent with the USING expression modifier. Basically the format for doingthis is:

= B USING C$

The formatting of the numeric value in B is performed using the format mask inC$ and the result is left in A.$ as a string. The mask must be a string and theformatting rules are the same as those used for the PRINT USING statement. Theactual syntax rule delivers a strin result anytime a numeric expression isfollowed by the word USING and the corresponding mask string. The followingccanplex statement is legal:

= "ABCD" + (ffl*HOURS) USING (B$[2,4}+"####")) + "END"
Although it is academic in nature, a restriction exists in that the USINGmodifier is not recursive; i.e. the mask string itself cannot be the result of aUSING modified expression.

60

PICCESSING INDEXED SEQUENTIAL FILES

Alphasasic has the ability to process inde,ted sequential files by linking to theISAM assembly language package which must reside wither in system memory orindividual user memory. Multiple directory files are supported via saneelementary 1SAM statements which allow the direct control of index file and datafile items. The ISAM package as implemented requires more direct user controlover the files than other implementations fOr two main reasons. The majorreason is memory limitations which restrict the amount of "smarts" that could beput into the Aiphaeasic runtime package for handling ISAJI files. The secondreason is the current structure of the existing iSl½r,4 package which precluded amore extensive implementation within the timespan allocated to the project. Wefeel that the version we are releasing will.provjde sufficient control for allusers even though the initial training and programming may at first appear morecomplex than other versions of ISAM handlers. For more detailed information onISAM files and the ISAM assembly language package the user is referred to theseparate manual titled "ISAM System User's Guide".

FILE STRUCTURE

An indexed sequential file consists of one data file and one or more index fileswhich link to the data file. The data file is structured identical to a normalrandom access file with the additional restriction that all records which arenot currently active are linked to each other in a chain called the "free datarecord list". All data records reside in the data file and the data records maybe any size up to the maximum of 512 bytes. As in the normal randan accessfile, data records will not be split across physical 512—byte block boundariesin the file. Index files are arranged in a complex balanced tree structure andcontain one symbolic key for each active data record plus a link to that datarecord in the data file. This link is the relative record number and is used inthe same manner as its counterpart in a normal random access file. The indexfile also contains an array of internal linkâ which comprise the sequentialaccess tree structure.

No references used in this manual may be confusing if they are not understood.
References to an "indexed file" are made when speaking of the entire file
structure in general including the data file and one or index files. Referencesto an "index file" are used when specifically speaking of the portion of the
structure which contains only the symbolic keys and the tree links. Index filesmay be primary or secondary and have the extension ilJX.

All indexed sequential files must be created by the ISMBLD program prior toaccess by any AlphaBasic program. There is no method for the creation of a newindexed file within the Alphabasic language since this would require aprohibitive amount of seldom—used code for execution. The user may, however,create indexed files in a system structure by using the feature that allows aBASIC program to create and then execute a coirrand file. This coinriand filecould set up parameters and then call the ISbSLD program to perform the actualcreation of the files.
For compatibility with existing structures the data file must have an extensionof I1 and all index files must have an extension of IDX. There must be at

61

least one index file which is called the primary index file. There may also beadditional index files called secondary index files which also link to theprimary data file. The primary index file must always be opened in any programin order to gain access to the data file. This is true even if you only intendto access the data file through one of the secondary index files in the currentprogram. For information on file structures and operating the ISMELD programrefer to the ISAM System User's Guide.

SYMBOLIC PND RELATIVE KEYS

Indexed files are accessed by one of two specific types of keys. The relativekey is already familiar to us since it is the same type of key used to accessnormal random files. A relative key when used with an indexed file is used onlyto access a specific record in a data file. The relative key must be a specificfloating int variable which is specified in the OPEN statement. The symbolickey is new to us and is used only with indexed files. Symbolic keys are ASCIIstrings of variable lengths and are used to access the index file (primary orsecondary). Symbolic keys are specified in the ISAM statements when accessingthe index file and are used to retrieve the relative key of the associated datarecord in the data file. The concept of symbolic verses relative keys and theirdifferent uses is an impertant one and misuse of them will cause the ISAM systemto malfunction in a number of ways. Symbolic keys are used with the ISAMstatement and relative keys are used with the READ and WRITE statements. Inmost instances the use of the relative key will be transparent to the user andwill merely be a device automatically set up and referenced by the above calls.

THE ISAM STATEMENT

Indexed files are accessed by a special statement in Alphasasic called the ISAMstatement. This statement has the general form:

ISAM #<file>, <code>, <symbolic—key>

All ISAM statements follow the above format using a different numeric value in<code> to specify the specific function to be performed by the ISAM package.All ISAM statements directly translate into a specific type of call to theassembly language iSAM program which must be in memory as explained previously.A symbolic key must always be specified even for those functions which do notrequire the use of one (this simplifies syntax checking and execution coding).A dunny string variable may be used if desired. Briefly, the following codesare used by the ISAM statement:

1 — Find a record by symbolic key
2 — Find the next sequential record in file
3 — Add a symbolic key to an index file
4 — Delete a symbolic key from an index file
5 — Locate next free data record in data file
6 — Delete a record from data file and return to free list

An error will result if an ISAN statement is executed with the value of <code>not equal to one of the above valid nuthbers. The code maybe any legal numeric

62

expression which is resolved at runtime.

OPENING AN INDEXED FILE

As with other types of files, an indexed file must be opened with a specificfile number prior to any references to the file by other statements. The OPENstatement follows the same format as that used by the normal random files.

OPEN #<file>, <filename>, INDEXED, <record—size>, <relative—key>
The filename must refer to the name given to the index file during the ISMEUDcreation. If this is a call to open a secondary index file the user must havealready previously opened the corresponding primary index file on another filenumber so that the data file may be accessed.
As an example, assume that an indexed file structure consists of the primaryindex arid data files named MASTER. lOX and MASTER. IDA respectively. Thestructure also has secondary ipdex files named ADRESS.IDX and PAYROL.IDX whichaccess the MASTER.IDA file in different sequences. If it is desired to processthe file structure via the sequence used by the ADRESS.IDX index file thefollowing two statements would be required:

OPEN #1, "MASTER", INDEXED, RECSIZ, RELKEY
OPEN #2, "ADRESS", INDEXED, RECSI Z, RELKEY

Note that the record size expression (RECSIZ) and the relative key variable(RELKEY) are identical in both statements. This is important since they bothrefer to the same data file (MASTER. IDA) . ISAM statements may then be madereferring to either index file (#1 or #2) but all READ and WRITE statements mustbe made to the data file which is associated with the primary index file (#1).In other words, READ and WRITE statements must not be made to file #2.

ISAM STATEMENTS

There are six functions which are performed by the ISAM statement with the codes1—6 as listed previously. They will be explained in more detail in thiâsection. In the following descriptions there are codes which either require arelative key as input or return a relative key to be used when accessing thedata record. In all cases this relative key will be retuned in the variablespecified in the OPEN statement for the index file being accessed by the ISAMstatement. This then leaves the system properly set up for an ingnediate accessto the corresponding data record via a READ or WRITE statement.
Code 1 — the specified index file is searched for the key which matches thesymbolic key in the statement. If a match is found the associated relative keywill be delivered back for access to the data file. If the key is not found anerror code 33 will be returned (see section on error processing).
Code 2 — the specified index file is accessed and the next sequential key islocated. The corresponding relative key is returned in preparation for a READor WRITE to the data file. If this is the first access to the file following
the OPEN statement, the first sequential key will be located. If this statement

63

follows a previous code 1 statement, the next sequentia' key following the Code1 key will be located. If there are no more keys in the index file andend—of_index_file error (38) will be returned and no further acceses should bemade to the data file until another is'i call is made which returns a validrelative key.

Code 3 — the specified symbolic key is added to the index file along with therelative key which must be in the correspondi variable specified in the OPEN
statement. This relative key will normally be already set up by a prior code 5ISAM statement which delivered the next free data record to be used. Thisrelative key then becomes the result of any index search which locates thisspecific associated symbolic key.
Code 4 the specifi symbolic key is located in the index file and deletedfrom it. The corresIndi data record relative key is returned so that thedata record may then be deleted and returned to the free list by using a code 6
ISNI statements If the symbolic key is not located in the index file a recordnot found error will be returned.

Code 5 the next available data record is extracted from the free list and therelative key is returned in preparation for a code 2 index key additionstatement If no more data records are free in the data file a data file fullerror will be returned. All free records in the data file are kept in a linkedlist called the free list. This list is built initially by ISMBLD and containsall the records in the data file. As code 5 ISAM statements are executed thefree list delivers these records and as code 6 IS statements are executed therecords are again returned to the free list for reuse. The index file is notmodified and the symbolic key in the statement is ignored. This call must bemade only to the primary index file number.
Code 6 the data record specified by the relative key is returned to the freelist for reuse by a code 5 call. The index file is not modified and thesymbolic key in the statement is ignored. This call must be made only to theprimary index file number.

READ AND WRITE STATEJ4n5

The ISAN calls do not access the data records themselves but merely deliver backthe relative key of the associated data record to be used. Normal READ andWRITE statements are then used to actually retrieve or write into the datarecord itself. These READ and WRITE statements follow the same format used whenaccessing a normal random access data file in Alphasasic. The relative keyassociated with the primary file (as specified in the OPEN statement) mustcontain a va.Iid relative key for the operation or an error will result. READand WRITE statements as mentioned before must only be made using the primaryindex file number.

CtOSI AN INDEx FILE

In order to insure that all data records have been rewritten to the data fileand that all links in the index file have been properly updated and rewritten tothe disk it is imperative that all index files (primary and secondary) be closed

64

using the normal CWSE statement and referencing the cbrrect file number.Failure to do so may result in the link structure being sacrificed to the godTItJ (god of electrons and integrated circuits).

CREATING AN INEEXEL) FILE

The steps used in the initial creation of an indexed file will be traced here.Initially, the structure must be created using the ISMBLD program. Refer to theISAM System User's Guide for details on this procedure. Any secondary indexfiles must also be created by the ISMBLD program. The program to add the dataitems will then open all index files associated with the structure.
For each new data record to be added, the following steps are performed. Thenext free data record is retrieved (ISAN code 5) and the data record is writteninto it with a WRITE statement. One symbolic key is then added to each of theindex files using ISAM code 3 statements. All keys will therefore link to thesame data record.

After all data records have been written to the file, all files are closed.

READING /'iN INDEXED FILE SEQUENTIALLY

To read an indexed file in the sequence of the symbolic keys the file is firstopened by the program. If it is desired to read in the sequence of a secondaryfile both the primary and secondary files must be opened.

Each record is retrieved by executing first an ISAI'4 code 2 statement followed bya REAl) statement. Remember tha.t the READ statement must be to the primary fileeven though a secondary index file is being used for the sequential accesses.After each ISAM code 2 statement the user should check for an end—of—filecondition using the ERF(X) function to determine when no more data is left.Refer to the section on error processing.

Close all files.

READING AN INDEXED FILE RANDi'4LY BY KEY

To read a file randomly by symbolic keys the files are opened as above forsequential access. As many secondary index files may be opened simultaneouslyas will be required for the random mode processing.

Each data record is located with an ISAM code 1 statement giving the symbolickey and the file number of the index file to which the symbolic key pertains.Acheck should be made for a record not found error at this point indicating thatthe symbolic key was not located in the specified index file. Assuming the keyis valid a READ statement should be made to the primary file to get the correctdata record. This operation may be performed for each data record to be read.
Close all files.

65

UPTING D1TA RECORDS

Data records may be updated by locating the data record via either niethod aboveand then updating the data buffer with the new data desired. This is followedby a WRITE statement to rewrite the data record. The WRITE statement must bemade to the primary file. The index files are not altered in this operation.
Note that the above method should only be used to alter data that is not adirect part of any symbolic key. 'lb change a symbolic key you must delete thekey in the correct index file and then add the new key with another ISAMstatement. The data record need not be deleted and recreated during thisoperation unless necessary for Complete new data.

DELgrnqG A DATA RECORD

The deletion of a data record in an indexed file structure involves not only thedeleting of the data record itself but also the deleting of all symbolic keysassociated with that data record. A11 index files must be open for thisoperation. The data record is first located by one of the symbolic keys (viaISAt4 code 1) and then the data record is read into the buffer with a READstatement to the primary file. Each symbolic key must then be extracted fromthe data record and used to delete each key from its associated index file withsuccessive 15fl4 code 4 statements. The data record itself is then deleted andreturned to the free list with an ISAM code 6 statement.
NOTE: A good check on the structure would be to store the relative key in
another variable and then compare the relative keys returned by each I5A14 code 4statement to insure that the symbolic keys all did indeed link to the correctdata record. You should also check each ISAII statement for any possible errorthat might otherwise go unnoticed.

ERICR PWCESSING

Every ISAN statement executed may potentially result in some form of error.
Errors will fall into one of two categories: hard or soft. Hard errors are
defined as errors which are returned to the ISA!.! processor fran the monitor fileservice system indicating sane invalid disk operation. Soft errors are thosewhich occur within the ISA!.! processor indicating an error or condition peculiar
to ISAM files only.

AlphaBasic handles these two types of errors in different ways. Hard errorswill cause the standard BASIC error processor to be invoked resulting in either
a message and program abort or an error trap if (14 ERR (DiV is in effect.
These errors may be detected with the normal error processing defined in the
section dealing with the (14 ER1R (DiV statement.

Soft errors will never result in an error message or error trap and it is
therefore up to the prograniner to test for these error conditions after every
ISA!.! statement. This is done by using the ERF(X) file error function where X isthe file number used in the ISA!.! statement. The ERF function operates in asimilar fashion to the EOF (X) function. If the ERF function returns a zero thepreceding ISAM operation was successful. If the value returned is not zero then

66

an error or abnormal condition was detected and proper corrective action shouldbe taken in the program prior to the next access to the file.

Current soft error codes in effect are:

32 — illegal ISAM statement code
33 — record not found in index file search
34 — duplicate key found in index file during attempted key addition35 — link structure is smashed and must be recreated
36 — index file is full
37 — data file is full (free list is empty)
38 — end of file during sequential key read

67

CHAINING ¶10 OTHER PRCX3RAMS AND SYSTEMS

nAlphasasic supports the CHAIN statement which terminates execution of thecurrent program and initiates the execution of a new program or system function.The new program to be executed must be named in the CHAIN statement itself andmay be a full file specification if desired. The program named in the statementmay be another AlphaBasic program (compiled only) or it may be a system commandor command file name. This allows a program to execute a command file andinvoke system ccninands if required.

CHAINING ¶10 ANOTHER ALIPHABASIC PROGRAM

The default extension of the file specification in the CHAIN statement is RUNwhich names a new Alphaeasic program to be executed. If the extension of theevaluated file specification is indeed RUN (either explicitly or by default) thenew program is loaded into memory and executed. All variables in the newprogram are first cleared to zeroprior to execution. The program must becompiled and must be in the current user area on disk unless an explicit area isnamed in the file spec. The program may also optionally be resident in user orsystem memory if desired. Sane examples of legal statements are:
CHAIN "PPSYROL"
CHAIN "PAYROL . RUN"
CHAIN "DSK1:PAYROL[lQl,l3]"

Due to the fact that programs are compiled and not interpreted there is no meansfor executing a program at any entry point other than its physical beginning.There is also no internal method for passing parameters between programs(sometimes referred to as "common" area) but this can be easily accanplished ina number of ways by making use of the XCALL statement and creating a common areawithin an external subroutine. A parameter could also be passed to the nextprogram using this method which is then used in a computed (3010 statement toeffectively begin execution at one of several points in the new program based onthe value passed in the parameter.

CHAINING ¶10 SYSTEM FUNCTIGS

It is sometimes desirable to transfer execution to a system function or acorrinand file fran a BASIC program. If the name of the file in the CHAINstatement does not have the RUN extension it is assumed to be a system commandfunction. In this case the AlphaBasic runtime package will create a dummycommand file at the top of the current user partition and then transfer controlto the monitor camtar processor. The monitor will then interpret this dummycoirruand file as a direct command and will continue execution at that point.Note that the duniny command file created by the runtirne package is merely theone—line name specified in the CHAIN statement and not the camnand file itselfwhich may be the target function desired. Sane valid examples are:
CHAIN "SYSTAT P[l,4J"
CHAIN "TESTl (lID"
CHAIN "DSKO:Mt24BLE.Qlw[2,2I'.

68

Note that if the account nunter is not specified the action taken will be thesame as if the coimiar was entered directly fran the keyboard, In other words,programs and command files will normally be searched for in the user area onlydue to the fact that the extension had to entered explicitly. Note also thatthe system function will be executed as a mainline function and not as asubroutine to the runtime system. This means that if you wish to automaticallyreturn to some AlphaBasic program you will have to execute a command file whosefinal conutand is a RUN catniand to begin the execution of said AlphaBasicprogram. Confused?? Me too!! Good luck.

69

July 1979
EMIM—OOlO0—44

ADDENDUM TO ThE ALPHABASIC USER'S MANUAL

1.0 INTRODUCTION

The purpose of this document is to provide additional information for the
BASIC prograrriner until such time as we can issue a new AlphaBASIC user's
manual (part number ThN—OOlOO—01). For more information on using the
A1phaBASIC system, turn to the "AlphaBASIC User's Manual."

1.1 Contents

The next few sections discuss new A1phaBASIC features that are not discussed
in the current A1phaBASIC manual. Section 10.0 lists all messages displayed
by the A1phaBASIC system, and Section 11.0 lists all reserved keywords used
by A1phaBASIC.

2.0 EDITING MASKS

The section in the current BASIC manual that discusses formatted output
describes the use of the PRINT USING and USING statements which allow you to
format output into specific character positions by use of editing masks.

In addition to the masks mentioned, there exists one type of mask that you
can use to generate a number with leading zeros. This mask takes the form
of one standard numeric mask character, I, followed by a series of Zs. The
total size of the output string will be the number of Zs plus the one #.
For example:

PRINT 123 USING "#ZZZZZ"

yields:

000123

3.0 FILEBASE

During normal operation, the first record in a random file is referred to as
record number zero (i.e., you set the record number variable to zero to
access the first record in the file). In some applications it is desirable
to have this first record referred to by some number other than zero. This
is often done to allow you to use zero to flag some special condition, such

(July 1979)

ADDENDUM '10 THE ALPHABASIC USER'S MANUAL Page 2

as a deleted record. The FILFIBASE command allows you to set the number used
to refer to the first record to any value. For example:

FILEBASE 1

tells BASIC that the first record in the file is record number one, not
record number zero. You may use any numeric argument with FILEBASE.

Note that FILEBASE does not associate its value with a file, but is only in
effect in the program where it is executed. If one program uses a FILEBASE
command when referencing a file, all other programs which reference that
file should also use a FILEBASE command.

4.0 EXTENDED TAB FUNCTIONS

Contrary to the statement in the A1phaBASIC manual, the home position of the
cursor (the upper left—hand corner) is 1,1 NOT 0,0.

In addition to the standard TAB(—l,n) functions listed in the manual, the
following are also available:

Code Function

17 Delete Character
lA Insert Character
19 Read Cursor Address
20 Read Character at Current Cursor Address
21 Start Blinking Field
22 End Blinking Field
23 Start Line Drawing Mode (enable alternate character set)
24 End Line Drawing Mode (disable alternate character set)
25 Set Horizontal Position
26 Set Vertical Position
27 Set Terminal Attributes

Not all terminal drivers have all of the functions above simply because all
terminals are not able to perform all of these functions. If your terminal
has additional features, Alpha Micro reconnnends starting at 64 (decimal)
when you assign function codes in your terminal driver.

5.0 MAP STATEMENTS

As of BASIC version 4.0, all MAP statements must appear at the front of a

program before any executable code.

(July 1979)

ADDENDUM TO THE ALPHABP.SIC USER'S MN4UAL Page 3

6.0 LIBRARY SEARCHING

Whenever a program (called via RUN or CHAIN) or a subroutine (called via
XCALL) is requested, BASIC follows a specific pattern in looking for the

requested module, If you specify a PPN, then BASIC uses the curren% default

device and the specified PPN. If you specify no PPN, the search sequence is

as follows:

Default disk:[User P,PN]
Default disk:[tJser P,O]
DSRO: [7,6]

Note that earlier versions of BASIC (pre—4.2) used a different search
algorithm that was in reverse of the one outlined above.

7.0 AUTOMATIC SUBROUTINE LOADING

When a BASIC program calls a subroutine via an XCALL statement, BASIC
attempts to locate the subroutine in user or system memory. If it is unable
to do so, it attempts to load the subroutine off the disk, following the
search pattern outlined above. If a BASIC fetches a subroutine from disk,
BASIC loads it into memory only for the duration of its execution. Once the
subroutine has completed its execution, it is removed from memory.
Therefore, if a subroutine is to be called a large number of times, it is

wise to load it into memory to avoid the overhead of fetching the subroutine
from disk.

8.0 ADDITIONAL ERROR MESSAGES

In addition to the error codes defined on page 56 of the AlphaBASIC manual,
two more error codes exist. We give a complete list of all BASIC messages
in Section 9.0.

32 Invalid filename
33 Stack overflow

9.0 DISK COMPILER PROSRAM (COMPIL)

To enable you to compile programs that are too large to fit into memory, we
provide a disk—based compiler (COMPIL). COMPIL is a two—pass compiler that
gains memory space by omitting the interactive features of BASIC. COMPIL
produces .RUN modules that are completely compatible with those produced by
the interactive system.

(July 1979)

ADDENDUM TO THE ALPHABASIC USER'S MANUAL Page 4

9.1 COMPIL Operation I
To use COMPIL, enter:

.COMPIL filespec{/switches} ,

where filespec selects the .BAS file you want to compile, and {/swltches}
select one or both of the optional COMPIL options. COMPIL allows the
compilation of source files located on any device or In any account. COMPIL
always places the resultant .RIJN module in the account and device you are
currently logged into (for BASIC versions 4.2 and later). BASIC does not
support wildcarded filespecs.

9.1.1 Operation Switches — COMPIL allows the use of two switches, /0 and
IT. The /0 switch is the same as the /0 switch in the interactive compiler.
That is, it tells COMPIL to omit line number references from the compiled
code. This reduces the total object code size, but It prevents COMPIL error
messages from reporting the line numbers where errors occurred.

The Ar switch is primarily designed for debugging purposes. If you specify
the tr switch, as C&4PIL scans each source line of your program it displays
that line on your terminal. If a problem occurs during the compilation, you
can use the ftp switch to determine the line in which the problem is
occurring. You may also use this switch to gauge the compilation speed of
various statements.

9.2 Compiler Messages

COMPIL reports a number of statistics on your terminal as it compiles. A
typical compilation might look something like this:

.COMPIL AGSISLS?
phase 1 — Initial work memory is 2310 bytes
Phase 2 — Adjust object file and process errors
Illegal MAP level — 350 MAP FILL'7,S,2
Syntax error — 980 SLSMTD = SLSMW;SSLAMT
Memory usage:

Total work space — 4712 bytes
Label symbol tree — 322 bytes
Variable syntol tree — 1186 bytes
Data statement pool — 0 bytes
Variable indexirn area — 274 bytes
Conpiler work stack — 140 bytes
Excess available memory — 11918 bytes

Note that any error messages are reported during pass two, and that the
source line containing the error is typed on your terminal. The "Excess
available memory" line is useful for letting you know how close you are to
running out of memory. If you do run out of memory during a compilation,

(July 1979)

ADDENDUM TO THE ALPHABASIC USER' S MANUAL Page 5

you see the message "[Out of memory — compilation abortedi", and COMPIL

returns your terminal to AMOS conunand level.

9.3 Line Numbers

Because A1phaBASIC allows the use of labels, and because COMPIL assumes that
you are using one of the text editors (WE or EDIT) to maintain your source
code, line numbers are optional in source code given to COMPIL. By omitting
line numbers, and with judicious use of indentation, you can give source

code a much more structured look than is normally possible in BASIC.

9.4 Continuation Lines

COMPIL allows the use of continuation lines within the source program. This

is especially useful for giving source code a structured appearance.
Specify a continuation line by making an ampersand (&) the last character on
that line. For example:

10 IF (X < 12.2) OR (B > 0) THEN &
3 = X/167.2 &

ELSE &
3 =B

20 Q=1252

The maximum size of any line, including any continuation lines, is 500
characters.

If a program with continuation lines is loaded into the interactive
compiler, the lines are concatenated into one line. Therefore, loading and
saving a program with continuation lines under the interactive compiler
(BASIC) results in the elimination of the continuation lines.

10.0 MESSAGES OUTPUT BY THE ALPHABASIC SYSTEM

Below is a complete list of all messages output by the AlphaBASIC system

(i.e., BASIC, RUN, and COMPIL), along with a brief explanantion of each
message.

Bitmap kaput
Your program attempted a file operation (OPEN, ALLOCATE, etc.) on a

device with a bad bitmap.

Break at line n
The program reached the breakpoint that was set at line n.

COMPILE
BASIC is telling you that it is compiling your program.

(July 1979)

ADDENDUM TO THE ALPHARASIC USER'S MANUAL page 6

Can't continue
You have attempted to continue a program which is not stopped at a
breakpoint, or which has reached a point where it can go no further
(e.g., it has reached an END statement).

Cannot find xxxxxx
The program xxxxxx was not found.

Compile time was x.x seconds
BASIC is telling you how long (in elapsed time, not compute time) it
took to compile your program.

DELETE what?
You have specified a DELETE command without specifying what line(s)
are to be deleted.

Device does not exist
The device you specified in a file operation (OPEN, LOOKUP, etc.)
does not exist.

?Device driver must be loaded into user or system memory
If you are accessing a non—DSK device, the appropriate device driver
must be loaded into user or system memory.

Device error
An error has occurred on the referenced device.

Device full
The specified device has run out of room during a WRITE, CLOSE, or
ALLOCATE operation. Remember that an ALLOCATE requires contiguous
disk space, so that a Device full error may occur when there are
still a number of non—contiguous blocks available.

Device in use
The specified device is currently assigned to another user.

Device not ready
The specified device is not ready for use.

Disk not mounted
The specified disk has not been mounted. Mount it via the MOUNT
monitor connand or via the XMOUNT subroutine.

Divide by zero
Your program attempted to perform a division by zero.

Duplicate label
Your program has defined the same label name more than once.'' End of Program '*'
You have reached the end of the program during single—stepping.

(July 1979)

ADDENDUM TO THE ALPHABASIC USER'S MN1UAL Page 7

Enter <CR> to continue:
You have reached a STOP statement in your program. You may continue
from the STOP statement via a carriage—return, or may abort the run
via a Control—C.

File already exists
Your program tried to create a file which already exists.

File already open
You have attempted to open a file that is already open on the same
file number.

File not found

BASIC was unable to locate the specified file.

File spec error

The file specification you gave in a file operation (OPEN, LOOKtJP,
etc.) is In error. Alt file specifications must conform to the
system standard (i.e. devn:file.ext(p,pn]).

File type mismatch
Your program tried to perform a sequential operation on a random
file or vice—versa.

Floating point overflow

A floating point overflow occurred during a calculation.

10 to unopened file

Your program tried to perform input or output to a file that is not
open.

Illegal GUrO or GOSUB
The format of the C,OTO or GOSUB statement is Invalid.

Illegal NEXT variable
The variable used in the NEXT statement is not valid (e.g.,not
floating point).

Illegal PRINT USING format
The edit format used in a PRINT USING statement is invalid.

Illegal SCALE argument
The argument given In a SCALE statement is invalid (the argument
must range between —30 and +30).

Illegal STRSIZ argument

The argument given in a STRSIZ statement is invalid.

Illegal TAB format
Your program has incorrectly specified a TAB function.

Illegal expression

The specified expression is not valid.

(July 1979)

ADDENDUM TO THE ALPHABASIC USER'S MANUAL. Page 8

Illegal function value
The specified function value is not valid for the particular
function.

Illegal line number
The specified line number is invalid (e.g., not between 1 and
65534).

Illegal or undefined variable in overlay
The variable specified in a MAP statement overlay (via @) has not
been previously defined, or is not a mapped variable.

Illegal record number
The relative record number specified in a random file processing
statement (i.e., READ or WRITE) is either less than the current
FILEBASE or outside of the file.

Illegal size for variable type
The specified variable size is not valid for the particular variable
type. Floating point variables must be size 6, and binary variables
must have size 1—5.

Illegal subroutine name
The name specified as a subroutine is not valid.

Illegal subscript
The subscript expression is not valid.

Illegal type code
The variable type code specified in a MAP statement is not one of
the valid types.

Illegal user code
The specified PPN was not found on the specified device, or is not
in a valid format.

Insufficient memory to load program xxxxxx
The RUN program did not find enough free memory to be able to load
the specified program.

Invalid filename
The specified filename was not a legal filename.

(Invalid syntax code]
An internal error has occurred in BASIC. Please notify Alpha Micro
of this error. Provide an example of what caused it.

Line number must be from l—f5534
The line number entered was not in the range of legal line numbers.

Line x not found
The specified line was not found for a DELETE, LIST, etc.,
operation.

(July 1979)

ADDENDUM TO THE ALPHABASIC USER'S MANUAL Page 9

NEXT without FOR
A NEXT statment was encountered without a matching FOR statement.

No breakpoints set
BASIC is telling you that there are currently no breakpoints set in

your program.

No source program in text buffer

You tried to compile when there was no program in memory.

Operator interrupt

You typed a Control—c to interrupt program execution.

Out of data

A READ statement was encountered after the data in all DATA
statements had been used.

Out of memory
BASIC is telling you that it has run out of memory in which to
execute your program.

Out of memory — compilation aborted
COMPIL is telling you that it does not have enough free memory to
finish compiling your program.

Program name:

You tried to SAVE or LOAD a program without providing a filename.
Enter the filename at this point.

Protection violation
Your program tried to write into another account where you do not
have write priviliges.

RESUME without error
A RESUME statement was encountered, but no error has occurred.

RETURN without GOSUB
A RETURN statement was encountered, but no corresponding GOSUB has
been executed.

Record size overflow

Your program tried to read a file record into a variable larger than
the file record size.

Redimensioned array
You tried to redimension an array.

Runtime was x,x seconds

BASIC is telling you how long It took to run your program.

?Runtime package (RtJN.PRG) not found
BASIC or COMPIL was unable to locate the runtime package, or did not
have sufficient memory in which to load it.

(July 1979).

ADDENDUM TO THE ALPHABASIC USER'S MANUAL Page 10

Stack overflow
BASIC's internal stack has overflowed. This is niost often caused by
such operations as nesting GOSUBs too deep, or branching out of
FOR—NEXT loops.

Subroutine not found
The specified subroutine could not be found.

Subscript out of range
The specified subscript is outside the range specified in the DIM or
MAP statement for the subscripted variable.

Syntax error

The syntax of the specified line is invalid.

System commands are illegal within the source program
BASIC system commands (LOAD, DELETE, LIST, etc.) are not valid
within a BASIC source program.

System error
A system error has occurred during the execution of the specified
line. System error is used as a catch—all error message for a
variety of unlikely occurrences.

Temporarily all arrays must be less than 32K
The array size you specified is larger than 32K bytes.

Undefined line number or label
The line number or label specified In a GCYrO or GOSUB statement is
not defihed within the program.

Write protected
Your program tried to write on a write—protected device.

Wrong number of subscripts
The number of subscripts specified is not the same as the number
defined in the DIM or MAP statement for the subscripted variable.

(July 1979)

P.JDDENIDUM ¶ID THE ALPHABASIC USER'S MANUAL Page 11

11.0 RESERVED WORDS

Below is a list of the reserved words used by the BASIC compilers (BASIC and
COMPIL). You MUST not use any of these reserved words as variable names or
labe is.

Reserved Word Meaning

ABS absolute value
ACS arccosine
ALLOCATE allocate file
AND logical AND
ASC ASCII value
ASN arcsine
ATM arctangent
BREAK set breakpoint
BYE exit to monitor
BYTE memory byte
CALL call subroutine
CHAIN chain next program
CHR character value
CHR$ character value
CLOSE close file
COMPILE compile program
CONT continue execution
COS cosine
DATA data statement
DATE system date
DATM double arctangent
DEE' define function
DELETE delete lines
DIM dimension
ELSE else
END end of program
EOF end of file
EQV logical equivalence
ERF file error
ERR error status
ERROR error
EXP exponentiation
EXPAND expand mode on
FACT factorial
FILEBASE file base offset
FIX fix
FOR loop initiation
GO program jump
GOSUB call subroutine
GEYTO program jump
IF' conditional test
INDEXED indexed
INPUT input data
INSTR search string
INT integer

(July 1979)

ADDENDUM TO THE ALPHABASIC USER'S MANIJM. Page 12

IC input/output
ISAM ISAM control
KILL kill file
LCS lower case string
LEfl left string
LEFr$ left string
LEN length string
LT variable assignment
LINE line

LIST list text
LOAD load program
LCC natural logarithm
LOGlO base 10 logarithm
LOOKiJP lookup file
MAP map variable
MAX maximum value
MEM memory size
MID mid, string
MID$ mid string
MIN minimum value
NEW new program
NEXT loop termination
NOEXPAND expand mode of £
Nm' logical complement
ON on (goto,gosub,error)
OPEN open file
OR logical OR
OUTPUT output
PRINT print on terminal/file
RANDOM random
RANDOMIZE randomize RND function
READ read data
REM remark line
RESTORE restore data
RESUME resume after error
RETURN subroutine exit
RIGHT right string
RIGHT$ right string
RND random number
RUN run program
SAVE save program
SCPJJE set scale factor
SGN sign
SIGNIFICANCE set significance
SIN sine
SPACE spaces
SPACE$ spaces
SQR square root
STEP step
STOP stop program
5TH ntneric to string conversion
STR$ numeric to string conversion
STPSIZ set string size

(July 1979)

ADDENDUM W THE ALPHABASIC USER'S M.NUAL Page 13

SUB sub (gosub)
TAB tab
TAN tangent
THEN optional statement verb
TIME system time
TO to
UCS upper case string
USING using
VPL string to numeric conversion
WOPD memory word
WRITE write file
XCALL external subroutine call
XOR logical XOR

(July 1979)

