AlphaBasic'"

User’'s Manual

©-1977 ALPHA MICROSYSTEMS
ALL RIGHTS RESERVED



I would like to express my thanks to the following people
for their assistance in the development of AlphaBasic:

Mike Roach for debugging and suggestions
on implementation of new features

Paul’Allen Edelstein for the trig package
and advanced mathematical assistance

Bob Hitchcock for operator and applications
oriented suggestions and scaled arithmetic

the myriad of users who pointed out problems
in the earlier versions (sometimes not so tactfully)

and most of all to Carolyn
without whom much of this may never have been accompl ished.

Dick Wilcox

'AMOS', 'AlphaBasic', and 'AM~100°

are trademarks of products
and software of

ALPHA MICROSYSTEMS
- Irvine, CA 92714

© 1977 - ALPHA MICROSYSTEMS

ALPHA MICRO
17881-F Sky Park North
Irvine, CA 92714



INDEX

INTRODUCTION TO ALPHABASIC
ALPHABASIC GENERAL INFORMATION
INTERACTIVE VS COMPILER MODES
RUNNING BASIC PROGRAMS

ALPHABASTC VARIARLES
DATA FORMATS
ALPHABASIC EXPRESSIONS
LOWER CASE CHARACTERS
SUBSTRING MODIFIERS

MEMORY MAPPING SYSTEM

INTERACTIVE COMMAND SUMMARY
FROGRAM STATEMENTS
BASIC FUNCTIONS

FORMATTED OUTPUT VIA PRINT USING STATEMENTS
SCALED ARITHMETIC

ALPHABASIC FILE I/O SYSTEM
FILE I/O STATEMENTS

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES
ERROR TRAPPING

SYSTEMS FUNCTIONS

EXPANDED TAB FUNCTIONS (SCREEN CONTROL)
FORMATTED NUMERIC DATA VIA THE "USING" MODIFIER

PROCESSING INDEXED SEQUENTIAL FILES

CHAINING TO OTHER PROGRAMS AND SYSTEMS

Note: This manual reflects AlphaBasic version 3.3 release

PAGE
PAGE
PAGE
PAGE

PAGE
PAGE
PAGE
PAGE
PAGE

PAGE

PAGE
PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE
PAGE
PAGE
PAGE

PAGE

PAGE

~} G L=

13
15
16
18
27
31
37

41
43

45
47

51
54

59
60

61 -
68






INTRODUCTION TO ALPHABASIC

AlphaBasic is an extension of the popular BASIC language with several features
not found in other implementations. These features not only enhance the
performance of traditional uses of the language but also make business
applications easier to program. COBOL users will find the I1/0 processing
convenient for data manipulation while the memory mapping system will entice the
assembly language programmers who wish to link up their own external routines.
Floating point hardware in the processor is fully supported making AlphaBasic
faster for mathematical computations than any other BASIC currently implemented
in a microprocessor system.

AlphaBasic runs in one of two modes. Interactive mode operates in the
traditional manner whereby the user creates, alters, and tests his program which
resides totally in memory. This mode is convenient for the creation and
debugging of new programs or the dynamic alteration of exisitng programs.
Compiler mode is more useful for programs which are to be put into productive
use or for testing programs which are too large to fit in memory in the
interactive mode. In compiler mode, the user compiles the program and stores
the compiled object code on the disk. During the actual running of the campiled
program, only the object code and a minimal run-time execution package need be
in memory thereby conserving space and increasing run speed.

The compiler and the runtime package are both written in reentrant code so that
they may optionally be shared by all users running or debugging programs. The
object programs created by the compiler are also totally reentrant and sharable
thereby further reducing memory requirements if it is desired to allow several
users to run the same program.

Data formats supported include floating point, string, binary and unformatted
variables. All data formats may be simple variables or array structures. In
addition, the unique memory mapping system allows the user to specify the
ordering of variables in prearranged groupings for more efficient processing.
This system is similar to the data formatting capabilities of the COROL language
and lends itself nicely to business applications where the manipulation of
formatted data structures is of prime concern. Advanced compiler techniques
have been used in all areas to give a truly commercial grade processing system
which may be easily integrated into a series of programs not limited to the
BASIC language. If the user is running a large number of BASIC tasks in a
timesharing environment, the run-time package is fully reentrant and may be
included in the resident monitor for a further increase in memory efficiency.
The compiled object programs are also totally reentrant and sharable for users
who are running the same application programs.

Variable names are not limited to the conventional single character and single
digit format but may be any number of alphanumeric characters in length, as long
as the first character is alphabetic. This is accomplished by using a dynamic
tree structure for the storage of reserved words and variable names within the
compiler and is another feature which makes AlphaBasic ideally suited for
business applications. Since the source code is compiled and need not be in
memory when the program is eventually run, the length of the variable name is
not a significant concern. TLabel names may also be used to identify points in
the program for GOTO and GOSUB branches. Iabel names are alphanumeric and help

1



to clarify the program structure when used with meaningful definitions.

The following sections will describe AlphaBasic features and operations. It is
assumed that the reader is familiar with conventional BASIC language concepts.
This initial description is not meant as a tutorial to the novice but rather as
an informational packet which will list the supported functions of conventional
BASIC and give more detailed study only to those areas that differ from the
norm. In all cases, AlphaBasic has been designed to support all features of
conventional BASIC which is currently in use in the microprocessor field. In
those few areas where no mention is made here of a feature which is normally
considered standard, it is probably due to lack of space (or possibly lack of
time) during the initial writing of this description. The reader is encouraged
to contact his local dealer to clear up any specific questions that may arise
until such time as more comprehensive documentation is generated on AlphaBasic.



ALPHABASIC GENERAL: INFORMATION

This section will attempt to explain the general differences encountered in the
AlphaBasic compiler system and to list the currently implemented features or
problems and limitations that are known to exist at this time.

COMPILER OPERATION

The user initiates the AlphaBasic compiler function by entering the command
BASIC while in monitor command mode. Once the compiler has been located and
loaded into RAM it will print the READY message and await user input. Al though
the system is a campiler in actual operation it has been designed to look as
much like the popular interpreters that are currently on the market. The system
is interactive in nature and the user may enter his source program and edit it
on a line mumber basis just like the interpretive versions. No fancy editing
techniques are yet available and each line must be changed by entering the line
nunber and the entire new line. Line numbers must be in the range of 1-65534 to
be valid. The source text is built up in memory as it is entered and is
automatically kept in numerical sequence. Multiple lines (terminated by
line~feed instead of carriage-return) are not supported at this time but will be
in the future. No syntax checking is performed when the line is entered other
than validation of the line number.

When the user enteres the RN command the source program is compiled in its
entirety and syntax errors reported., The resulting object code is also stored
in memory which results in a much greater initial memory requirement. If no
errors were detected the object code is then executed with no direct reference
to the source code anymore. Any further editing of the source code will set a
switch to automatically force recompilation when the next RUN command is
entered.

The user may store the compiled object program on disk by using the SAVE command
with the explicit extension "RUN" appended to the program name. This saved
program may then later be executed without recompilation by use of the monitor
RUN commard which calls upon the runtime package only.

MULTIPLE STATEMENT LINES

The system supports multiple statement 1ines by using colons to separate the
statements. The normal rules apply such as REM and DATA statements cannot
contain other statements on the same line. TImmediate mode commands may also be
multiple statement lines.

IMMEDIATE MODE COMMANDS

All lines typed into AlphaBasic by the user will be considered for immediate
execution if no line number preceeds the command. System commands result in
immediate interpretation and execution and are considered those commands which
result in a system fucntion but are not ever included in the text of a program
itself. Normal program statements may be entered without a line number in which



case they will be compiled as a single line program and then immediately
executed. Certain commands are considered illegal in immediate mode and the
user is advised that no error messages are currently implemented to prevent the
user from inadvertantly attempting to execute these commands. In some instances
the execution of these commands will result in complete system destruction which
. Mmeans you must reboot the entire operating system. This malady will be
corrected in a future release.

VARIABLE NAMES

Variable names are not limited to a single letter or a letter and a digit as in
conventional BASIC implementations. A variable name may contain any number of
alphanumeric characters as long as the first one is alpha A-7. Apostrophes may
also be used in variable names to improve clarity. Mapped variables are defined
by an explicit type code and therefore do not follow the standard convention of
using a dollar sign for string variables. Normal (non-mapped) variables are
considered floating point variables unleas they are terminated by a dollar sign
in which case they are considered string variables, Subscripting follows the
standard conventions of other BASIC's by enclosing the subscripts within
parenthesis. Some examples of legal variables follow:

a

AS

NUMBER

STRINGS

MASTER' INVENTORY ' RECORD
HEADER1

MOM ' ALWAYS 'LIKED' YOU 'BEST
21234567

PROGRAM LARELS

AlphaBasic allows the use of program labels to identify points in the program.

A program label is composed of 1 or more alphanumeric characters of which the
first must be alpha A-7. Apostrophes may also be used within labels for :
clarity. Labels, when used, must be the first itme on a line and must be
terminated by a colon (:). A lahel may be followed by a program statement on
the same line or it may be the only item on the line. rIabels operate similar to
line numbers for GOTO and GOSUB statements and make the program easier to
document. An example of label usage follows:

10 START'PROGRAM:

20 INPUT "ENTER TWO NUMBERS TO GET SUM: ",A,B
30 PRINT A;"+":B;"="A4+B

40 IF A+BO0Q GOTO SUM'NOT' ZERD

50 PRINT "SUM IS ZERO"

60 GOTO START'PROGRAM

70 SUM'NOT'ZERD: PRINT "SUM IS NOT ZERO"

80 GOTO START'PROGRAM

90 END



MEMCRY ALIOCATION

The compiler system allocates memory dynamically during editing, compiling, and
execution of the user program. Currently there is no check made to insure that
the user is not running out of memory in his allocated partition and chances are
pretty good that memory overrun will result in a system crash. We realize that
this is a grave restriction and there are several technical reasons why this
condition is not checked for and reported as an error. T will not bore you with
the gory details on this except to insure you that it will be implemented in a
future production relase of AlphaBasic. In the meantime you can kinda keep tabs
on memory usage with the MEM(X) function which will deliver back various usages
of memory during program development. See the section on functions for more
detail on this.

EXPANDED SOURCE TEXT MODE

AlphaBasic normally scans the source text in expanded mode (version 3.2) which
dictates that reserved words (verbs, functions, commands, etc) be terminated by
@ space or a character that is illegal in variable names. This allows labels
and variables to begin with reserved words. 1In other words, the variable name
PRINTMASTER will not be interpreted as PRINT MASTER in expanded mode. In this
mode the statement FOR A=l TO 10 cannot be written as FORA=1TOl0. There are two
commands which the user may apply to switch back and forth between normal and
expanded modes:

EXPAND Isets syntax scanner to expanded mode
NCEXPAND !sets syntax scanner to normal mode

AlphaBasic initializes itself in the expanded mode. Note that the mode in which
a program is compiled has nothing to do whatsoever with the resultant object
code which is generated either in size or execution speed.



INTERACTIVE VS COMPILER MODES

AlphaBasic may be run in one of two modes of execution. Interactive mode deals
directly with the user on a one-for-one basis allowing direct editing of the
source program in memory and testing of that program in a debug mode. This is
the mode that most BASIC interpreters operate in and the one that most users of
BASIC are already familiar with. In addition to the normal commards there are
some unique features that make AlphaBasic more useful in a debug mode.

In interactive mode the entire canpiler as well as the user source program must
be stored in memory for operation. Editing of the source program takes place in
the conventional manner by typing each line with its 1ine number first. Lines
are kept in. sequence automatically by the internal editing routines. Each time
a change is made in the source program a switch is set which indicates that the
program must be recompiled before it can be executed, Any time the user enters
a command which results in program execution (RUN, CONT, or single-step) this
switch is tested and if set, the program is compiled in memory and the object
code generated in its own special area of memory also. It is this object code
that is then executed by the run-time package which also must be in memory
during interactive operations. ‘ '

Commands which do not have a line number are considered immediate mode commands
and are executed immediately. Actually, the statement is canpiled and execution
is applied against the currently existing set of defined variables. New
variables are defined as required by immediate mode commands. Certain commands
are meaningless in immediate mode and are therefore not allowed (FOR, NEXT,
etc). Multi-statement lines are lines which contain more than one command
separated by colons and are allowed in immediate mode as well as in the source
program.

A unique feature which is very useful for debugging is the single-step command.
Each time the line-feed key is entered with no data on the line, the next
instruction in the program is listed and then executed. Control is then
returned to the user terminal for inspection of variables or alteration of the
source program before continuing execution. Note that any alteration of the
source program results in recampilation before the single~-step command is
actually executed.

Compiler mode differs fram interactive mode in that the program is compiled
first and then the object code is stored on disk with a special save command.
The object code may then be run at any time in the future requiring that only
the run time package he in memory along with the object code itself. Neither
the compiler proper nor the program source code is required for execution in
campiler mode resulting in a large cutback in memory requirement. This mode is
also ideal for sequential automatic processing of multiple programs within a
system structure. 1IN this mode, BASIC programs may be freely mixed with
assembly language programs for maximum efficiency and flexibility.



RUNNING BASIC PROGRAMS

AlphaBasic supports the ability to campile and run programs without having to
reread the source program by saving the compiled code on disk and using the
runtime package to run that code at any later time. There are two main
camponents in the compiler system named BASIC.FRG and RIN.PRG. These programs
reside in the system library (DSK0:[1,4]) and are called into memory as they are
required. BASIC.PRG is the compiler and contains the code which scans the
Source program in memory and creates the runnable object program also in memory.
All system commands such as LIST, IOAD, SAVE, etc. are also processed in this
program. RUN.PRG is the runtime package and contains the code and subroutines
which perform the actual execution of the compiled object code from memory.

This object code can be from the campilation phase during interactive program
development or it can be from the direct loading of a saved object code file on
the disk.

The runtime package (RUN.PRG) is free~standing and may run without referencing
the compiler program (BASIC.PRG). The campiler, however, will first insure that
the runtime package is present’ in memory and load it if necessary since it draws
upon several of the internal runtime routines during compilation. The user may
optionally build his monitor with the runtime package resident for sharing by
all users. Those users which then run in the interactive mode will also benefit
since BASIC.PRG will locate RUN.PRG in the monitor memory and not have to load
it again into the user memory. The compiler itself may also be includeéd in the
monitor but due to the size of it this is not normally done unless the majority
of the users will be doing program development and testing (such as a school
training program teaching BASIC).

To run in the interactive mode (the mode most familiar to us due to other
versions of BASIC) the user types the command "BASIC" on his terminal and the
compiler and runtime programs are both located and loaded into memory as
required. The LOAD command may then be used to load source programs into memory
for editing, compilation and test. The SAVE comand may be used to save either
the source program or the compiled object program on disk for later use. Source
programs have the extension "BAS" while compiled object programs have the
extension "RUN". Note that there is no way to recover the source text from the
compiled object code so the normal rule is to save both of them either on the
same or different disks. Running in the interactive mode always involves the
compilation and running of a source program which is in memory and never
includes running a saved object code program directly.

To run a compiled program the user must be in monitor mode. Monitor mode may be
entered from the interactive caupiler mode above by exiting the compiler via the
BYE command typed on the terminal. Once the monitor mode is obtained the user
enters the RUN command followed by the name of the object program to be run.

The runtime package is located (and loaded from disk if necessary) and then
started. The runtime package then initializes user memory and locates the user
program specified in the RUN command. This program has the extension "RUN" and
may be either in memory already or be loaded fram the user disk area. Loading
of the program is autamatic by the runtime package if the program is not in
memory. The program is then executed and continues until the end or until
aborted by the user typing a control-c on his terminal.



Note that the RN command serves two different functions depending on whether
the user is in monitor mode or in interactive BASIC mode. In monitor mode the
RON command is used to execute a compiled BASIC program which has been
previously stored on disk or loaded into memory explicitly. The command RUN
PAYROL will run the PAYROL.RUN compiled program and then exit back to monitor
mode without ever entering the campiler itself. In interactive BASIC mode the
RON command will compile and run the current source program which the user is
editing and testing., The user should note these differences.

While we are on the subject of running source Programs versus compiled obiect
programs, there is one more restriction that the user should note. The CHAIN
Statement causes one program to terminate execution and turn control over to the
next program in sequence. This chained program must be a compiled object
program or it will not be found. There is no mechanism to load a source program
and then compile it for the CHAIN statement's use. The object program module
may, however, be already in memory or it may be on disk in which case it will be
loaded automatically. If the chained program is already in memory there will be
-No wait time due to loading from the disk. The object program module may be
:loaded into memory by the monitor LOAD command (different from the AlphaBasic

Note also that the compiled object program is totally reentrant and sharable
between several users so that any programs that are commonly used as either
complete programs or chained 1inks may be stored in monitor memory for
high-speed access. ‘



ALPHABASIC VARIABLES

Variable names may be any number of unique alphanumeric characters and are not
limited to a single character or Character~digit pair as in other versions of
BASIC, The first character of the name must be alphabetic and the variable name
Must not begin with any reserved word used in BASIC. Apostrophes may also be
used in variable names to improve clarity. Mapped variables may take on any
type format regardless of the name terminator. Unmapped variables assume the
type code as in other versions of BASIC. String variables are specified by
appending a dollar sign to the name and integer variables are specified by
appending a percent sign to the name. Refer to the section on data formats for
more detail on these options.

NUMERIC VARIABLES

The normal mode of processing mathematical variables (as opposed to string
variables) is in 1l-digit accuracy which might be termed "single-and-one~half®
precision compared to normally accepted standards. This is due to the hardware
floating point instructions which are implemented in the WD-16 microprocessor
chip set used in the AM-100 computer. Integer and binary variables are also
considered numeric variables but are always converted to floating point format
prior to performing mathematical operations on them. All printing of math
variables is done under normal BASIC format with the significance being variable
under user control from 1 to 11 digits. The SIGNIFICANCE statement is used to
set up this value.

STRING VARIABLES

AlphaBasic supports string variables in both single and array modes. The memory
that is allocated for each string variable is the number of bytes representing
the maximum size that the string is allowed to expand to. Each string is
variable in size within this maximum limit and a null byte is stored at the end
of each string to indicate its current actual size. At the start of each
compilation the default size to be used for strings is 10 characters makimum.
The STRSIZ statement may be used within the program to alter the value to be
used for all new string variables which follow, Future releases of the compiler
syntax will allow individual string definitions to have their own size
specification without the need to change this default value.

String variables are manipulated in the same manner as in other versions of
BASIC and may be concatenated by use of the plus sign between two strings.
String variables may be assigned values by enclosing string literals in quotes.
String functions such as LEFTS, RIGHTS, MID$, etc. are implemented to assist in
manipulating portions of strings or substrings. In addition, a powerful
substring modifier may be used to operate on portions of strings within
expressions. A seperate section is devoted to this unique option of AlphaBasic.

Unformapted variables are alsc considered string variables when they are used in
expressions or printed. Be careful with this one! If the unformatted wvariable
is mapped to contain subfields which are not in string format, it will cause



some very strange results when printed or used in expressions., This is because
no conversions are performed on the subfields of an unformatted variable; it is Pas)
used in its entirety exactly as it appears in memory. 1

VARIABLE ARRAYS

Arrays may be numeric or string variables and are allocated dynamically during
execution when the DIM statement is encountered in the program. During
execution if no DIM statement has been encountered when the first reference to
the array is made, a default array size of 10 elements for each subscript level
is used. This means that all DIM statements must be executed in the program
prior to any actual references to the array.

Arrays may be any number of levels deep but practicality dictates some
reasonable limit of 20 or so. Each level is referenced by a subscript value
starting with element 1 and extending to element N. Once an array has been
dimensioned by a DIM statement it may not be redimensioned by a subsequent DIM
statement in the same program. At ho time may the number of subscripts vary in
any of the references to any element in the array. The number of subscripts in
each element reference must also match the number of subscripts in the
corresponding DIM statement which defined the array size.

& oy

10



DATA FORMATS

AlphaBasic has been designed with the goal of flexibility in interfacing with
other language processors within the AMOS operating gystem and primarily aimed
towards assembly language programs where the data from a BASIC program must be
- Manipulated in a way that is either infeasible or inefficient for another BASIC
brogram to do. In order to accamplish this goal, the data formats must be
clearly defined and understandable by the user who wishes this information.
Data will normally be output to one or more disk files to be passed on to
another BASIC program or to an assembly language program for further reduction
or processing. Data may also be output in a print image format for printing by
the operating system print spooler job. It is our intention to provide all
required information on the internal formats and workings of AlphaBasic so that
the user will find the task of interfacing the software outputs to be
straightforward. fThis initial description is not meant to be the final result
of the internal documentation effort, but merely an introduction to the basic
design theory behind the campiler.

All variables in use by the application program are stored in a dynamically
alterable area within the user program area. The areas that change during
program execution are those which are set aside for arrays and variable sgize
strings. Simple variables do not change position once they are assigned storage
positions. Assignment of storage is normally done as each variable is
encountered in the source program. The user has the option of overiding this
assignment by the memory mapping system which will be described later. FEach
variable is assigned as one of the following data format types and once
assigned, may not be changed within the same program.

FLOATING POINT - all numeric variables are assigned as this type unless
otherwise specified in the program. The standard precision in use by this
system would probably be called "single-and-one—hal £" since it lies midway
between what has been accepted as single and double precision formats. The
reason for this is that the hardware floating point instructions all work in
this format and so we may as well make use of the extra precision wherever
possible. Floating point numbers occupy six bytes of storage and are in the
same format as dictated by the hardware instructions FADD, FSUB, FMUL, FDIV, and
FCMP. Of the 48 bits in use for each 6-byte variable, the high order bit is the
sign for the mantissa. The next 8 bits represent the signed exponent in
excess-128 notation giving a range of approximately 2.9%10-39 thru 1.7*10738,
The remaining 39 bits contain the mantissa which is normalized with an implied
high-order bit of one. Thig gives an effective 40-bit mantissa which results in
an accuracy of 11 significant digits.

STRING - used for the storage of alphanumeric text data. String variables may
be assigned fixed lengths for efficiency and speed or may be left to dynamically
vary in size as the data changes. Fixed length string variables require cne
byte of storage for each character and may be fixed in position using the memory
mapping system. Dynamic length string variables may not be mapped into memory
since their position may shift during execution. 2an indexing scheme is defined
to the user if it is absolutely necessary for him to locate these strings with
an external routine.

11



BINARY - binary variables are similar to integer variables in other
implementations of BASIC. A binary variable may be from 1 to 5 bytes in length
and may be signed when all 5 bytes are specified. wWhen less than 5 bytes are
specified for the size (in a MAP statement) the binary value may be loaded as a
negative number but will always be returned as a positive number of full
magnitude with the upper bit (preloaded as the sign) taking on its specific‘
value in the equivalent positive binary variable. For instance, a l-byte binary
may be loaded with positive numbers from 0 thru 255 (decimal) or negative
nunbers from -1 thru -128 but the negative numbers will be returned as the
positive values of 128 thru 255 respectively. Only 5-byte binary variables will
return the original sign and value when loaded with a negative number.

Binary variables may be used in expressions but they are slower than floating
point variables because they are always converted first to floating point format
before any mathematical operations are performed on them. Binary variables are
useful in integer and logical (Boolean) operations or for storing values in
small amounts of memory (floating point numbers always take 6 bytes of memory
regardless of their values). All logical operations performed within
expressions (AND, OR, XOR, NOT etc.) cause the values to be first converted to
signed 5-byte binary format before the logical operation is performed. The
value -1 represents a 40-bit mask of all ones and it is this value which is
returned as the result of any relational comparison between two expressions or
variables.

INTEGER — integer variables and constants are specified by appending the
variable name with a percent sign (%) which is the standard convention in use by
other BASIC's. AlphaBasic generates floating point variables and performs
automatic integer truncation for all integer variables specified in this manner.
Integer constants are generated as their equivalent floating point values and
are included only for compatibility with existing program structures. Since
integer variables are effectively floating point variables with an additional
INT conversion performed, they are actually slower than regular floating point
variables. This is opposite from most other BASIC's which usually store integer
variables as 2-byte signed values and perform special integer arithmetic on
them. True integer variables may be defined by using the MAP statement and the
"B" binary type code.

UNFORMATTED -~ defines a fixed size area of storage used to contain absolute
unformatted data which may be in any of the above formats. This format will
normally be used in the mapping system to define contiguous storage which is
subdivided into multiple variables of different formats. No conversion ever
takes place when moving data to and from this format. Unformatted variables are
treated as string variables when used in expressions.

* Note that dynamic length string variables are not ye:i: implemented.

12



ALPHABASIC EXPRESSIONS

Expressions in AlphaBasic follow the same format used by other popular versions
of BASIC. Parentheses are used to designate hierarchy within expression terms
and the normal mathematical hierarchy prevails in the absence of parentheses.
The following mathematical operators are recognized by AlphaBasic:

+ unary plus or addition
- unary minus or subtraction
* multiplication
/ division
” raise to power
**k raise to power
" string literal
NOT logical not
AND logical and
OR logical or
XOR logical xor
EQV  logical equivalence
MIN minimum value
MAX maximum value
= equal
< less than
> greater than
< mequal
>< unequal.
# unequal
= less than or edgual
= less than or equal
= greater than or equal
= greater than or edqual

OPERATOR PRECEDENCE

The precedence of operators determines the sequence in which mathematical
operations are performed when evaluating an expression that does not have
overriding parenthesis to dictate hierarchies. AlphaBasic uses the
following operator precedence:

exponentiation

unary plus and minus
multiplication and division
addition and subtraction

relational operations (comparisons)
logical AND, OR, XOR, EQV, MIN, MAX
logical NOT

MODE INDEPENDENCE

Expressions may contain any mixture of variable types and constants in any
arrangement. AlphaBasic performs automatic string and numeric conversions as

13



necessary to insure the result is in the proper format. For example, if two

strings are multiplied together they will first be automatically convgrted to Py
numer ic - format before the multiplication takes place. If the result is then to L
become a string it will be reconverted back to string format before the

assignment is performed. In other words, the statement A$ = B$ * "345" is

per fectly legal and will work correctly. This is a powerful feature which can

save much programming effort when used correctly.

There is an ambiguous situation which ‘arises fram this mode independence. The

plus symbol (+)} is used both as an addition operator for numeric operations and
as a concatenation operator for string operations. The value of 34+5 is equal

to 39 but the value of "34"+"5" is equal to the string "345". The operation of
the plus symbel is unambiguaous in its operation but may take a little thought

to figure out its exact usage in all situations., A few examples might help.

If the first operand is numeric and the second is string we convert the
second to numeric and perform addition.

34 + "S" equals 39°

If the first operand is string and the second operand is numeric we
convert the second to string and perform concatenation.

"34" + 5 equals "345"

The above two examples apply only when we are not "expecting" a particular
type of variable or term. This generally occurs only in

a first level PRINT expression. At other times we are expecting a
specific type of variable and the conversion of the first variable will

be performed prior to inspecting the operator (plus sign). The operation
of the plus sign is then implicitly specified by the result of the

first first variable. Take the following example:

§ % M34% 4 4

The multiplication operator (*) forces us to expect a numeric term to follow.
The "34" string is therefore immediately converted to numeric 34 ard
multiplied by the 5. The plus sign then performs numeric addition instead
of concatenation. The result is in numeric format and will be converted if
its destination is a string.

If this approach seems  confusing you should try a few examples of your own on
the system to see what the results are. Remember, any potentially ambiguous
expression may always be forced to one or the other type by use of the STR and
VAL functions. '

14



LOWER CASE CHARACTERS

Beginning with release 3.1 AlphaBasic supports lower case letters (a-z) in both
the input source program and in the runtime execution of programs. The line
editor built into the interactive system will now accept and store source input
text in lower case characters if desired. Lower case letters when used within
variable names and labels will be unique and separate from the corresponding
upper case letters. In other words, the variable "a" is separate from the
variable "A" and the variable "Tom" is separate from the variables "TOM" and
"tom". Lower case letters may be used as the first character of a variable name
or program label just as upper case letters may be.

Reserved words are treated somewhat differently from the above system. When a
reserved word is expected, the syntax parser temporarily translates all lower
case letters to upper case and then checks for a reserved word match. If the
word is not a reserved word the translation is not retained and the lower case
letters are used for variable name matches. The following statements are all
considered to be identical:

FOR A = 1 TO 100 STEP 2
For A = 1 To 100 Step 2
For A =1 to 100 step 2
for A =1 to 100 step 2

Lower case letters used within string literals (inside quotes) will be retained
and printed as lower case. Lower case letters which are entered into string
variables by means of the INPUT statement will also be retained as lower case
letters. The entire string processing system now supports lower case
characters.

Note that all lower case characters are considered greater than any upper case
character due to their position in the ASCII colating sequence. To assist in
processing and comparing input which contains lower case letters the UCS (X)
function has been implemented. This function will return a string which is
identical to the argument string (X) with all lower case characters being
translated to upper case. The inverse function LCS(X) will return a string with
all upper case characters being translated to lower case.

15



SUBSTRING MODIFIERS

AlphaBasic supports a unique method of manipulating substrirgs. A substring is
defined as a portion of an existing string which may be as small as a single
character or as large as the entire string. Substring modifiers allow the
substring to be defined in terms of character positions within the string,
relative to either the left or right end of the string. The length of the _
substring is defined either in terms of its beginning and ending positions or in
terms of its beginning position and its length. '

Substrings are defined by referencing the desired string followed by the
substring modifier. The substring modifier is two numeric arguments enclosed
within square brackets. The substring modifier takes on two distinct formats:

[beginning-position,ending-position]
[beginning-position;substr ing—length]

The first format defines the substring in terms of its beginning and ending
positions within the string and uses a comma to separate the two arguments. The
second format defines the substring in terms of its beginning position within
the string and its length using a semicolon to separate the arguments. The
second format basically performs the same function as the MID$ function.

The beginning and ending positions may are defined as character positions within
the string relative to either the left or right end. A positive value
represents the character position relative to the left end of the string with
character position 1 representing the first (leftmost) position. A negative
value represents the character position relative to the right end of the string
with character position -1 representing the last (rightmost) position. Assume
the following string has the letters ABCDEF in it. The positions are defined in
terms of positions 1 through 6 (left-relative) or positions -1 through -6
(right-relative).

A B C D E F (6 characters within main string)
1 2 3 4 5 6 (left-relative position values)
-6 -5 -4 -3 ~2 ~1 (right-relative position values)

Allowing negative values for right-relative positions provides the ability to
pick out digits within a numeric string without having to calculate the total
size of the string first and then work from the left.

The substring-length argument used by the second format may also take on
negative values for a more flexible format. WNormally the length is a positive
value which represents the number of characters counting the beginning position
and incrementing the index to the left. A negative length causes the index to
move to the right and returns a substring whose last character is the one marked
by the beginning-position argument. Confusing? Perhaps a few examples may
clarify the use of substring modifiers. Assume the main string is AS and it
contains the above example of "ABCDEF". fThe following substrings will be
returned;

As[2,4] equals BCD
AS[2;:4) equals  BCDE

16



as$(3,3] equals C
AS[3:3] equals CDE
AS[-3,-2] equals DE
AsS[3,-2] equals CDE
AS[35-2] equals BC
AS[-3:-2] equals CD
AS[4:1) equals D
AS[4:-1] equals D

aAny position values or length values which would cause the substr@ng to overflow
out of either end of the main string will be truncated at the string end.

As$(3,10] equals CDEF
AS[-14,34] eqgquals ABCDEF

The main string to which the substring modifier is applied is actually any
expression and need not be a defined single string variable.

(RS+BS$+CS).[2;10]
("ABLE"+AS+"0Q034") [4,10]

Q$
Q$

The mode independence feature allows substring medifiers to be applied to
numer ic expressions. A string is returned but if the destination is a numeric
variable another conversion will be made on the substring to return a numeric
value.

Q = (A*B) [2,5]
PRINT X[3,4]

Substring modifiers may be applied to subscripted variables or expressions
containing subscripted variables. The substring modifiers are independent
functions not to be confused with subscripts.

Qs
Qs

AS(3,4){2,5]
(A$ (1)+BS$ (3)) [-5,3]

noa

Substring modifiers return a string value. These may be used the same as
strings in expressions.

Q$ = AS + B$[2;5] + (As{2,2] + C$)[-5;-3]
Substring modifiers may be applied to the left side of an assigrnment in order to
alter a substring within a string variable. O©Only that portion of the string
defined by the substring modifier will be changed. The other characters in the
string will not be altered. This may not be applied to numeric variables.
AS[2,4] = ""QRS"

In the above exemple, if AS had contained "ABCDEF" before the assignment was
executed the result in AS would be "AQRSEF".

17



MEMORY MAPPING SYSTEM

AlphaBasic derives much of its versatility and speed from the fact that it is a
true compiler in its execution mode., Memory storage is allocated during
compilation for all defined variables in an area that is contiguous and
predictable, All variables are referenced by the compiled program code through
an indexing scheme. Fach variable in the working storage area contains an 1tem
in the index area which contains all information needed to define and locate
that variable. The working storage area therefore contains only the pure
variables themselves without any associated or intervening descriptive
information. The index area is a separate entity physically located before the
working storage area in memory. '

The allocation of the variable storage area for any program is predictable and
normally done as each variable is encountered during compilation. Since this
sCheme is not easily followed by the user, a different method must be derived
which can override normal allocation processes for those users who wish to have
the variables allocated in a predetermined manner. The disk I/0 system also
requires that the variables used be in a specific relationship to each other
when used in the more advanced modes. The MAP statement has been included in
AlphaBasic for the purpose of allocating variables in a specific manner. MAP
statements are non-executable at run time but merely direct the compiler in the
definition and allocation of the referenced variables. Each MAP statement
contains a unique variable name to which the statement applies. When the
compiler encounters this statement it allocates the next contiguous space in
working storage as required and assigns it to that variable name. The type of
the variable is also specified in this statement and may be used to override the
standard naming conventions of BASIC. All variables not defined in a MAP
statement will then automatically be assigned storage in sequence for total
compatibility with existing standards.

As has been noted previously, this memory mapping system is primarily required
for advanced disk I/O techniques and to assist in linking with assembly language
routines. Special functions are provided to deliver the absolute addresses of
these areas as parameters during assembly routine calls. By knowing the layout
of the variables in memory, the user need only pass the base address of the area
to the routine and the routine can then reference all needed variables by
indexing techniques., The mapping system does have another distinct advantage to
the sophisticated programmer in the allocation of arrays. With the MAP
statement the user has the ability to override the standard array allocation
scheme and force the allocation to proceed in a more flexible manner.
Conventional BASIC arrays are allocated in contiguous memory for each
subscripted variable encountered. AlphaBasic allows several variables to be
cambined in a single contiguous array which can provide efficiency in the
manipulation of associated data structures.

MAP STATEMENT FORMAT
Briefly, the MAP statement has the following syntax:

MAPn var iable-name (dimensions), type, size, value, origin

18



)
MAPn represents the hierarchy of the mapped variable for nesting purposes within
other variables of a higher level. It must be within the range of MAP1 through
MAP16. As each mapped variable is assigned it will be automatically included as
a part of those variables with a higher level. Level numbers are actually
backward with MAP1 being the highest level and MAPl6 being the lowest (or
innermost) level in the nesting scheme. Levels need not be sequential as they
- are assigned. That is, a MAP5 statement may 1mmed1ate1y follow a MAP2 statement
without having dummy MAP3 and MAP4 statements intervening if desired. This
nesting scheme closely parallels the data division format in the COBOL language.

To eliminate potential allocation problems all MAPl level variables will be
forced to begin on an even address. This allows insuring that certain binary
and floating point variables will begin on word boundaries if desired for
assembly language subroutine processing. The AM-100 instruction set performs
most efficiently when word data is aligned on word boundaries. BAlso, floating
point variables will always be aligned to word boundaries.

VARTABLE NAME

The variable-name is the name to be given the variable for referencing within
the program and must follow the rules for AlphaBasic variables. Since the type
may be explicitly specified, the user need not follow the normal conventions
such as requiring that the string variable names be followed by a dollar-sign
for identification. If the variable name is followed by a set of subscripts
within parenthesis then the variable will be assigned as an array with the
dimensions specified by the subscripts just as if a DIMENSION statement had been
used to assign the array. For example, the statement MAPL A,F assigns a single
floating point variable called "A" but the statement MAP1 A(5,10),F assigns a
floating point array with 50 elements in it (5 X 10) just as if the statement
DIM A(5,10) had been executed. Note that since these mapped arrays are assigned
memory at compile time and not at run time, the subscripts must be decimal
nunbers instead of variables.

TYPE CODE

The type code is a single character code which specifies the type of variable to
be mapped into memory. The following variable types are implemented in
AlphaBasic:

- unformatted absolute data variable
- string variable

floating point variable

binary unsigned numeric variable

o n

If no explicit type code is entered, unformatted data (type X) is assumed.

Unformatted data is absolute in memory and is usually only used to reference a
group of other variables as one wmit. Until more specific details on data
handling are determined, unformatted data variables should only be moved to
other wmformatted data variables. For all practical purposes, unformatted data
variables are treated like string variables except that they are not terminated
by a null byte, only by the explicit size of the variable.

19



String variables are terminated either by the explicit size of the variable or
by a null byte (0) if the string is shorter than the allocated size. Mgv1ng a
long string to a short one truncates all characters which will not fit into the
new string variable. Moving a short string to a long one causes the remainder
of the long variable to be filled with null (0) bytes so that the actual data
size of the string will be preserved for concatenation and printing purposes.

Floating point variables are the normal numeric variables used for mathematical
calculations. AlphaBasic supports only one-and-one-half precision floating
point variables which require 6 bytes of memory each and give 11-12 digits of
precision. Floating point variables must begin on an even address and the MAP
statement processor will leave a blank byte between any floating point variable
and the variable it follows in memory if that variable ended on an odd address.
This probably would only cause concern during the mapping of record structures
for I/0 transfers.

Binary variables may range in size from 1-5 bytes giving from 8-39 bits of
binary unsigned numeric data or 40 bits of binary signed data. This is handy
for the storage of small integer data such as flags in a single byte or for the
storage of memory references as word values with a range of up to 65535 in two
bytes. Binary variables are manipulated just like floating point variables with
conversions to and from the floating peoint format being autamatic for
calculations. Since all binary variables are converted to floating point format
before performing any arithmetic calculations, binary arithmetic is actually
slower than normal floating point arithmetic and is used mainly for compacting
data into files and arrays where the floating point size of 6 bytes is
inefficient. when conversions from floating point to binary are done, any data
that will not fit within the defined size of the target variable will merely be
lost with no error message given. Range checks, where required, are the
responsibility of the programmer prior to moving a floating point number to a
binary variable area. The best way to understand this is to play with a few
examples in immediate mode.

Please take note that the use of binary numeric variables is not allowed in some
instances. FOR-NEXT loops may not use a binary variable as the target variable
although they may be used in the FROM, TO and STEP value expressions. The
record number key in a random mode OPEN statement must be floating point also.
The result variable of a LOOKUP statement must be floating point.

SIZE

The size parameter in the MAP statement is optional but if used, it must be a
decimal number specifying the number of bytes in the variable. If it is omitted
it will default to 0 for unformatted and string types, 6 for floating point
types, and 2 for binary types. The size parameter of floating point variables
must be 6 or amitted. :

VALUE

An initial value may be given to any mapped variable by including any valid
expression in the value parameter. This value may be a numeric constant, a
string constant, or a complete expression including variables. Remember,

20



however, that the expression is resolved when the MAP statement is executed at
runtime and the current value of any variable within the value expression is the
one used to calculate the assignment result. MAP statements may be executed
more than once if it is desired to reload the initial values.

Note that if the size parameter is omitted (such as for floating point
variables) but the value parameter is used there must be an extra comma to
indicate the missing size parameter,

MAPl PILF,,3.14158

MAP1 HOLIDAY,S,10,"CHRISTMAS"

The first example preloads the value 3.14159 into the floating point variable
called PI. The second example preloads the letters CHRISTMAS into the string
variable called HOLIDAY.

ORIGIN

In some ingstances it may be desirable to redefine records or array areas in
different formats so that they occupy the same memory area. For instance, a
file may contain several different record formats with the first byte of the
record containing a type code for that record format. The origin parameter will
allow you to redefine the record area in the different formats to be expected.
When the record is read into the area the type code in the first byte can be
used kO execute the proper routine for the record type. Each different routine
can access the record in a different format by the different variable names in
that format. All record formats actually occupy the same area in memory. This
feature directly parallels the "redefine"™ verb in the COBOL language data
divisgion.

Normally, a MAP statement causes allocation of memory to begin at the point
where the last variable with the same level number left off. The origin
parameter allows this to be modified so that allocation will begin back at the
base of some previously defined variable and therefore overlay the same memory
area. If the new variable is amaller than the previous one (or the exact same
size) it will be totally contained within the previous one. f it is larger than
the previous one it will spill over into newly allocated memory or possibly into
another variable area of the same level depending on whether there were more
variables following it. (Play with this one a while to get the hang of it).

The origin parameter must be the last parameter on the line and takes the format
@TAG where TAG is a previously defined mapped variable on the same map level.

If size and value parameters are not included in this statement they may be
omitted with no dummy commas if desired.

The following statements define three areas which all occupy the same 48-byte
memory area but which may be referenced in three different ways:

100 MAP1 ARRAY

110 MAP2 INDEX(8),F

200 MAP1 ADDRESS,@ARRAY
210 MAPZ STREET,S, 24
220 Map2 CITY,S,14

21



230 MAP2 STATE,S,4

300 MAP1 DCUBLE'ARRAY,@ARRAY
310 MAP2 UNIT(6)

320 map3 CODE,B,2

330 MAP3 RESULT,F

Statements 100-100 define an array with 8 floating point elements for a total of
48 bytes in memory. Statements 200-230 define an area with three string
variables in it for a total of 42 bytes. Normally this area would follow the
48-byte ARRAY area in memory but the origin parameter in statement 200 causes it
to overlay the first 42 bytes of the ARRAY area instead. Statements 300-330.
define another array area of a different format with 6 elements, each element
being composed of one 2-byte binary variable (CODE) and one floating point
variable (RESULT). The origin parameter in statement 300 also causes this area
to overlay the ARRAY area exactly.

Caution: The above scheme allow variables to be referenced in a different
format than when they were entered into memory. If you load the 8 elements
INDEX (1) through INDEX(8) with floating point values and then reference the
variable STREET as a string you will get the first four floating point
variables, INDEX(1l) through INDEX(4), which will look very strange in string
format!

EXAMPLES
The following two statements pr'oduce identical arrays:

100 DIM Al(10)
110 MAP1 Al(10),F

Both statements produce arrays containing ten floating point variables
referenced as Al(l) thru A1(10). Statement 110, however, will define its
placement in memory in relation to other mapped variables. Similarly, the two
statements at 300 and 310 produce the same two-dimensional array as the
statement at 200:

200 DIM B1(5,20)
300 MAP1 BX(5)
310  MAP2 B1(20),F

Inspect the following statements:

400 DIM Cl(10)
410 DIM D1(10)
500 MAPL CX(10)
510 MAP2 C1,F
520 MAP2Z DL,F

The statements at 400 and 410 produce two arrays each with ten variables. The
statements at 500, 510 and 520 produce one array with twenty variables in it.
The variables will still be referenced as Cl(1l) thru C1(10) and D1(1) thru
D1(10) but their placement in memory is quite different. The Cl variables will
be interlaced with the D1 variables giving Cl(1), DL(1), Cl(2), D1(2), C1(3),

22



«ees C1(10), D1(10}. There are also ten unformatted variables CX(1l) thru CX(lO)
which each contain the repective pairs of Cl1-Dl1 variables in tandem.

Referencing one of these CX variables will reference a 12-byte unformatted item
camposed of the Cl-Dl pair of the same subscript. This type of formatting would
be useful in sophisticated techniques only.

The following define a more camplex area:

100 MAP1 ARRAY1
110 MAP2 UNITX(5)

120 MAP3 SIZA,B,2

130 MAP3 SIZB,B,2

140 MAP3 NTOT,F

150 MAP3 FLAG(10} ,B,1
160 MAP3 CNAME,S,20

170 MAP2 TOTAL,F
180 MAP1 THING,F
190 MAPL WORKl,X,40

The area that is allocated by the above statements requires a total of 252 bytes
of contiguous memory storage. A total of 3 levels are represented in various
formats. Statement 100 defines a level 1 unformatted area called ARRAY1 which
is subdivided into two level 2 items. Statement 110 defines the first of these
which is an area called UNITX. The optional dimension indicates that 5 of these
identical areas exist which must be referenced in the program by the subscripted
variable names UNITX(1) thru UNITX(5). Each one of these areas is then further
subdivided into five level 3 items (statements 120-160}. Since the level 2 is
subscripted because it occurs 5 times, so must each of the level 3 items be
subscripted. There are 5 variables named SIZA(1) thru SIZA(5) occuring once in
each of the respective variables UNITX(1) thru UNITX(5). The same holds true
for the variables SIZB, NTOT, and CNAME. Statement 150, however, creates a
special case since it contains a dimension also. Normally this would create an
area of 10 sequential bytes referenced as FIAG(1) thru FLAG(10). In our
example, however, this 10-byte area will occur once in each of the higher level
areas of UNITX(1l) thru UNITX(5}). This implicitly then defines a
double-subscripted variable ranging from FIAG(1,1) thru FLAG(5,10). Statement
170 causes the allocation to return to level 2 where one floating point variable
is allocated.

The total storage requirement for the level 1 variable ARRAY1 comes out to 206
bytes as follows: 40 bytes for each of the five areas UNITX(1) thru UNITX(5)
plus 6 bytes for the one variable TOTAL. Notice that since TOTAL starts a new
level 2 it does not occur 5 times as do the level 3 items which compr ise
UNITX{1) thru UNITX(S)

Following the above mess in memory come two more variables defined in statements
180 and 190. THING is a normal floating p01nt variable which occuples 6 bytes
and WORK1 is an unformatted area whose size is 40 bytes Note that since WORK1
was not subdivided into one or more level 2 items a size clause was required to
exp11c1tly define its storage requ1rements Total storage used by the above
series of statements (100-190) is 252 bytes.

Note that the variable UNITX(1l) refers to the 40-byte item comprised of the

variables (in order) SIZA(l), SIZB(1), NTOT{(l), FIAG(1,1) thru FLAG(1,10), and
CNAME (1) . Moving the variable UNITX(l) to another area such as WOREl will

23



transfer the entire 40-bytes with no conversions of any data. 1I& can‘be seen
that although this mapping system includes advanced programming practices, it
provides the user with a degree of flexibility never before offered in a BASIC
larnguage implementation.

USING THE MAP STATEMENTS

Map statments may be used in immediate mode as a learning tool to see how the
variables are allocated. They are not designed to be practical in the inmediate
mode, however, and are best used by putting them into a program file and
compiling the program. TIn the immediate mode, if an error occurs in the syntax
of the statement, the variable will have already been added to the tree and you
will not be able to repeat the map statement again.

MAP statements should normally come at the beginning of the program before any
references to the variables being mapped. 1If a reference is made to the
variable before it is mapped (such as LET A = 5.8) the variable will be assigned
by the normal variable allocation routines and the MAP statement will then give
an error since the variable is already defined. As a convenience, all MAP1
statements force allocation to the next even byte boundary so that binary word
data can be assigned properly if desired.

Due to the camplexity of the syntax checking used for the MAP statement, no
syntax analysis is performed on them until the program is compiled (unless the
MAP statement is used in the immediate mode). If you wish to check the syntax
of your progress during the entering of a group of MAP statements you may force
campilation and syntak checking of your partial program with the COMPILE
command. This will indicate your progress so far and also define all mapped
variables up to this point so that you may interrogate them with the "@" command
described in the following section.

LOCATING VARIABLES DURING DEBUGGING

Since the mapping scheme is new and fairly complex to understand fully, a
command has been implemented which will assist you in locating the mapped ‘
variables and in understanding the allocation techniques used by the AlphaBasic
memory mapping system. It is valid only as a system command and has no meaning
if used within a program text. The command has the general format of an atsign
(@) followed by a variable name. If the variable name is not followed by a
subscript, the system will search for the requested variable and print out all
parameters about the variable for you on the terminal. This may actually be two
definitions since the variable "A" may actually be two different variables, one
which is a single floating point rumber and one which is a subscripted array.
The information returned about the variable will be the tyre of variable
{string, binary, etc), the dimensions of the array if the variable is indeed an
array, the size of the variable in bytes, and the offset to the variable from
the base of the memory area used to allocate all variables. If you enter a
reserved word (such as @PRINT) the system will tell you that the name is a
reserved word. Remember that the current system will not allow you to begin a
variable name with a reserved word so that PRINTSUM is also considered a
reserved word at this time.

24



The general format of the definition line which is returned by the system is:
{memory-type} {variable-type} {dimensions}, {SIZE n}, {location}

Memory-type is the method of allocation used for the variable being defined.
FIXED variables are those which have not been defined by a MAP statement and
were allocated automatically by the compiler when they were referenced in the
program. This is the normal method used by other BASIC versions to allocate
variables. DYNAMIC variable arrays are those arrays which were allocated by a
DIM statement or by a default reference to a subscripted variable. MAP1 through
MAP16 variables and variable arrays are those which were defined in a MAP
statement.

Variable—type'is the type of the variable and may be UNFORMATTED, STRING,
FLOATING POINT, or BINARY.

If the variable is an array the dimensions will be listed after the variable
type code in the format ARRAY (n,n,n} where n,n,n are the values of the
subscripts in use by the array. If the array is dynamic and has not been
allocated yet the subscript values will be replaced by the letter "X" to
indicate that they are not known at this point. Remember that any variable
defined in a MAP statement which is in a lower level to another variable will
inherit all subscripts from that higher level variable.

The size of the variable will be given in bytes. 1In the case of arrays, the
size will represent the size of each single element within the array.

The location of the variable is a little tricky to explain since it is actually
an offset to the base of a storage area set aside for the allocation of user
variables. As each new variable or array is allocated it will be assigned a
location which is relative to the base of this storage area. The location
information is given here to help you understand the relative placement of the
variables in the mapping system and does not represent the actual memory
locations which they occupy. There are two distinct areas in use for variables
and thusg the offsets of the variables will be to one of these two areas. Aall
FIXED and MAP]1 through MAP16 variables are allocated in the fixed storage area
while all DYNAMIC arrays are allocated in the dynamic array storage area. As
dynamic arrays are dimensioned and redimensioned their position may shift around
relative to one another and relative to the dynamic storage area base.
Variables in the fixed storage area will never change position relative to each
other or to the storage area base.

Array location information is given only pertinent to the base of the array
itself which is the location of the first element within the array. The actual
range of locations used by the array may or may not be contiguous in memory
depending on whether overlapped dimensioning techniques are being used in the
MAP statements. Simple (non-array) variables are defined as a location range
which tells exactly where the entire variable lies within the storage area. If
you want to find out where a particular element of an array is located you may
follow the variable-name by the particular subscript values (decimal numbers
only) of the element you wish to locate. given the two commands:

@A
@A(4,12)

25



The first command will give information about the array "A" while the second
command will define the exact location of element A(4,12) within the array "A".

Keep in mind that this "@" command is to assist you in following the allocation
of variables, particularly in more complex mapping schemes. A few minutes at
the terminal with immediate mode MAP statements followed by "@" commands will
help you see how the mapping scheme works.

26



INTERACTIVE COMMAND SUMMARY

Whenever AlphaBasic is not either campiling or executing a program it will be in
interactive command mode which means it is waiting for a command from the user
terminal to initiate some action. The action taken depends on the type of'input
entered by the user which will fall into one of the following main categories:

1. Edit command which begins with a valid source line number
2, Program statement for immediate execution (no line number)
3. Interactive system command resulting in a controlled action

Edit commands will allow the creation and editing of a source program in memory
on a single line basis. The line number must be first followed by the program

statement which will add the line to the source format in proper mumerical '
sequence, If the line contains only the line number, the line will be deleted

from the program. No fancy character editing commands are implemented in this

version.

Program statements without line numbers result in the immediate compilation and
execution of the statement entered. These program statements will be covered in
another section. The remainder of this section will briefly list the available
interactive commands and the corresponding action performed.

NEW

This command clears out all current source code, object code, user symbols and
variables. It effectively initializes the compiler to accept new source program
statements or immmediate mode statements.

LIST

The source program (if any) is listed in numerical sequence on the user
terminal. If no line numbers follow the LIST command the entire program will be
listed. The listing may be aborted by entering control-c on the terminal which
will return the user to interactive command mode. If one line number follows
the LIST command only that line number will be listed. If the command is
followed by two line numbers separated by a comma, Space or other non-numeric
character, only those lines which fall within the range bounded by the two
numbers will be listed.

DELETE

The DELETE command is used to delete groups of source lines from the program
text. If the command is followed by a single line number, only that line will
be deleted. If the command is followed by two line numbers separated by a
comma, space or other non-numeric character, all lines of text which fall
between the two line numbers inclusive will be deleted from the text.

27



SAVE

The entire source program is saved on the disk in the user's file area. The
user must enter the name of the program (1-6 characters) following the SAVE
command. The program will be saved with the extension "BAS" and will be in
ASCII format which may be listed or edited with the normal system programs
outside of AlphaBasic. If a previous version of the program (same name) already
exists on the disk in the current user's file area that program will first be
deleted before the new program is saved. No backup file will be automatically
created. In actual practice, the program name may be a full system file
specification if desired.

The SAVE command may also be used to save the compiled object program on disk
for later running without recampilation. To save the object program the user
enters the program name followed by the explicit extension "RUON" which causes
the program to be campiled if necessary and then the object program to be saved
on disk. The following two examples will show how the SAVE command is used to
save first the source program and then the object program:

SAVE PAYROL {saves source as PAYROL.BAS)
SAVE PAYROL.RIN (saves object as PAYROL.RIN)

LOAD

The specified program whose name must follow the IOAD command is located on disk
in the current user's file area and then loaded into memory for editing or
execution. This is the reverse of the save function above. The program is
expected to be in ASCII format with the default extension "BAS" unless
explicitly entered as otherwise. If the program cannot be located an error
message will result. In actual practice, the program name may be a full file
specifier if desired.

The load command does not clear the text buffer before it loads the requested
file and therefore may be used to concatenate or merge séveral programs or
subroutines together to be saved as a single program. The separate routines
must not duplicate line numbers in the other routines that they are to be merged
with or else the new line numbers will overlay the old ones just as if the file
had been edited in from the user terminal. The NEW command should be used prior
to any load command if it is desired to insure that the text buffer is clear.

COMPILE

The current source program in memory is compiled and the object code built up in
another area of memory. Control then returns to interactive comand mode. The
compiled program is not executed. Compilation effectively sets all variables to
zero and deletes all variables that may have been generated as a direct result
of immediate mode commands.

28



RN

This is the normal way to initiate the running of the existing program in
memory. A check is first made to see if the program has been campiled since the
- last editing change to the source code and if it has not been, an automatic -
compilation phase takes place to insure the object code is up to date. All
variables are reset to zero (strings are reset to null) and the compiled cbject
code is then executed. Execution may be interrupted at any time by typing a
control-c on the user terminal. This control-c status is tested only at the
beginning of each new source line so multiple statement lines will not be
interrupted until all statements on that line have been completed.

CONT

The execution of the program is continued from wherever it last left off. This
is normally done after a control-c interrupt, a program STOP statement, a

breakpcint interrupt, or a single-step secquence. A program may not be continued
after it has come to the end of the statements. '

CONTROL-C

Depre551ng the control and c keys simultaneously will interrupt any program that
is currently running and return to command interpretive mode. If a program was
being executed the line number about to be executed will be printed vai the
message "INTERRUPTED AT LINE nnnn". The program may be continued by the CONT or
single-step commands or it may be restarted from the beginning by the RUN
command.

SINGLE-STEP (line-feed key)

The single-step function is a feature not found in other versions of BASIC but
-is very useful in debugging programs and in teaching the principles of BASIC
programing to newcomers. The single-step function causes the current line in
the program to be listed on the user terminal and then executed. Any output
generated by the execution of a PRINT statement will then follow on the next
line. After the line has been executed the execution pointer is advanced to the
next line and control returns to the user in the interactive command mode.
Successive 31ng1e—step commards may be used to follow the program through its
paces. Single-step is legal after program STOP statements, breakpoint
interrupts, control-c 1nterrupts, and other single-step functions. WNote that
the single-step function is performed by h1tt1ng the line-feed key and not by
actually entering the words "single-step".

BREAK

This is a feature not normally found in other versions of BASIC which allows the
user to set breakpoints on one or more line numbers in a program. During
execution if a line that has a breakpoint set on it is encountered the program
will suspend execution and the message "BREAK AT LINE nnnn" will be printed.

The system will then be in interactive command mode to allow the inspection or

29



changing of variable values. This suspension of execution occurs before the
line that has the breakpoint set on it is executed., There is no limit to the
number of breakpoints that may be set in one program, There is no additional
overhead paid in execution speed when breakpoints are set. Breakpoints may be
cleared by placing a minus sign in front of the line number or by compiling the
program which always clears all breakpoints. If no line numbers follow the
BREAK command all current breakpoints will be listed on the user terminal. For
example;

BREAK Lists all currently set breakpoints

BREAK 120 Sets a breakpoint at line 120

BREAK -120 Clears the breakpoint at line 120

BREAK 120,130,40,500 Sets breakpoints at lines 120,130,40, and 500
BREAK -50,60 Clears the breakpoint at 50 and sets one at 60

Once a breakpoint has been reached the user may optionally continue the
execution of the program by either a CONT command or a single-step command. The
breakpoint remains set after it has been reached until explicitly cleared by
another BREAK or COMPILE command.

DELETE

The DELETE command is used to delete groups of source lines from the program
text. If the command is followed by a single line number, only that line will
be deleted. If the command is followed by two line numbers separated by a
comma, space or other non-numeric character, all lines of text which fall
between the two line numbers inclusive will be deleted from the text.

BYE
This says goodbye to basic and returns the user terminal to monitor command

mode. Any program left in memory is lost forever so you may want to save it
first using the SAVE command.

30

-



PROGRAM STATEMENTS

The source program contains statements which are executed in sequence, one at a
time as they are encountered. Each of these statements normally starts with a
verb followed by optional variables or statements modifiers. This section will
. list the program statements that are supported by AlphaBasic and give some
examples where necessary for clarity.

LET

Assigns a calculated value to a specific variable during execution of the
program. It is unique in that the actual word "LET" may be omitted if desired.

LET A8 = 12.4
LET SUM(4,5) = Al+SQR(B1)
LET C$ = "JANUARY"

A5 = 12.4
SUM({4,5) = A1+SQR(B1)
C$ = "JANUARY"

GOTO

The GOTO statement transfers execution of the program to a new statement
location. This statement location must be either a line number or a label
defined somewhere in the program. The line number or label must follow the GOTO
statement in the program. The GOTO statement may be broken apart as GO TO if
desired.

GOSUB — CALL - RETURN

Calls a subroutine which starts with the line number or label following the
GOSUB or CALL verb. The subroutine exits via the RETURN statement which returns
control to the statement following the GOSUB or CALL statement. Executing a
RETURN statement without first executing a GOSUB statement will result in an
error message. Both GOSUB and RETURN are currently illegal in immediate mode.
Note that the CALL verb is merely another way of specifiying GOSUB for those
programmers used to this verb from other languages.

N ... GOTO

The ON GOTO statement allows multi-path GOTO branching to one of several points
within the program based on the result of evaluating an expression. The actual
format is: :

ON expression GOTO pointl, point2, point3, ... pointN
The expression can be any valid expression which will be evaluated down to a

positive integer result. The result will then be tested to branch to pointl if
1, point2 if 2, point3 if 3, etc. If the result is zero, negative or greater

31



than pointN the program will fall through to the next statement. * The points
(pointl through pointN) may be line numbers, labels or any misture of the two. P

ON ... GOSUB

The ON GOSUB statement parallels the ON GOTO statement in format and operation
except that pointl through pointN represent entries to subroutines that will be
executed based on the result of the expression evaluation. As with the GOSUB
Statement, the verb CALL may be used in Place of the verb GOSUB giving an ON
CAIL statement.

READ - DATA ~ RESTORE

These calls allow data to be an integral part of the source program with a
methed for getting this data into specific variables in an orderly fashion.
DATA statements are followed by one or more literal values separated by commas.
String literals need not be enclosed in quotes unless the literal data contains
a comma. All data statements are placed into a dedicated area in memory no
matter where they appear in the source program. READ statements are followed by
one or more variables separated by commas. FEach time a read statement is
executed the next item of data is retrived fram the DATA statement pool and
loaded into the variable named in the read Statement. If there is no more data
left in the data pool an error message results and the program is aborted. The
RESTORE statement is used to initialize the reading of the data pool from the

beginning again. ‘ e

DATA 1,2,3,4,5

DATA 2.3,0.555,0NE STRING,"4,4"
READ A,B,C

READ AS$

READ C(2,3),B$ (4)

RESTORE

The READ statement is also used for reading data from random access files. For
details on this refer to the section describing the file I/0 system. :

INPUT

Allows data to be entered from the user terminal and loaded into specific
variables at execution time. The INPUT statement contains one or more variables
separated by commas. when the INPUT statement is executed a single question
mark is printed on the user terminal to signal the request for data entry.
Numeric variables require the data to be in one of the acceptable floating point
formats. String variables require the data to be an ASCII string of characters.
If multiple variables are used in one INPUT statement the user is expected to
enter multiple values separated by commas sufficient to satisfy the number of

variables called out. If insufficient data is entered a double question mark
will be printed to signal the need for additional data.

INPUT Al
INPUT B$,CS,Q(8)

32



If the user enters a blank line (carriage-return only) in response to a request
for input, the previous values of all variables will remain unchanged and the
program will proceed to the next statement. This effectively bypasses the
entire input statement (or the remainder of a partial data request). If a
control-c is entered in response to a request for data the input statement is
bypassed (as with a carriage-return) and the program is interrupted at the next
statement following the input statement. The program may be resumed by the CONT
or single-step commands.

The user may cause his own prompt character or character string to be printed in
place of the standard question mark by enclosing the string in quotes
immediately following the INPUT verb.

INPUT "ENTER YOUR NAME: ",A$
INPUT "ENTER 3 VALUES FOR X, Y AND %: "X,Y,2

The INPUT statement is also used for reading data fram sequential files. For
details on this refer to the section describing the file I/O system.

INPUT LINE

The INPUT LINE statement operation is identical to that of the INPUT statement
with the exception that input into a string variable will accept the entire line
Up to but not including the carriage-return and line-feed. This allows commas,
quotes, blank lines and other special characters to be input without the need
for quotes around them. The INPUT LINE statement may be used in sequential file
processing as well as the standard terminal input statement. The gquestion mark
prompt character is never printed for an INPUT LINE statement but the user may
include his own prompt string as in the INPUT statement above. Some examples of
the statement are:

INPUT LINE AS
INPUT LINE "ENTER YOUR FULL NAME, PLEASE: ", NAME
INPUT LINE #2, LINE'CF'INPUT

PRINT

The print statement performs the same as other versions of BASIC and will not be
detailed extensively in this first printing. Multiple variables or literals are
printed on the same line separated by commas or semicolons. Commas cause the
next variable to be printed in the next zone while semicolons cause the
variables to be printed with no separating spaces. If the line ends with a
semicolon the carriage return will be suppressed so that the next PRINT
statement executed at some later time will resume printing on the same line.

For campatibility with other popular BASIC implementations, AlphaBasic also
recognizes the single question mark as an alternate form of the PRINT verb.

PRINT USING is supported for formatted output and is described in another
section reserved for that purpose alone.

The PRINT statement is also used for writing data to sequential files. For

33



details on this refer to the section describing the file I/0 system.

FOR -~ NEXT - STEP

These statements allow the execution of loops within the program and follow the
same format and restrictions as other forms of BASIC. The variable used may be
subscripted if desired. If no STEP modifier is used the step value is assumed
to be a positive 1. The variable name may be amitted in the NEXT statement if
desired in which case the previous FOR statement will be the one that is
incremented. All normal rules for nested loops and entering or exiting from
within the loops apply here as in other BASIC versions. FOR and NEXT statements
are illegal in immediate mode.

FOR A =1 TO 10
FOR B = Al/Bl TO Cl STEP 2
FOR A = 10 TO 1 STEP -1

IF — THEN - ELSE

The conditional processing features in AlphaBasic give a wide variety of formats
which duplicate just about all functions performed by other versions of BASIC.
The formats that are acceptable are: :

IF <relative expression> THEN <line number)>

IF <relative expression> THEN <line number> ELSE <line number>
IF <{relative expression> <statement>

IF <relative expression> <statement> ELSE <statement>

IF <relative expression> THEN <statement>

IF <relative expression> THEN <statement> ELSE <statement>

The above formats may be nested to any depth and rather than go into detail we
suggest that you play around with them to determine the actual restrictions that
exist. Some examples:

IF A=5 THEN 110

IF A>14 THEN 110 ELSE 220

IF B$="END" PRINT "END OF TEST"

IF TOTAL > 14.5 GOTO 335

IF AA=5 AND BB=6 IF CC=7 PRINT 567 ELSE PRINT 56 ELSE PRINT "NONE"
IF A=1 PRINT 1 ELSE IF B=2 THEN 335 ELSE 345

DIM

The dimension statement defines an array which will be allocated dynamically at
execution time. There is no limit to the number of subscripts that may be used
to define the individual levels within the array. The statement DIM A(20)
defines an array with 20 elements referenced as A(l) through A(20). Multiple
arrays may be dimensioned by a single DIM statement by separating them with
comnmas.

Subscripts are evaluated at execution time and not at canpile time thereby

34



allowing variables to be used as subscripts instead of fixed values. The !
statement DIM A(B,C) will allocate an array whose size will depend on the actual
vaules of B and C at the time the DIM statement is executed.

String arrays may also be allocated such as DIM A3(5). The size of the array
will depend on the current default string size in effect as specified by the
- last STRSIZ since each element in the array must be this number of bytes.

Arrays may be redimensioned during the execution of the program if desired. The
number of subscripts must remain the same but the number of elements in each
level of the array may be changed. Each redimensioning of an existing array
effectively erases the old array first and then allocates a new array with all
elements zeroed out.

DIM A(10)

DIM C(8,8), C$(10,4)
DIM TEST(A,B*4)

DIM A(B(4))

SIGNIFICANCE

The significance statement allows the user to dynamically change the default
value of the numerical significance of the system for unformatted printing. The

significance value can be any value from 1 through 11 and will represent the
maximum number of digits to be printed in unformatted numbers. Rounding off to
the specific number of digits will be performed only prior to the actual
printing of the result. The statement SIGNIFICANCE 8 will set the number of
printable digits to 8, The value is interpreted at run time and therefore may
be any valid numeric expression including variables if desired. The current

significance of the system is ignored when PRINT USING is in effect.

Note that the signifcance statement only affects the final printed result of all
numeric calculations. The calculations themselves angd the storage of
intermediate results is always performed in full 11-digit precision to minimize
propagation of errors.

The significance of the system is initially set at 6 digits when the system is
first started. This is equivalent to standard single~precision formats used in
most of the popular versions of BASIC. The significance is not reset by the RUN
command and therefore may be set in immediate mode just prior to the actual
running of a test program. Of course, any SIGNIFICANCE statements encountered
during the execution of the program will reset the value.

STRSIZ

The string size statement sets the default value for all strings which are
encountered for the first time during the campilation phase. Initially, the
default value of all strings in the absence of a STRSIZ statement is 10 bytes.
The statement STRSIZ 25 would cause all newly allocated strings which follow to
have a maximum size of 25 bytes instead of 10 bytes. This includes the
allocation of string arrays. The size value is evaluated at campilation time
and therefore must be a single positive integer.

35



RANDCMIZE

Resets the random number generator seed to begin a new random number seguence
starting with the next RND(x) function call.

STOP

Causes the program to suspend execution and print the message "PROGRAM STOP AT
LINE nnnn" and then return control to the user in the interactive command mode.
The user may then continue with the next statement in Sequence by executing a
CONT cormand or with single-step commands,

END

Causes the program to terminate execution and return to the READY mode. The END
Statement does not terminate canpilation of the program nor is it required at
the end of the program. e

OTHER VERBS

AlphaBasic supports other verbs which are described in separate sections to more
fully go into the details of their operation. The following verbe are described
elsewhere: '

SCALE - scaled arithmetic modifier

CHAIN - executes a new preogram or command file

ON ERROR - controls error trapping and processing

OPEN - opens an I/O file for processing

CLOSE - closes an I/0 file to further processing

WRITE - write a record to a randam access file

KILL - deletes a file from disk

ALLOCATE - allocates a randam access file on disk

LOOKUP - searches for a file and returns its size

XCALL -~ executes an external assembly larguage subroutine:
ISAM - facilitates processing of indexed sequential files

36



BASIC FUNCTIONS

The following is a list of the currently implemented functions which are
available for use in expressions, Note that the mode independence feature of
the expression processor will perform automatic conversions if a numeric
argument is used where a string argument is expected and vice versa.

EXP (X)

Returns

LOG(X)

Returns

LOG10

Returns

SOR (X}

Returns

INT (X}

Returns

FIX (X}

Returns

FACT (X)

Rekurns

ABS(Xf

Returns

SGN (X)

Returns
if X is

the,co§stant ?'(2f71528) raised Eo the power X,

the natural (base e) 1qgarithm of thé argument X.

the decimal (base 10) logarithm of the argument X,

the square root of the argument X.

the largest integer less than or equal to the argument X.
the integer part of X (fractional pért truncated) ,

the factorial of X.

the absolute value of the argument X.

a value of -1, 0 or 1 depending on the sign of the argument X. Gives -1
negative, 0 if X is 0 and 1 if X is positive.

37



RND (X)

Returns a random number' generated-by a pseudo-random number generator based on a
previous value known as the "seed". The argument X controls the number to be
returned. If X is negative it will be tsed as the seed to start a new sequence
of numbers. If X is zero or positive the next number in the sequence will be
returned depending on the current value of the seed (this is the normal mode).
The RANDOMIZE statement may be used to create a seed which is truly random and
not based on a fixed beginning value set by the system.

MEM (X)
- Returns a positive integer value which speéifies the number of bytes currently

in use for various memory areas used by the campiler system. The most common
use of this is with an arqument of 0 which returns the number of free bytes left
in the user memory partition. This MEM(0) call duplicates the action performed
by the FRE(X) function in other versions of BASIC. Other values of the argument
X return memory allocations which pertain to various areas in use by the
compiler and may or may not be of use to you. The byte counts returned for the

various values of X are:

0 - Free memory space remaining in current user partition

- Total size of current user partition

- Size of source code text area

- Size of user label tree '

- 8ize of user symbol tree (variable names and user function names)
Size of compiled object code area

- Size of data pool resulting from all compiled DATA statements

- 8ize of array index area (dynamic links to variable arrays)

- Size of variable storage area (excluding arrays)

~ 8ize of file I/O linkage and buffer area

L0010 U R
I

Note that the parameters for values above 1 may change as new versions of the
canpiler are developed. Also, some of these values will be meaningless when
running the runtime object module in compiled mode.

EOF (X)

The BOF function returns a value giving the status of a file whose file number
is X. The file is assumed to be open for sequential input processing. The
values returned by the EOF function are:

-1 if the file is not open or the file number X is zero
0 if the file is not yet at end-of-file during input calls
1 if the file has reached the end-of~-file condition

Due to the method used by the aMOS operating system for processing files, the
EOF status will not be valid until after an INPUT statement which reaches the
end-of-file condition. Any INPUT statements which reach FOF will return numeric
zero or null string values forever more. This means that the normal sequence

38



for processing sequential input files would be to INPUT the data into the
variables arnd then test the EOF(X) status before actually using the data in
those variables. . :

EOF should only be tested for sequential input files. Files open for output or
for random processing will always return a zero value.

LEFT(AS$,X) or LEFTS (AS,X)

Returns the leftmost X characters of the string expression AS,

RIGHT(A$,X) or RIGHTS (AS,X)

Returns the rightmost X characters of the String ekpression AS.

MID(AS,X,Y) or MIDS(A$,X,Y)
Returns the substring composed of the characters of the string expression AS

starting at the Xth character and extending for Y characters. A null string
will be returned if X > LEN(AS).

LEN (AS)

Returns the length of the string expression AS in characters,

INSTR (X ,A$,BS)

Performs a search for the substring B$ within the string AS beginning at the Xth
character position. It returns a value of zero if B$ is not in AS or the
character position if BS is found within AS. Character position is measured

from the start of the string with the first character position represented as
one.

ASC (AS)

Returns the ASCIT decimal value of the first character in string AS,
CHR(X) or CHRS (X)

Returns a single character string having the ASCII decimal value of X. Only one
character is generated for each CHR or CHRS function call.

39



STR(X) or STRS(X)

Returns a string which is the character representation of the numeric expression T
X. No leading space is returned for positive numbers. ' s

VAL (AS)

Returns the numeric value of the string expression AS$ converted under normal .
BASIC format rules.
SPACE (X) or SPACES (X)

Returns a string of X spaces in length.

TRIG FUNCTIONS

The following trig functions are implemented in full ll-digit accuracy:

SIN (X) Sine of X
COs (X) Cosine of X

TAN(X) . Tangent of X
ATN (X) Arctangent of X
ASN(X) Arcsine of X
ACS5(X) Arccosine of X

DATN(X,Y) Double arctangent of X,¥ o

40



FORMATTED OUTPUT VIA PRINT USING STATEMENTS

The PRINT USING statement is an extension of the standard PRINT statement which
allows the output to be formatted into specific character positions suitable for
business reports, formal text applications, and the like. The format of the
statement appears as follows:

PRINT USING <string>, <list> (output to terminal)
PRINT #<file>, USING <string>, <list> (output to file)

The string expression is used to control the formatting of the variables as they
are enrountered in the print list and must match the format of the variables to
be printed. fThe string may be either a string constant, a string variable, or a
string expression which is interpreted as an exact image of the line to be
printed. The list is the Sequence of variables or expressions to be printed
using all the rules of the standard PRINT statement. All characters in the
formatting string will be printed as they appear except for the special
formatting characters which will be described below. The string is continually
scanned over and over until the list of print items is exausted. The formatting
characters and their usage in the string are described in the following -
paragraphs:

EXCLAMATION MARK

An exclamation mark (!) in the format string causes the first character of the
corresponding string variable to be printed in the corresponding space. The
rest of the string variable if it exceeds one character will be ignored.

BACKSLASHES

Two backslashes (\) in the format string define a string field whose size equals
the number of characters enclosed by the brackets plus the brackets themselves.
Normal BASIC syntax dictates that the characters between the backslashes be
spaces but AlphaBasic will accept any characters. If the string variable to be
Printed exceeds the size of the specified string field the excess characters
will be ignored. If the string variable is shorter than the specified string
field, trailing blanks will be added to fill out the correct field size. -

NUMERIC FIELDS

Digit positions within formatted mpumeric fields are specified in the format
string by the pound-sign (#) using one for each position desired, both in front
of and behind the decimal point. One decimal point is allowed to define the
explicit alignment of the digits within the rumeric field format. Normally,
numeric fields are right justified with leading blanks being used to fill in for
digit positions that are not required in front of the decimal point. Unused
digit positions behind the decimal point are filled with trailing zeros. If the
numeric field specified in the format string is too small to contain the numeric
variable to be printed, the field will be printed with a leading percent-sign
(%) indicating the overflow. This will be followed by the number in standard
BASIC format.

41



If the format field specifies any digit positions in front of the decimal point,
at least one digit is always output before the decimal point itself. If
necessary, this digit is a zero.

Note:- that other special characters (described in the following paragraphs) also
define numeric digit positions in addition to performing special formatting
functions.

ASTERISK FILL

If a numeric field in the format string begins with a double asterisk (**) any
leading spaces that would normally be output in front of a number will be
replaced by asterisks. This is quite useful in printing checks, for instance.
The double asterisk also defines two digit positions.

FLOATING DOLLAR SIGN

If a numeric field in the format string begins with a double dollar sign ($$) a
dollar sign will be printed immediately preceding the first digit of the number.
The double asterisk also defines two digit positions, one of which is taken up
by the dollar sign itself. '

The above two special functions may be combined by starting the numeric format
field with the symbols "*¥*$" combines the asterisk £ill and floating dollar sign
functions described above. This combination also defines three digit positions,
one of which is taken up by the dollar sign itself.

TRATLING MINUS SIGN

If a numeric field is terminated by a minus sign in the format string, the sign
of the output number is printed following the number instead of before it. If
the number is negative, a minus sign will be printed. If the number is zero or
positive, a blank will be printed. Note that if the trailing minus sign is not
used, space must be provided in the numeric field for the sign to precede the
number if it is negative.

COMMA

If the numeric format field contains one or more commas in front of the decimal
point, a comma will be inserted every three digits to the left of the decimal
point when the number is printed. Each comma also defines one digit position in
the format field. Commas appearing after the decimal point will be treated as
printing characters.

EXPONENTTAL FORMAT

Exponential format may be specified by following the numeric field designation
with four up-arrows ("°"") which defines the space taken up by the E NN exponent
value. As with other numerical formats, any decimal point arrangement is
allowed and the significant digits are left justified with the exponent being
adjusted as necessary.

42



SCALED ARITHMETIC

AlphaBasic uses a floating point format which gives an accuracy of 11
significant digits. Unfortunately, this accuracy is absolute only when dealing
with those numbers which are total integers in the first 11 positions to the
. left of the decimal point. This fact stems from the conversions that are
required fram decimal input to the binary floating point format used in the
hardware. For most business users, the actual range of numbers contains two
digits to the right of the decimal point and nine digits to the left of the
decimal point. When the fractional part of the number is converted between
decimal and binary formats, a small but significant error is sometimes
introduced which may propogate into large inaccuracies when dealing with
absolute dollars-and-cents values.

AlphaBasic incorporates a scaling feature which helps to alleviate these
problems by storing all floating point numbers with a scale offset. This offset
may be used to effectively designate where the 11 absolute accuracy digits are
located in relation to the decimal point. This is done by multiplying every
input number by the scaling factor and then dividing it out again before
pPrinting. This is a simplified explanation and many other checks and
conversions are done internally to scaled numbers but that is the general idea.

The scaling factor represents the number of decimal places that the 11-digit
"window" will be effectively shifted to the right in any floating point number.
For example, the most common application is in a business environment where the
scaling factor of 2 would be used to give absolute 11 place accuracy which
extends 2 places to the right of the decimal point. This means that the value
of 50.12 will be multiplied by the scaling factor of 2 digits (100) and stored
as the floating point value of 5012. Since this value is an integer, it has
absolute accuracy. Just before printing this number it will be divided by the
scaling factor to reduce it to its intended value of 50.12 and everybody is

happy.

Other little conversions had to be included into the system to take care of all
the little subtle effects of storing scaled numbers. For example, when
converting scaled numbers to integer or binary format, the number must be
unscaled first before conversion. When two scaled numbers are multiplied
together the result is a number which must be unscaled once. Division of two
scaled numbers creates exactly the opposite problem. Dealing with scaled
numbers for exponential, logarithmic and trigonometric functions creates even
more exotic problems. All these conversions are done automatically by
AlphaBasic and so the pregrammer is relieved of the task of keeping track of
them.

Scaled arithmetic will nomally be entered at the start of a program and will
continue in effect throughout the program. The statement for setting the
program into scaled mode is: :

SCALE n
The scaling factor "n" must be a decimal digit in the range of -30 to +30 and

may not be a variable since scaling is done at compile time for constant values
as well as at runtime for input and output conversions. Negative scaling moves

43



the 1l-digit window to the left and for most cases will not be of uge to the
average programmer.

A few words of caution are in order here. Once the SCALE statement has been
detected during compilation, all constant values that follow are scaled by the
scaling factor so that they are stored properly. 1In addition, a runtime command
is generated in the executable program which causes the actual scaling to be
performed on input and print values when the program is running. If two or more
different SCALE statements are executed in the same program, scme very strange
results may come out unless the user is totally familiar with what is happening
in regards to compile time and run time conversions. We suggest that you play
with this one a bit before delving into it full steam.

One other word of caution. Floating point numbers that are stored in files by
the sequential output PRINT statement will be unscaled and output in ASCIT with
no problems. Floating point numbers that are written to random access files by
using the WRITE statement will not be unscaled first and any program that reads
this file as input had better be operating in the same scaling mode or else
apply the scale factor explicitly to all values from the file. Binary and
string values, of course, are never modified regardless of the scaling factor
currently in use.

44



ALPHABASIC FILE I/0 SYSTEM

AlphaBasic supports both sequential and random access disk files. Data may
optionally be written in ASCII or packed binary formats. Files created by
AlphaBasic programs are compatible with all other system utility formats and may
be interchangeably introduced into ang manipulated by programs written in other
languages. Conversely, files created by other languages and system utilities

may be read and manipulated by programs written in AlphaBasic.

Files are created and referenced by the general statements OPEN, CLOSE, INPUT,
PRINT, READ, and WRITE. All file references are done by a file number which may
be any legal integer value from 1 to 65535. There is no absolute limit to the
number of files that may be open at any given time in a program but since each
file requires a certain amount of memory there is a practical limit to this
number based on available memory. The file number always follows the verb in
any file 1/0 statement and may be any legal numeric expression which is preceded
by a pound sign (#). File number zero is defined as the user terminal and is
legal in file statements to allow generalized programs to be written which may
selectively output to either & file or to the terminal at run time.

All open files are automatically closed (if not closed explicitly by a CLOSE
statement) when the program exits or when a CHAIN statement is executed. No two
files may be opened with the same file number at the same time but after a file
has been closed another file may be recpened using the gsame file number if
desired. All file statements are valid in immediate mode but any open files are
automatically closed before each new RUN command is executed thereby preventing
files which were opened by an immediate statement to be written or read by
statements within an executable program.  Under the current version of
AlphaBasic, each open file requires about 580 bytes of free memory for buffers
and control blocks. Future releases will allow more than one file to share the
same buffer area thereby reducing the execution memory reguirements,

SEQUENTIAL ASCII FILES

Sequential disk files are the easiest to understand and to implement in.
AlphaBasic. Data is written in ASCII format and all numerics are stored as
ASCII string wvalues. Carriage-returns and line-feeds are included in the output
file as a result of the print statement formatting but are bypassed when the
file is read by another program. The data files created by AlphaBRasic
sequential I/0 functions normally have the extension "DAT" unless otherwise
explicitly stated in the OPEN Statement. These files are normal ASCII
sequential files in all respects and may be manipulated by the text editor, the
print spooler, or any of the other system utilities,

Data is written to sequential ASCIT files by using the PRINT statement with a
file number (non-zero) following the verb in standard I/0 statement format.
Data is read back from sequential ASCII files by using the INPUT statement in a
similar manner.

45



RANDOM ACCESS FILES

Random access files are more complex than sequential files but offer a much more
flexible method for storing and retrieving data in different formats. Random
files are written in what is considered unformatted or packed data mode. All
program accesses to random files are made via the "logical record" approach. A
logical record is defined as a fixed number of bytes whose format is explicitly
under control of the program performing the access. Physical records on the
disk are each 512 bytes long and each random file must be preallocated as some
given number of these 512-byte physical records. Logical records may be any
length from 1 byte to 512 bytes in length. The AlphaBasic I/0 system will
automatically compute the number of logical records that will fit into one
physical record and perform the blocking and unblocking functions for you. For
example, if your logical record size is defined as 100 bytes, then each physical
record on the disk will contain 5 logical records with the last 12 bytes of each
physical record being lost. Therefore, the most efficient use of random files
comes when the logical record size will evenly divide into 512 bytes (32, 64,
128; etC) .

Random access files are preallocated once using the ALLOCATE statement and
giving the number of physical 512-byte records to be allocated. It is up to the
programmer to calculate the maximum number of logical records required in the
file and then, using the above description, calculate how many physical records
will be required to completely contain the number of logical records desired.
For instance, assume the logical record size is 100 and you need a maximum of
252 logical records in your file. Each physical disk record is 512 bytes and
therefore will contain 5 logical records. You need 252 logical records so
dividing 252 by 5 gives 50 full physical records plus 2 logical records
remaining. Since the file must be allocated in whole physical records you will
need 53 physical records which will give you a maximum of 255 logical records.
These logical records will be referenced in your program as records 0 through
254 since the first record of any random file is numbered record 0.

The logical record size is specified dynamically in the OPEN statement when the
file type is RANDOM so it is possible to get things fouled up if you do not have
the record size correct. No logical record size is maintained within the file
structure itself. This fact does make it nice in one respect and that is that a
file which is accessed by Rany programs can have its record size expanded
without recompiling all programs. Heres how: Assume you have a file which is
considered the parameter descriptor file for all other files in the entire
system. This file gives the record size as 100 bytes for the vendor name and
address file (as an example) . All programs which reference the vendor file
first read this parameter file to get the size of the vendor file logical
record. The programs then set the size into a variable and use this variable in
the OPEN statement for the record size. Each READ. or WRITE call will then
manipulate the 100 bytes of data by reading or writing to or from variables
whose size totals 100 bytes. Lets S8y you now want to expand the file to 120
bytes and that most of the programs will not have to make use of the extra 20
bytes until some time in the future. You write a program which copies the
100-byte file into a new 120-byte file and update the main parameter file to
indicate that the new record size for the vendor file is 120 bytes instead of
100. Each program will now open the file using the new 120-byte record size
(since it is read in from the parameter file at runtime) but will only READ or
WRITE the first 100 bytes of each record due to the variables used by the READ
and WRITE calls. Got the message? ‘

46

£

o



FILE 1/0 STATEMENTS

OPEN

In order to manipulate data to or from a file it must be opened first., The open
Statement assigns a unique file number to a file and also specifies the name
that is to be given to an output file or to be used in the locating of an input
file., The general format is:

OPEN #<file>, <filename>, <mode>, {record-size, record-number-variable}

file - any numeric expression which evaluates to an integer from 0~65535
(0 is defined as the user terminal and treated as such)

filename — any string expression which evaluates to a legal file description

mode ~ gspecifies the mode for opening the file:
INPUT - opens an existing file for input operations
OUTPUT - creates a file for output operations
RANDOM ~ opens an existing file for random read/write

The remaining two options must be used for RANDOM mode only:

record-size - an expression which specifies dynamically at runtime the
logical record size for read/write operations on the file

record-number-variable - a non-subscripted numeric variable which must
contain the record number of the desired random access for
READ or WRITE statements when they are executed '
Any attempts to read or write to a file which has not been opened will result in
én error message and the program will be aborted. The filename string may be as
brief as the name of the file in which case it is assumed to have an extension
of "DAT" and reside in the current user's disk file area. The filename string
may expand to become a complete file specification if desired giving the
explicit location of the file in another user area and even on another disk
drive. Some examples are:

OPEN #1, "DATFIL", INPUT

OPEN #15, "PAYROL.TMP", CUTPUT

OPEN #A, C$, OUTPUT

OPEN #3, "DSK1:0FILE.ASC([200,20]", OUTPUT
OPEN #1, "VENDOR.DAT", RANDOM, 100, RECNUM

The OPEN statement is the only statement which references the file by its actual
ASCII filename in the standard operating system format. All further references

in the program are made by the file number which is assigned in the OPEN
Statement #<file> expression.

CLOSE

The CLOSE statement terminates the processing of data to or from a file. Once a

47



file has been closed, no further references are allowed to that file number
until another OPEN statement is executed. Any files that are still open when
the program exits will be closed automatically. The format of the CLOSE
statement is: '

CLOSE #<file>

KILL

The KILL statement erases one file from the disk. Tt does not need a file
number and no open or close need be performed to KILL a file. The format for
the KILL statement is:

KILL <filename>

As in the OPEN statement, the filename is any string expression which evaluatesg
to a legal file description.

LOOKUP

The LOOKUP statement looks for a file on the disk and returns a flag which tells
you if the file was found and if 80, how many records it contains. The format
for the statement is:

LOOKUP <filename>, <result-variable>

As in the OPEN statement, the filename is any string expression which evaluates
t0 a legal file description. The result-variable is any legal numeric variable
which will receive the result of the search. If the file was not found, a zero
will be returned. If the file was found and is a sequential file, a positive
number will be returned which is the number of records in the file. If the file
was found and is a random (contiguous) file, a negative number will be returned
which is the number of records in the file. 1In either case, the number of
records represents physical 512-byte disk records and must be divided by the
blocking factor for randam files if the number of logical records is desired.

ALLOCATE

The ALLOCATE statement is used to Preallocate a contiguous file on digk which
may then be opened for randam Processing. An attempt to allocate a file which
already exists will result in an error message. A randam file need only be
allocated once and may then be opened for random read/write operations as many
times as desired. The statement format is:

ALLOCATE <filename>, <number-of-records>
As in the OPEN statement, the filename is any string expression which evaluates
to a legal file description. The number-of-records is a numeric expression

which represents the number of physical 512-byte disk records to be allocated to
the file.

48

Rt
¥



INPUT

Once a file has been opened for input, the data is read from the file by a
special form of the INPUT statement using a file number which corresponds to the
number assigned in the OPEN statement. The variables in the list may be either
numeric or string variables but must follow the format of the data in the file
being read. Weird results will occur if you attempt to read string data into a
numer ic variable or vice-versa. The general format of the INPUT statement is:

INPUT #<file>, <variable-1>, {variable-2>, ,.. <variable-n>

During the reading of the input data into the variable list all leading spaces
will be bypassed unless enclosed within quotes just as in the normal form of the
INPUT statement. Also, all carriage~returns and line-feeds will be bypassed
allowing the file created by the PRINT statements to contain formatted line data
if desired. Commas, spaces, and end-of-line characters will all terminate
numeric data strings and will then be bypassed. , :

PRINT

Cnce a file has been opened for output, the data is written to it by a special
forn of the PRINT statement using a file number which corresponds to the number
assigned in the OPEN statement. All techniques usable in the normal form of the
PRINT statment which outputs to the terminal may be used in the file form
including PRINT USING for formatted data. The data which is output to the file
is in the exact format that would appear on the user terminal if the file number
had been omitted. The general format of the PRINT statement along with some
valid examples follow:

PRINT $#<file>, <data-list>

PRINT #1, A, B, C
PRINT #4, USING AS, A, SQR(A)
PRINT #Ql, USING “###.##", AL(10);
PRINT #1, "THIS IS A SINGLE LINE"

READ

The READ statement is used to read a selected logical record from a file
which has been opened for random access processing. The logical record
which is transferred by the system I/0 is that whose record number is

READ statement is:
READ #<file>, <variable-1>, <{variable-2>, ... <variable-n>

The variables in the 1ist may be any format but they obviously should match that
of the designated record format. The data will be read into the variables as
unformatted bytes without regard to variable type. The data will be transferred
- into each variable until the variable has been completely filled and then the
next variable in the list will be filled, and 80 on. If the record is longer
than the variable list specifies, all excess data in' the record will not be

49



transferred. An attempt to transfer more data than is in the logical record
size will result in an error message. The most efficient use of the random
files comes when the variable or variables used are mapped by the MAP statement
to the exact picture of the record format in use.

WRITE

The WRITE statement is used to write a selected logical record into a file which
has been opened for random access processing. The logical record which is
trnasferred by the system I/0 is that whose record nunber is currently in the
variable mentioned in the OPEN statement. The format of the WRITE statement is:

WRITE #<file>, <variable-1>, <variable-2>, ... <variable-n>

The variables in the list may be any format but they obwiously should match that
of the designated record format. The data will be written into the logical
record from the user variables as unformatted bytes without regard to variable
Eype. The data will be transferred from each variable until the variable has
been campletely emptied and then the next variable in the list will be used, and
g0 on., If the record is longer than the variable list specifies, all excess
data in the record will not be modified. An attempt to transfer more data than
is in the logical record size will result in an error message. The most
efficient use of the random files comes when the variable or variables used are
mapped by the MAP statement to the exact picture of the record format in use.

50



CALLING EXTERNAL ASSEMBLY IANGUAGE SUBROUTINES

External subroutines written in assembly language code may be called from any
AlphaBasic program using the XCALL statement. The syntax for this statement is
as follows:

XCALL routine,argument—l,argument«Z,....argument—n

The routine to be called is an assembly language program which has been
assembled using the MACRO assembler. The resulting PRG program file must then
be renamed to give it the assumed extension SBR indicating this is a subroutine
and not a runnable program. When the XCALL statement is executed by the
AlphaBasic runtime system, the named subroutine will be located in memory and
then called as a subroutine. AlphaBasic first saves all registers and then sets
certain parameters into these registers for use by the external subroutine. The
addresses of the arguments are calculated and entered into an argument list in
memory along with their sizes and typre codes. The base address of this list is
then passed to the user routine in register R3.

The arguments may be one of two basic forms. A variable name may be used in
which case the argument entry in the list will reference the selected variable
within the user impure area. This variable is available to the called
subroutine for both inspection and modification, The argument may also be an
expression (numeric or string) in which case the expression is evaluated and the
result is placed on the arithmetic stack (referenced by R5). This result is
then referenced in the argument list entry instead of a single variable. Tt is
available for inspection only since the stack is cleared when the subroutine
exits,

The user routine is free to use and modify all six general work registers
(RO-R3) and may use the stack for work space as required. When the subroutine
has completed its execution a return must be made to the runtime system by
executing the RIN subroutine return instruction.

REGISTER PARAMETERS

The following registers are set dp by the runtime system to be used as required
by the external subroutine. They may be modified if desired as they have been
saved before the subroutine was called.

RO - indexes the user impure variable area. RO is used throughout
the runtime system to reference all user variables. Details
on the format of this area are not available at this time and
the user need not be concerned with them. RO may be used as
a8 work register.

R3 - points to the base of the argument list. R3 may be used to
scan the argument list for retrieval of the argument parameters.

R4 - points to the base of the free memory area that may be used by

the external subroutine as work space. This is actually the
address of the first word following the argument list in memory

51



and may be used to store a terminator word to stop scanning of
the argument list if desired.

R5 - this is the arithmetic stack index used by the runtime system.
The arithmetic stack is built at the top of the user partition
and grows downward as items are added to it. wWhen the external
subroutine is called, R5 points to the current stack base. Since
the arithmetic stack may contain valid data, the external
subroutine must not use the word indexed by R5 or any words
above that address.

ARGUMENT LIST FORMAT

The list of arguments specified in the XCALL statement may range from no
arguments at all to a number limited only by the space on the command line. To
pass these arguments to the external subroutine, an argument list is built in
memory which describes each variable named in the list and tells where it can be
located in the user impure area. The variables themselves are not actually
passed to the subroutine, but rather their absolute locations in memory are. In
this way, the subroutine may inspect them and modify them directly in their
respective locations. This does not apply to expressions which are built on the
stack as described previously.

R3 points to the first word of the argument list which is a binary count of how
many arguments were contained in the XCALL statement. Following this count word
comes one 3~word descriptor block for each argument specified. If there are no
arguments in the XCALL statement, the argument list will consist only of the
single count word containing the value of zero.

The format of each 3-word block describing one argument is as follows:

Word 1 - variable type code. Bits 0-3 contain the hex type code for the
specific variable; =unformated, 2=string, 4=floating point,
6=binary, 8 through E are currently unassigned. Bit 4
is set to indicate the variable is subscripted or clear to
indicate the variable is not subscripted. Other bits in the
type code word are meaningless.

Word 2 - absolute address of variable in user impure area. This
address is the first byte of variable no matter what is type
or size might be. '

Word 3 - size of the variable in bytes.

Note that the above descriptions also apply to the expression arguments with the
exception that the results will be located above the address specified by RS
instead of below it.

The argument list is built in free memory directly above the currently allocated
user impure area. R4 points to the word immediately following the last word in
the argument list. The user may scan the argument list and determine its end
either by decrementing the count word at the base of the list or by scanning
until the scan index reaches the address in R4,

52



FREE MEMORY USAGE

When the subroutine is called, indexes R4 and RS mark the beginning and end of
the free memory that is currently available for use as workspace. This area is
not preserved by the runtime system and the subroutine must not count on its
security between XCALL statements. Note that the word at @R4 may be used as the
first word but the word at @R5 is the base of the arithmetic stack and must not
be destroyed. The last word of free memory is actually at -2(R5) for all
practical purposes.

The runtime system has its own internal memory management system and does not
conform to the AMOS operating system memory management. Therefore, the external
subroutine must not use the GETMEM monitor calls to generate a block of work
space in memory. Also, if any file calls are to be done they must be done with
internal buffers since the INIT call sets up a buffer by using the GETMEM
monitor call.

SUBROUTINE LOADING

The version 3.1 release requires that the subroutines being called by the BASIC
program already exist either in system memory or user memory before beginning
execution of the program. These subroutines must be loaded into system memory
by the SYSTEM call in the SYSTEM.INI file or they must be loaded individually
into the user memory partition with the LOAD command while in monitor command
mode. Note that this is the monitor LOAD command to load the SBR module which
is vastly different from the LOAD command used to load a basic source file once
you are running AlphaBasic.

Future releases will provide capabilities for loading subroutines and overlays
from within the BASIC program itself.

53



ERROR TRAPPING

AlphaBasic allows the user program to trap errors that would normally cause the
system to print an error message and abort the program run. During interactive
processing this would return you to AlphaBasic command mode and during compiled
run processing it would return you to to monitor command mode. Use of the ON
ERROR GOIO and RESUME statements allows these errors to be detected within the
user program and immediate action to be taken when appropriate.

ON ERROR GOTC STATEMENT

Error trapping is enabled and disabled by using the ON ERROR GOTO statement in
one of two forms. The first form specifies a line number (or label) within the
program. When the program encounters this ON ERROR statement it stores the line
number and sets a flag enabling error trapping. If an error occurs at any time
-after this control will be transferred to the routine specified by the line
numder. No error message will be printed. Examples of this form of the
statement are:

ON ERROR GOTO 500
ON ERROR GOTO TRAP'ROUTINE

The error routine must then take appropriate action based on the type of error
which caused the trap. The ERR function will return the following data based on
conditions at the time of the error:

ERR(0) = numeric code specifying the type of error detected
ERR(1) = last line number encountered prior to the error
ERR(2) = last file number accessed (pertinent only for file errors)

The second form of the statement disables further error trapping by specifying a
line number of zero or leaving the line number off completely,

ON ERROR GOTO 0
ON ERROR GOTO

After executing the above form the program will print the standard error message
and abort the program run. A special case exists when the above statement is
encountered within an error recovery routine (prior to executing the RESUME
statement). 1In this instance the error trapping is disabled and the existing
error is forced to be processed as if no error trapping were ever enabled. It
is recommended that all error trapping routines execute the ON ERROR GOIO 0
statement for all errors which have no special recovery processing.

Note that if an error occurs within the error trapping routine itself that error

will be forced and the standard error message will occur. There is no method to
detect errors within the error recovery routine.

54



RESUME STATEMENT

The RESUME statement is used to resume execution of the program after the error
Lecovery procedure has been performed. The Statement takes on two forms similar
to the ON ERROR GOTO statement. The first form specifies a line number (or
label) wihtin the program at which point the execution is to be resumed:

RESUME 410
RESUME TRY'AGAIN

The second form specifies a line number of zero or no line number at all and
causes the execution to be resumed with the statement that caused the error to
occur,

RESUME 0
RESUME

Both forms cause the error condition to be cleared and error trapping to be
enabled again.

CONTROL~C TRAPPING

When the operator types a control-c on his keyboard during the execution of an
AlphaBasic program the program is suspended at the next statement. Action taken
then depends upon the status of the error trapping flag. If no error trapping
is enabled the program is aborted with the appropriate message being printed on
the terminal. If error trapping is enabled the error trapping routine is
entered with the code in ERR(0) being set to 1. This feature allows the user to
Prevent inadvertant aborti g of programs during critical times such as file

Control-c action is suspended during error recovery processing to prevent
accidental aborting of the program due to an error condition occurring within
the error routine. The control-c will be detected immediately upon execution of
the RESUME statement.

55



Q
5

w BNRENNNN NN R e e
o oo-.Jcnu-:.h-wwHoxoooqo\m.buwr-:o\oooqmm.bwmw

N
o

W
=

ERROR CODES RETURNED BY ERR(0)

Meaning

Control-c interrupt
System error

Out of memory

Out of data

NEXT without FOR
RETURN without GOSUB
RESUME without ERROR
Subscript out of range
Floating point overflow
Divide by zero

Tllegal function value
XCALL subroutine not found
File already open

IO to unopened file
Record size overflow
File specification error
File not found

Device not ready
Device full

Device error

Device in use

Illegal user code
Protection violation
Write protected

File type mismatch
Device does not exist
Bitmap kaput

Disk not mounted

File already exists
Redimensioned array
Illegal record rnumber

56



SYSTEM FUNCTIONS

AlphaBasic supports a unique group of operators called system functions which
provide the programmer with the ability to get to the I1/0 ports, physical memory

reserved word representing the desired function followed by optional arguments
enclosed within parenthesis. The major difference is that a system function may
appear on the left gide of an assignment statement whereby it represents an
output or write condition to the System function. System functions used within

evaluation,

IO (X)

The IO system function allows .the 256 I/0 ports to be selectively read from or
written to. In both cases only one byte will be considered and an output
exXpression greater than 255 will merely ignore the unused bits.

I0(X)
A

{expr> lwrites the low byte of expr to port X
I0(X) lreads port X and places the result into A

4n

BYTE (X) and WORD (X)

the range of 0-255 and the WORD functions will deal with 16 bits of data in the
range of 0-65535 inclusive. Any unused bits will be ignored with no error
message. Note that these commands are not protected and it is possible to poke
the operating system, other users or yourself to death with improper use.

BYTE (X) = <expr> lwrites the low byte of expr into memory loc X
WORD (X) = <expr> Iwrites the low word of eXpr into memory loc X
A = BYTE (X) lreads memory loc X and places the byte into A
A = WORD (X) lreads memory loc X and places the word into A

TIME

The TIME system function requires no argument and is used to set and retrieve
the time of day as stored in the System monitor communications area. The time
is stored as a two-word integer representing the number of clock ticks since
midnight. The Programmer is responsible for conversions to printable format in
those cases where it jg required. One clock tick represents one interrupt from
the CPU line clock which ig usually 60 hz for domestic systems and 50 hz for
overseas systems. Dividing the time by the clock rate will give the number of
seconds since midnight, Converting this to current time is then accomplished by
successive division by 60 to get minutes and again by 60 to get hours,

57



TIME = <expr> !sets time-of-day in system to expr
= TIME Ireturns time-of-day in clock ticks into A

DATE

The DATE system function is identical to the TIME function except that it sets
and returns the two-word system date. There is no current format defined by
Alpha Microsystems for this date and it may be stored in any format you choose.
Some common methods are to pick a base date {say 1/1/60) and store the date as
the number of days since that date. Another method is to store the Julian date
with the year being offset by the appropiate integer amount. The date will
store a positive value of 2732 or greater than 4 billion.

DATE = <expr> !sets system date to expr
A = PATE lreturns system date into A

1 ! .
2 ! Bemo of use of Alphs Basic DATE routive with "DATE" formatted dute.
301

10 MAFY DATE-HOLDER,B,3

11 MAF1 WMDDYY,,,,BDATE HOLDER

12 MAPZ MM,E,1

13 MAP2 ID,B,t

T4 MAFZ YY,E,1

15 PRINT

16 !

20 DATEHOLDER = LATE

21 PRINT USING “Current date is B /R HB", MM, DD,YY

22 PRINT

30 1

32 INPUT "Enter new date MH,TIR,YY : ", MM, DO, YY

34 DATE = DATE’HOLDER

34 PRINT

38 GOTO 29

58



EXPANDED TAB FUNCTIONS

The TAB function in AlphaBasic has been expanded past the normal usage to
include terminal screen handling such as cursor control and other Special
functions., To be used only in a PRINT statement, the TAB function operates in
the traditional manner when supplied with only a single numeric argument such as
TAB(X). In this case the function causes the carriage to be positioned over to
the "X" column on the current 1ine. When supplied with two arguments such as
TAB(X,Y), however, the TAB function performs special CRT functions.

If the value of X is positive the X,Y arguments will be treated as (row,column)
coordinates for positioning the cursor on the terminal screen. The following
characters will then be printed beginning in that position. As in other
functions, the X and Y arguments may be expressions. Terminals are assumed to
begin with row 0 (top of screen) and column ¢ (left end of each row).

If the value of X is negative the function is interpreted as a special terminal
command and the command code must be specified as the Y argument. The codes
will be transmitted to the terminal driver (TDV module in 1,6) which will do the
actual interpretation and perform the special function. The following list will
give the standard codes in use for the ADM3, SOROC and Hazeltime CRT terminal
drivers:

0
>

Function

Clear screen
Cursor home (upper left corner)
Cursor return (column 0 without line~feed)
Cursor up one row
Cursor down one row
Cursor left one column
Cursor right one column
Lock keyboard
Unlock keyboard

- Erase to end of line
Erase to end of screen
Protect field (reduced intensity)
Unprotect field (normal intensity)
Enable protected fields
Disable protected fields
Delete line
Insert line

)
OWOJIRAUTEWN HOD

-
-]

b et bt
Ul W0 b

-
h

The actual routines that perform the screen controls are in the specific
terminal drivers and not in AlphaBasic itself. Therefore, if you have a
different terminal and You write a driver to perform the above functions for the
terminal in use it will operate properly with AlphaBasic with no modifications
to either the compiler or to your programs. WNote that most terminals do not
support all of the above commands, Commands that are not supported on the
terminal in use will merely be ignored by the driver.

59



FORMATTING NUMERIC DATA VIA THE "USING" MODIFIER

Often it is desirable to format a numeric value without having to immediately
print it on the terminal or output it to a file. The PRINT USING performs the
formatting but the output must be to the terminal or a file which can cause _
extra code to be generated. Formatted numeric data is handy for creating print
image lines and headers. Some more exotic operations would allow pre-inspection
of numeric data and string manipulation of that data for specialized
applications. AlphaBasic allows formatting numeric data into its string
equivalent with the USING expression modifier. Basically the format for doing
this is:

AS = B USING C$

canplex statement is legal:
AS = "RABCD" + ((B*HOURS) USING (B$[2,4]+"$##4")) + "END"
Although it is academic in nature, a restriction exists in that the USING

modifier is not recursive; i.e. the mask string itself cannot be the result of a
USING modified expression.

60



PROCESSING INDEXED SEQUENTIAL FILES

individual user memory. Multiple directory files are supported via some
elementary ISAM statements which allow the direct control of index file and data
file items. The ISAM package as implemented requires more direct user control
over the files than other implementations for two main reasons. The major
reason is memory limitations which restrict the amount of "smarts" that could be
put into the AlphaBasic runtime package for handling ISAM files. The second
reason is the current structure of the existing ISAM package which precluded a
more extensive implementation within the timespan allocated to the project. We
feel that the version we are releasing will provide sufficient control for all
users even though the initial training and programming may at first appear more
complex than other versions of ISAM handlers. For more detailed information on
ISAM files and the ISAM assembly language package the user is referred to the
Separate manual titled "ISAM System User's Guide".

FILE STRUCTURE

An indexed sequential file consists of one data file and one or more index files
which link to the data file. The data file is structured identical to a normal
random access file with the additional restriction that all records which are
not currently active are linked to each other in a chain called the "free data
record list". All data records reside in the data file and the data records may
be any size up to the maximum of 512 bytes. As in the normal random access
file, data records will not be split across physical 512-byte block boundaries
in the file. Index files are arranged in a camplex balanced tree structure and
contain one symbolic key for each active data record plus a link to that data
record in the data file. This 1ink is the relative record number and is used in
the same manner as its counterpart in a normal random access file. The index
file also contains an array of internal 1inks which comprise the sequential
access tree structure.

Two references used in this manual may be confusing if they are not understood.
References to an "indexed file" are made when speaking of the entire file
structure in general including the data file and one or index files. References
to an "index file" are used when specifically speaking of the portion of the
structure which contains only the symbolic keys and the tree links. Index files
may be primary or secondary and have the extension IDX.

All indexed sequential files must be created by the ISMBLD program prior to
access by any AlphaBasic program. There is no method for the creation of a new
indexed file within the AlphaBasic language since this would require a
prohibitive amount of seldom-used code for execution. The user may, however,
create indexed files in a system structure by using the feature that allows a
BASIC program to create and then execute a command file. This command file
could set up parameters and then call the ISMBLD program to perform the actual
creation of the files. ;

For compatibility with existing structures the data file must have an extension
of IDA and all index files must have an extension of IDX. There must be at

61



least one index file which is called the Primary index file. There may also be
additional index files called secondary index files which also link to the
primary data file. The primary index file must always be gpened in any program
in order to gain access to the data file. This is true even if you only intend
to access the data file through one of the secondary index files in the current
program. For information on file structures and operating the ISMBLD program
refer to the 1Sam System User's Guide.

SYMBOLIC AND RELATIVE KEYS

Indexed files are accessed by one of two specific types of keys. The relative
key is already familiar to us since it is the same type of key used to access
normal random files. A relative key when used with an indexed file is used only
to access a specific record in a data file. The relative key must be a specific
floating point variable which is specified in the OPEN Statement. The symbolic
key is new to us and is used only with indexed files. Symbolic keys are ASCII
strings of variable lengths and are used to access the index file (primary or
secondary). Symbolic keys are specified in the ISAM Statements when accessing

record in the data file. The concept of symbolic verses relative keys and their
different uses is an important one and misuse of them will cause the ISAM system
to malfunction in a number of ways. Symbolic keys are used with the ISAM

THE ISAM STATEMENT

Indexed files are accessed by a special statement in AlphaBasic called the ISAM
statement. This statement has the general form:

ISAM #<file>, <code>, <symbolic-key>

require the use of one (this simplifies syntax checking and execution coding) .
A dummy string variable may be used if desired. Briefly, the following codes
are used by the ISAM statement:

- Find a record by symbolic key

- Find the next sequential record in file

~ Add a symbolic key to an index file

Delete a symbolic key from an index file

- Locate next free data record in data file

~ Delete a record from data file and return to free list

[ NS P Ny
|

An error will result if an ISAM statement is executed with the value of <code?
not equal to one of the above valid numbers. The code may be any legal numeric

62

£



expression which is resolved at runtime.

OPENING AN INDEXED FILE

Ag with other types of files, an indexed file must be opened with a specific
file number prior to any references to the file by other statements. The OPEN

OPEN #<file>, <filename>, INDEXED, {record-size>, {relative-key>

The filename must refer to the name given to the index file during the ISMBLD
creation. If this is a call to open a secondary index file the user must have
already previously opened the corresponding primary index file on another file
number So that the data file may be accessed,

As an example, assume that an jndexed file structure consists of the primary
index and data files named MASTER.IDX and MASTER.IDA respectively. The
structure also has secondary index files named ADRESS.IDX and PAYROL.IDX which
access the MASTER.IDA file in different sequences. If it is desired to process
the file structure via the sequence used by the ADRESS.IDX index file the
following two statements would be required:

OPEN #1, "MASTER", INDEXED, RECSIZ, RELKEY
OPEN #2, "ADRESS", INDEXED, RECSIZ, RELKEY

Note that the record size expression (RECSIZ) and the relative key variable
(RELKEY) are identical in both statements. This is important since they both
refer to the same data file (MASTER.IDA) . ISAM statements may then be made -
referring to either index file (#1 or #2) but all READ and WRITE statements must
be made to the data file which is associated with the primary index file (#1).
In other words, READ and WRITE statements must not be made to file #2.

ISAM STATEMENTS

There are six functions which are performed by the ISAM statement with the codes
1-6 as listed previously. They will be explained in more detail in this
section. In the following descriptions there are codes which either require a
relative key as input or return a relative key to be used when accessing the
data record. 1In all cases this relative key will be retuned in the varisble
specified in the OPEN statement for the index file being accessed by the ISAM
statement. This then leaves the System properly set up for an immediate access
to the corresponding data record via a READ or WRITE statement.

Code 1 - the specified index file is searched for the key which matches the
symbolic key in the statement. If a match is found the associated relative key
will be delivered back for access to the data file. If the key is not found an
error code 33 will be returned (see section on error processing).

Code 2 - the specified index file is accessed and the next sequential key is
located. The corresponding relative key is returned in preparation for a READ
or WRITE to the data file. If this is the first access to the file following
the OPEN statement, the first sequential key will be located. If this statement

63



follows a previous coge 1 statement, the next Sequential key following the cede
1 key w@ll be located. If there ar€ no more keys in the index file and : T

relative key.

Code 3 - the specified symbolic key is added to the index file along with the
relative key which must be in the corresponding variable specified in the OPEN
statement. Thig relative key will normally be already set Up by a prior code 5

Code 4 - the specified symbolic key is located in the index file and deleted
from it. The corresponding data record relative key is returned so that the
data record may then be deleted and returned to the free list by using a code 6
ISAM statement. TIf the symbolic key is not located in the index file a record
not found error will pe returned. '

Code 6 - the data record specified by the relative key is returned to the free
list for reuse by a code 5 call. The index file is not modified and the
symbolic key in the statement is ignored. This call must be made only to the
Primary index file number .,

READ AND WRITE STATEMENTS

record itself. These READ and WRITE statements follow the same format used when
accessing a normal randem access data file in AlphaBasic., The relative key
associated with the Primary file (as specified in the OPEN Statement) must
contain a valid relative key for the operation or an error will result. READ

CLOSING AN INDEXED FILE

In order to insure that all data records have been rewritten to the data file
and that all links in the index file have been properly updated and rewritten to
the disk it is imperative that all index files (Primary and Secondary) be closed



using the normal CLOSE statement and referencing the correct file number.
Failure to do so may result in the link structure being sacrificed to the god
TRON (god of electrons and integrated circuits). '

CREATING AN INDEXED FILE

The steps used in the initial creation of an indexed file will be traced here.
Initially, the structure must be created using the ISMBLD program. Refer to the
ISAM System User's Guide for details on this procedure. Any secondary index
files must also be created by the ISMBLD program. The program to add the data
items will then open all index files associated with the structure.

For each new data record to be added, the following steps are performed. The
next free data record is retrieved (ISAM code 5) and the data record is written
into it with a WRITE statement. One symbolic key is then added to each of the
index files using ISAM code 3 statements. All keys will therefore link to the
same data record.

After all data records have been written to the file, all files are closed.

READING AN INDEXED FILE SEQUENTIALLY

To read an indexed file in the sequence of the symbolic keys the file is first
opened by the program. If it is desired to read ‘in the sequence of a secondary
file both the primary and secondary files must be opened.

Each record is retrieved by executing first an ISAM code 2 statement followed by
a READ statement. Remember that the READ statement must be to the primary file
even though a secondary index file is being used for the sequential accesses.
After each ISAM code 2 statement the user should check for an end-of-file
condition using the ERF(X) function to determine when no more data is left.
Refer to the section on error processing.

Close all files.

READING AN INDEXED FILE RANDOMLY BY KEY

To read a file randomly by symbolic keys the files are opened as above for
sequential access. As many secondary index files may be opened simultaneously
as will be required for the random mode processing.

Each data record is located with an ISAM code 1 statement giving the symbolic
key and the file number of the index file to which the symbolic key pertains.
Acheck should be made for a record not found error at this point indicating that
the symbolic key was not located in the specified index file. Assuming the key
1s valid a READ statement should be made to the primary file to get the correct
data record. This operation may be performed for each data record to be read.

Close all files.

65



UPDATING DATA RECORDS

Data records may be updated by locating the data record via either method above
and then updating the data buffer with the new data desired. This is followed
by a WRITE statement to rewrite the data record. The WRITE statement must be
made to the primary file. The index files are not altered in this operation.

Note that the above method should only be used to alter data that is not a
direct part of any symbolic key. To change a symbolic key you must delete the
key in the correct index file and then add the new key with another ISAM
statement. The data record need not be deleted and recreated during this
operation unless necessary for complete new data.

DELETING A DATA RECORD

The deletion of a data record in an indexed file structure involves not only the
deleting of the data record itself but also the deleting of all symbolic keys
associated with that data record. ' ‘All index files must be open for this
operation. The data record is first located by one of the symbolic keys (via
ISAM code 1} and then the data record is read into the buffer with a READ
statement to the primary file. FEach symbolic key must then be extracted from
the data record and used to delete each key from its associated index file with
successive ISAM code 4 statements. The data record itself is then deleted and
returned to the free list with an ISAM code 6 statement.

NOTE: A good check on the structure would be to store the relative key in
another variable and then compare the relative keys returned by each ISAM code 4
statement to insure that the symbolic keys all did indeed link to the correct
data record. You should also check each ISAM statement for any possible error
that might otherwise go unnoticed.

ERROR PROCESSING

Every ISAM statement executed may potentially result in some form of error.
Errors will fall into one of two categories: hard or soft. Hard errors are .
defined as errors which are returned to the ISAM processor from the monitor file
service system indicating some invalid disk operation. Soft errors are those
which occur within the ISAM processor indicating an error or condition peculiar
to ISAM files only.

AlphaBasic handles these two types of errors in different ways. Hard errors
will cause the standard BASIC error processor to be invoked resulting in either
a meSsade and program abort or an error trap if ON ERROR GOTO is in effect.
These errors may be detected with the normal error processing defined in the
section dealing with the ON ERROR GOTO statement.

Soft errors will never result in an error message or error trap and it is
therefore up to the programmer to test for these error conditions after every
ISAM statement. This is done by using the ERF(X) file error function where X is
the file number used in the ISAM statement. The ERF function operates in a
similar fashion to the EOF (X) function. If the ERF function returns a zero the
Preceding ISAM operation was successful. If the value returned is not zero then

66

'S



an error or abnormal condition was detected and proper corrective action should
be taken in the program prior to the next access to the file.

Current soft error codes in effect are:

- 32
33
34
35
36
37
38

ey

illegal ISAM statement code

record not found in index file search

duplicate key found in index file during attempted key addition
link structure is emashed and must be recreated

index file is full

data file is full (free list is empty)

end of file during sequential key read

67



CHAINING TO OTHER PROGRAMS AND SYSTEMS

AlphaBasic supports the CHAIN statement which terminates execution of the
current program and initiates the execution of a new program or system function,
The new program to be executed must be named in the CHAIN statement itself and
may be a full file specification if desired. The program named in the statement
may be another AlphaBasic program (compiled only) or it may be a system command
or command file name. This allows a program to execute a command file and
invoke system commands if required.

CHAINING TO ANOTHER ALPHABASIC PROGRAM

The default extension of the file specification in the CHAIN statement is RUN
which names a new AlphaBasic program to be executed. If the extension of the
evaluated file specification iz indeed RON (either explicitly or by default) the
new program is loaded into memory and executed. All variables in the new
program are first cleared to zero prior to execution. The program must be
canpiled and must be in the current user area on disk unless an explicit area is
named in the file spec. The program may also optionally be resident in user or
system memory if desired. Some examples of legal statements are:

CHAIN "PAYROL"
CHAIN "PAYROL.RUN"
CHAIN "DSK1:PAYROL[101,13]"

P

Due to the fact that programs are compiled and not interpreted there is no means
for executing a program at any entry point other than its physical beginning,
There is also no internal method for passing parameters between programs
(sometimes referred to as "common" area) but this can be easily accamplished in
a number of ways by making use of the XCALL statement ang creating a common area
within an external subroutine, A parameter could also be passed to the next
program using this method which is then used in a computed GOTO statement to
effectively begin execution at one of several points in the new program based on
the value passed in the parameter.

CHAINING TO SYSTEM FUNCTIONS

It is sometimes desirable to transfer execution to a system function or a
command file from a BASIC program. If the name of the file in the CHAIN
statement does not have the RUN extension it is assumed to be a system command
function. In this case the AlphaBasic runtime package will create a dummy
command file at the top of the current user partition and then transfer control
to the monitor command processor. The monitor will then interpret this dummy
command file as a direct command and will continue execution at that point.
Note that the dummy command file created by the runtime package is merely the
one-line name specified in the CHAIN statement and not the command file itself
which may be the target function desired. Some valid examples are:

CHAIN "SYSTAT.PRG[1,4]"

CHAIN "TEST1.MD"
CHAIN "DSKO :MUMBLE.CMD{2,2] "

68



Note that if the account number is not specified the action taken will be the
Same as if the command was entered directly from the keyboard. In other words,
programs and command files will normally be searched for in the user area only
due to the fact that the extension had to entered explicitly. Note also that
the system function will be executed as a mainline function and not as a

subroutine to the runtime System. This means that if you wish to automatically
return to some AlphaBasic program you will have to execute a command file whose

final command is a RUN command to begin the execution of said AlphaBasic
program. Confused?? Me too!! Good luck.

69



July 1979
DAM—-00100-44

ADDENDUM TO THE ALPHABASIC USER'S MANUAL

1.0 INTRODUCTION

~The purpose of this document is to provide additional information for the

BASIC programmer until such time as we can issue a new AlphaPASIC user's
manual (part number UWM-0N100-01). For more information on using the
AlphaBASIC system, turn to the "AlphaBASIC User's Manual."

1.1 Contents

The next few sections discuss new AlphaBASIC features that are not discussed
in the current AlphaRASIC manual. Section 10.0 lists all messages displayed
by the AlphaBASIC system, and Section 11.0 lists all reserved keywords used

by AlphaBASIC,

2.0 EDITING MASKS

The section in the current BASIC manual that discusses formatted output
describes the use of the PRINT USING and USING statements which allow you to
format output into specific character positions by use of editing masks.

In addition to the masks mentioned, there exists one type of mask that vyou
can use to generate a number with leading zeros. This mask takes the form

of one standard numeric mask character, #, followed by a series of Zs. The
total size of the output string will be the number of Zs plus the one #.

For example:
PRINT 123 USING "#z2zz77"
yields:

000123

3.0 FILERASE

During normal operation, the first record in a random file is referred to as
record number zero (i.e., you set the record number variable to zero to
access the first record in the file). 1In some applications it is desirable
to have this first record referred to by some number other than zero. This
is often done to allow you to use zero to flag some special condition, such

(July 1979)



ADDENDUM TO THE ALPHABASIC USER'S MANUAL Page 2

as a deleted record. The FILEBASE command allows you to set the number used
to refer to the first record to any value. For example:

FILFBASE 1

tells BASIC that the first record in the file is record number ohe, not
record number zero. You may use any numeric argument with FILEBASE,

Note that FILEBASE does not associate its value with a file, hut is only in
effect in the program where it is executed. 1If one program uses a FILERASE
command when referencing a file, all other programs which reference that
file should also use a FILEBASE command.

4.0 EXTENDED TAB FUNCTIONS

Contrary to the statement in the AlphaBASIC manual, the home position of the
cursor (the upper left-hand corner) is 1,1 NOT 0,0.

In addition to the standard TAB(-1l,n) functions listed in the manual, the
following are also available:

Code Function
17 Delete Character
18 Insert Character
15 Read Cursor Address
20 Read Character at Current Cursor Address
21 Start Blinking Field
22 End Blinking Field
23 Start Line Drawing Mode (enable alternate character set)
24 End Line Drawing Mode (disable alternate character set)
25 Set Horizontal Position
26 Set Vertical Position
27 Set Terminal Attributes

Not all terminal drivers have all of the functions above simply bhecause all

terminals are not able to perform all of these functions. If your terminal
has additional features, Alpha Micro recommends starting at 64 (decimal)
when you assign function codes in your terminal driver.

5.0 MAP STATEMENTS

As of BASIC version 4.0, all MAP statements must appear at the front of a
program before any executable code.

(July 1979)



ADDENDUM TO THE ALPHABASIC USER'S MANUAL ‘ Page 3

6.0 LIBRARY SEARCHING

Whenever a program (called via RUN or CHAIN) or a subroutine (called via

XCALL) is requested, BASIC follows a specific pattern in looking for the
requested module. If you specify a PPN, then BASIC uses the currer® default

device and the specified PPN. If you specify no PPN, the search sequence is
as follows:

pefault disk:[User P,PN]
Default disk:([User P,0]
DSKO: [7,6]

Note that earlier versions of BASIC (pre—4.2) used a different search
algorithm that was in reverse of the one outlined above.

7.0 AUTOMATIC SUBROUTINE LOADING

When a BASIC program calls a subroutine wvia an XCALL statement, BASIC
attempts to locate the subroutine in user or system memory. If it is unable
to do so, it attempts to load the subroutine off the disk, following the
search pattern outlined above. If a BASIC fetches a subroutine from disk,
BASIC loads it into memory only for the duration of its execution. Once the
subroutine has completed its execution, it is removed from memory.
Therefore, if a subroutine is to be called a large number of times, it is
wise to load it into memory to avoid the overhead of fetching the subroutine

from disk.

8.0 ADDITIONAL ERROR MESSAGES

In addition to the error codes defined on page 56 of the AlphaBASIC manual,
two more error codes exist. We give a complete list of all BRASIC messages

in Section 9.0,

32 Invalid filename
33 Stack overflow

2.0 DISK COMPILER PROGRAM (COMPIL)

To enable you to compile programs that are too large to fit into memory, we
provide a disk-based compiler (COMPIL). COMPIL is a two-pass compiler that
gains memory space by omitting the interactive features of BASIC. COMPIL
produces .RUN modules that are completely compatible with those produced by
the interactive system,

(July 1979)



ADDENDUM TO THE ALPHABASIC USER'S MANUAL ~ Page 4

9.1 COMPIL Operation
To use COMPIL, enter:

+COMPIL filespec{/switches} Q

where filespec selects the .,BAS file you want to compile, and {/switches}
select one or both of the optional COMPIL options. COMPIL allows the
compilation of source files located on any device or in any account. COMPIL
always places the resultant .RUN module in the account and device you are
currently legged into (for BASIC versions 4,2 and later). BASIC does not
support wildcarded filespecs.

9.1.1 Operation Switches - COMPIL allows the use of two switches, /0 and
/T. The /O switch is the same as the /O switch in the interactive compiler.
That is, it tells COMPIL to omit line number references from the compiled
code. This reduces the total object code size, but it prevents COMPIL error
messages from reporting the line numbers where errors occurred.

The /T switch is primarily designed for debugging purposes. If you specify
the /T switch, as COMPIL scans each source line of your program it displays
that line on your terminal. If a problem occurs during the compilation, you
can use the /T switch to determine the 1line in which the problem is
occurring. You may also use this switch to gauge the compilation speed of
various statements.

9.2 Compiler Messages

COMPIL reports a number of statistics on your terminal as it compiles. A
typical compilation might look something like this:

~COMPIL ACMSLS

Phase 1 — Initial work memory is 2310 bytes
Phase 2 — Ad]usE oD]ecE tile and process errors
Illegal MAP level - 350 MAP FILL'7,S,2
Syntax error — 980 SLSMTD = SLSMTD:SSLAMT
Memory usaqe:

Total work space - 4712 bytes

Label symbol tree - 322 bytes
Variable symbol tree — 1186 bytes

Data statement pool - 0 bytes
Variable indexing area - 274 bytes

Compiler work stack - 140 bytes

Excess available memory — 11918 bytes

Note that any error messages are reported during pass two, and that the
source line containing the error is typed on your terminal. The "Excess
available memory" line is useful for letting you know how close you are to
running out of memory. If you do run out of memory during a compilation,

(July 1979)



ADDENDUM TO THE ALPHABASIC USER'S MANUAL Page 5

you see the message "[Out of memory - compilation abortedi", and COMPIL
‘returns your terminal to AMOS command level.

9.3 Line Numbers

Because AlphaBASIC allows the use of labels, and because COMPIL assumes that
you are using one of the text editors (VUE or EDIT) to maintain your source
code, line numbers are optional in source code given to COMPIL. By omitting
line numbers, and with judicious use of indentation, you can give source
code a much more structured look than is normally possible in BASIC.

9.4 Continuation Lines

COMPIL allows the use of continuation lines within the source program. This
is especially useful for giving source code a structured appearance.
Specify a continuation line by making an ampersand (&) the last character on
that line. For example:

10 IF (X < 12.2) OR (B > 0) THEN &
= X/167.2 &
ELSE &
J =B
20 Q = 1252

The maximum size of any line, including any continuation 1lines, is 500
characters.

If a program with continuation lines is loaded into the interactive
compiler, the lines are concatenated into one line. Therefore, loading and
saving a program with continuation 1lines under the interactive compiler
(BASIC) results in the elimination of the continuation lines.

10.0 MESSAGFS QUTPUT BY THE ALPHABASIC SYSTEM

Below is a complete list of all messages output by the AlphaBASIC system
{i.e., BASIC, RUN, and COMPIL), along with a brief explanantion of each
message.

Bitmap kaput
Your program attempted & file operation (OPEN, ALLOCATE, etc.) on a
device with a bad bitmap.

Break at line n
The program reached the breakp01nt that was set at line n.

COMPILE
BASIC is telling you that it is compiling your program.

(July 1979)



ADDENDUM TO THE ALPHABASIC USER'S MANUAL Page 6

Can't continue
You have attempted to continue a program which is not stopped at a

breakpoint, or which has reached a point where it can go no further
(e.g., 1t has reached an END statement).

Cannot find xxxxxx
The program xxxxxx was not found,

Compile time was X.x seconds
BASIC is telling you how long (in elapsed time, not compute time) it

took to compile your program.

DELETE what?
You have specified a DELETE command without specifying what line(s)
are to be deleted,

Device does not exist .
The device you specified in a file operation (OPEN, LOOKUP, etc.)
does not exist.

?Device driver must be loaded into user or system memory
If you are accessing a non-DSK device, the appropriate device driver

must be loaded into user or system memory.

Device error
An error has occurred on the referenced device.

Device full
The specified device has run out of room during a WRITE, CLOSE, or
ALLOCATE operation. Remember that an ALLOCATE requires contiguous
disk space, so that a Device full error may occur when there are
still a number of non-contiguous blocks available.

Device in use
The specified device is currently assigned to another user.

Device not ready
The specified device is not ready for use.

Disk not mounted ,
The specified disk has not been mounted. Mount it wvia the MOUNT
monitor command or via the XMOUNT subroutine.

Divide by zero
Your program attempted to perform a division by zero,

Puplicate label
Your program has defined the same label name more than once.

*** End of Program **
You have reached the end of the program during single~stepping.

{(July 1979)



ADDENDUM TO THE ALPHABASIC USER'S MANUAL Page 7

Enter <CR> to continue:
You have reached a STOP statement in your program. You may continue
from the STOP statement via a carriage-return, or may abort the run
via a Control-~C,

File already exists
Your program tried to create a file which already exists.

File already open :
You have attempted to open a file that is already open on the same

file number.

File not found
BASIC was unable to locate the specified file.

File spec error '
The file specification you gave in a file operation (OPEN, LOOKUP,
etc.) is in error. All file specifications must conform to the
system standard (i.e. devn:file.ext[p,pnl).

File type mismatch
Your program tried to perform a sequential operation on a random

file or vice-versa.

Floating point overflow
A floating point overflow occurred during a calculation.

IO to unopened file
Your program tried to perform input or output to a file that is not

open.

Illegal GOTO or GOSUB :
The format of the GOTQ or GOSUB statement is invalid.

Tllegal NEXT variable
The variable used in the NEXT statement is rot valid {e.qg., not

floating point),

Illegal PRINT USING format
The edit format used in a PRINT USING statement is invalid.

Illegal SCALE argument
The argument given in a SCALE statement is invalid (the argument

must range hetween ~30 and +30).

Illegal STRSIZ argument
The argument given in a STRSIZ statement is invalid.

Illegal TAR format
Your program has incorrectly specified a TAB function,

Illegal expression
The specified expression is not valid.

(July 1979)



ADDENDUM TO THE ALPHABASIC USER'S MANUAL " Page 8

Illegal function value
‘The specified function value 1is not wvalid for the particular

function.

Illegal line number
The specified line number 1is invalid (e.g., not between 1 and
65534) .

Illegal or undefined variable in overlay ‘
The variable specified 1in a MAP statement overlay (via @) has not
been previously defined, or is not a mapped variable.

Illegal record number
The relative record number specified in a random file processing
statement (i.e., READ or WRITE) is either less than the current
FILEBASE or outside of the file. :

Illegal size for variable type
The specified variable size is not valid for the particular variable
type. Floating point variables must be size 6, and binary variables

must have size 1-5.

Illegal subroutine name
The name specified as a subroutine is not valid.

Illegal subscript
The subscript expression is not valid,

Illegal type code
The variable type code specified in a MAP statement Is not one of
the valid types.

Illegal user code
The specified PPN was not found on the specified device, or is not

in a valid format.

Insufficient memory to load program xxxxxx
The RUN program did not find enough free memory to be able to load
the specified program.

Invalid filename
The specified filename was not a legal filename.

[Invalid syntax code]
An internal error has occurred in BASIC. Please notify Alpha Micro
of this error. Provide an example of what caused it.

Line number must be from 1-65534
The line number entered was not in the range of legal line numbers.

Line ¥ not found
The specified 1line was not: found for a DELETE, LIST, etc.,

operation.

(July 1979)



ADDENDUM TO THE ALPHABASIC USER'S MANUAL Page 9

NEXT without FOR . )
A NEXT statment was encountered without a matching FOR statement.

No breakpoints set’ _ ] ]
BASIC is telling you that there are currently no breakpoints set in

your program.

No source program in text buffer
You tried to compile when there was no program in memory.

Operator interrupt
You typed a Control-C to interrupt program execution.

Out of data
A READ statement was encountered after the data in all DATA

statements had been used.

Out of memory .
BASIC 1is telling you that it has run out of memory in which to

execute your program.

Out of memory ~ Compilation aborted
COMPIL is telling you that it does not have enough free memory to

finish compiling your program,

Program name:
You tried to SAVE or LOAD a program without providing a fileéname.
Enter the filename at this point,

Protection violation
Your program tried to write into another account where you do not

have write priviliges.

RESUME without error
A RESUME statement was encountered, but no error has occurred,

RETURN without GOSUB
A RETURN statement was encountered, but no corresponding GOSUB has

been executed,

Record size overflow
Your program tried to read a file record into a variable larger than

the file record size.

Redimensioned array
You tried to redimension an array.

Runtime was x,.%x seconds
BASIC is telling you how long it took to run your program,

?Runtime package (RUN.PRG) not found
BASIC or COMPIL was unable to locate the runtime package, or did not
have sufficient memory in which to load it.

(July 1979).



ADDENDUM TO THE ALPHABASIC USER'S MANUAL ' Page 10

Stack overflow
BASIC's internal stack has overflowed. This is most often caused by

such operations as nesting GOSUBs too deep, or branching out of
FOR-NEXT loops.

Subroutine not found
The specified subroutine could not be found.

Subscript out of range
The specified subscript is outside the range specified in the DIM or

MAP statement for the subscripted variable.

Syntax error
The syntax of the specified line is invalid.

System commands are illegal within the source program _
BASIC system commands (LOAD, DELETE, LIST, etc.} are not valid
within a BASIC source program.

System error
A system error has occurred during the execution of the specified

line. System error 1is used as a catch-all error message for a
variety of unlikely occurrences.

Temporarily all arrays must be less than 32K
The array size you specified is larger than 32K bytes.

Undefined line number or label
The line number or label specified in a GOTO or GOSUB statement is

not defined within the program.

Write protected
Your program tried to write on a write-protected device.

Wrong number of subscripts :
The number of subscripts specified is not the same as the number

defined in the DIM or MAP statement for the subscripted variable,

(July 1979)



ADDENDUM TO THE ALPHABASIC USER'S MANUAL

11.0 RESERVED WORDS

Below is a list of the reserved words used by the BASIC compilers (BASIC and

COMPIL}. You MUST not use any of these reserved words as variable names

labels,

Reserved Word

ABS
ACS
ALLOCATE
AND
ASC
ASN
ATN
BREAK
BYE
BYTE
CALL
CHAIN
CHR
CHRS
CLOSE
COMPILE
CONT
Cos
DATA
DATE
DATN
DEF
DELETE
DIM
ELSE
END
EOF
EQV
ERF
ERR
ERROR
EXP
EXPAND
FACT
FILEBASE
FIX
FOR

GO
GOSUB
GOTO

IF
INDEXED
INPUT
INSTR
INT

(Tuly 1979)

Meaning

absolute value
arccosine
allocate file
logical AND
ASCII value
arcsine
arctangent

set breakpoint
exit to monitor

" memory byte

call subroutine
chain next program
character value
character value
close file
compile program
continue execution
cosine

data statement
system date
double arctangent
define function
delete lines
dimension

else

end of program
end of file
logical equivalence
file error

error status
error
exponentiation
expand mode on
factorial

file hase offset
fix

loop initiation
program Jjump

call subroutine
program jump
conditional test
indexed

input data

search string
integer

Page.liw

or



ADDENDUM TO THE ALPHABASIC USER'S MANUAL

10
ISAM
KILL
LCS
LEFT
LEFTS
LEN
LET
LINE
LIST
LOAD
LOG
LOG10
LOOKUP
MAP
MAX
MEM
MID
MIDS
MIN
NEW
NEXT
NOEXPAND
NOT
ON
OPEN
OR
OUTPUT
PRINT
RANDOM
RANDOMIZE
READ
REM
RESTORE
RESUME
RETURN
RIGHT
RIGHTS
RND
RUN
SAVE
SCALE
SGN
SIGNIFICANCE
SIN
SPACE
SPACES
SOR
STEP
STOP
STR
STRS
STRSIZ

{July 1979)

input/output

ISAM control

kill file

lower case string
left string

left string

length string
variable assignhment
line

list text

load program
natural logarithm
base 10 logarithm
lookup file

map variable
maximum value
memory size

mid string

mid string

minimm wvalue

new program

loop termination
expand mode off
logical complement
on {goto,gosub,error)
open file

legical OR

output

print on terminal/file
random

randomize RND function
read data

remark line

restore data

resume after error
subroutine exit
right string

right string

random number

run program

save program

set scale factor
sign

set significance
sine

spaces

spaces

square root

step

stop program
numeric to string conversion
numeric to string conversion
set string size

Page 12



ADDENDUM TO THE ALPHABASIC USER'S MANUAL

SuB
TAB
TAN
THEN
TIME
TO
ucs
USING
VAL
WORD
WRITE
XCALL
XOR

(July 1979)

sub (gosub)

tab

tangent

optional statement verb
system time

to

upper case string

using

string to numeric conversion
memory word

write file

external subroutine call
logical XOR

Page 13



