SOFTWARE MANUAL.

CNA/MN-00100-08

REV 8307

ALPHA PASCAL USER'S MANUAL

NOGTE: This printing of the manual contains the contents of
Change Page Packet #1 for the "AlphaPASCAL
(p55~-10000-103, which

User's Manual”,
Micro.

may be ordered separately from Alpha

First Printing:

1 August 1980
Second Printing:

20 Aprit 1981

‘Alpha Micro', 'AMOS®, ‘AlphaBASICY, 'AM-100°
TRiphaPASCALY, "AlphallSPY, and "AlphaSERY?
are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA QT4

This book reflects AlphaPASCAL Versions 2.0 and lLater.

©1981 ~ ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

Page 14

ALPHA PASCAL USER'S MANUAL Page 111

Table of Contents

CHAPTER 1 INTRODUCTION
1.1 ORGANIZATION OF THIS BOOK [.iccconcsnnsnosnsnse 12
1.2 PASCAL BIBLIOGRAPHY wtuuawsccsnsnananacanaanss . -3
1.3 GRAPHICS CONVENTIONS USED IN THIS BOOK 173
CHAPTER 2 GETTIMNG STARTED
2.7 WHAT IS PASCAL? ... avrecacuescnomsaasnanss saaana 271
2.7 SAMPLE PROGRAMncneeccssacencnonsonsannsan 23
2.% BRIEF DEMONSTRATION ..vceoascawnnusannaoas samana Lk
Z.3.1 Building a Pascal Program ceaeeecccseass pat
2.%.1.17 The VUE Text EJItor .eeees R
2.3.2 Compiling and Linking a
Pascal Program ..cesoessccnnocncascnnana . 2-7
2.%5.3% Running a Pascal Program ...eeescessses 2-8
PART T THE ALPHA PASCAL SYSTEM
CHAFTER 3 COMPATIBILITY AND CONVERSION
3.1 PREVIOUS VERSIONS OF ALPHA PASCAL w.vceennnnns LR
2.2 STANDARD PASCAL vomucamanmaaanns srmasenannEaaa ee L
5.3 MAKING PROGRAMS COMPATIBLE WITH
THE NEW ALPHA PASCAL i e BT
CHAPTER 4 OFERATING INSTRUCTIONS AND CHARACTERISTICS
.1 FILE AND MEMORY REQUIREMENTS (.vviuoesnsaseannas &3
24.7.7 File EXtensions ..secessaos . St
4,1.2 File Search Pattern .eveeeson cesensesas 4T3
4£:.7.3 Program Restriciions .eweeaesena wanaunnan bwh
.74 Memory REQUITEmentS ..ecoewsscscnnocosnn fydy
5.2 CREATING & PASCAL PROGRAM cv.vvcvnmosnonnnansan &9
4.% THE ALPHA PASCAL COMPILER L ueusvwannmsomonrmonn- LB
4£.3.17 The Diagnostic Display ..eececesnnass an L6
£.%.2 Compiler Options cesnevssea was e aa 4=7
4.%.2.7T The GOTO Options
($36+ and 36=) tiueocncnccnnsoe 47
b4.%3.2.2 The Include Option (8I) Lo
4.3,2.3 The List Options
(BL, 3L+ and L=} .i.ceienccnsa 48

2.4 The Page Option (FP)cuee-s 410}
5 he Quiet COptions
38+ and $0-) ... uneencanuens LN

ALPHA PASCAL USER'S MANUAL

Page iy
4.%5.2.56 The Range Check Options
(BR- and BR+} axamasane 4 11]
Gude "THE ALPHA PASCAL LINKER L. fusses oo nennnnnnn, b1
G.40.7T Linking 2 New PCF F1le wuvemeconnennon L7
bobo.2 Replacing a PCF File ...uevees.. cnean AN
4.6.7 Updating a JPCF FILle wevvuvennansonnnnn L=14
4d.b.4 Linking Assembly Language %uhroutines
(the /LINK 00ti0n) o.eseanesns T, we G185
4.4.5% Preventing Backtracing of .PCF Files
= (the /SMASH OpTion? o.vveeoewos smanaa we G416
4.5 THE ALPHA PASCAL RUN-TIME PACKAGE . ._....... wan A-1T
4.5.7 Library Version Checking ..vevreseen ena &=17
G.5.2 Interrupting & Fragram ...oue.eeesreonas 4=10Q
G.6 HELPFUL COMMAND FILES ©oe.vvococnnoas amesanenne Go2()
4.6.17 Compiling a Single File (PC.DOY ...v... b=203
4.6.2 Linking a Single File (PL.DOY w.veaocns 4~21
4.6.3 Lompiling and Linking
2 Single File (PCL.DOY L ..ovcoeocnonesa =2
4.46,4 Updating a Single Program
Module (PU.DOY o b2
4.6.5 Compiling and Updating a Single
PFrogram Module (PCU.DOY L...... R, o =22
PART Y% SUMMARY OF ALPHA PASCAL
CHAPTER 5 GENERAL TNFORMATION
5.1 BASIC STRUCTURE OF B PROGRAM 4o vcnoonansonss Gl
5.2 COMPOUND STATEMENTS (BEGIN AND EM&P csapsasosa n-3
3.5 COMMENTS wvwnmuoomuananan Gecamcesamaneserssa e n D g
5.4 LEGAL IDENTIFIERS L .vevosnonnsmans samrsntas A= B b
Seb.1 Reserved Words ..uesessvecavccoonnoanen 5-&
5.4.2 Standard Identifiers ..eveevoscnnossenen Sy
5.5 SCOPE OF TDBENTIFIERS L unvovonnanannonnoasasans h=7
5.6 NOTATION L. nensoscnnnn sedsEs e manEesEe an T e e w H-i
5.6.7 NUMBERS sanmnan s sman s s mean .. GG
5.46.2 STRINGS pmamemésesnansunaseansawas 211
CHAPTER 6 DECLARATIONS AND DEFINITIONS
6.7 PROGRAM DECLARATIONS L. .icvsceonenoun G esracumn . Rl
6.2 LABEL DECLARATIONS Lcuneoravcnnonoonmenans H=2
.3 LCONSTANT DEFINITIONS L .uvcomusnsnasonsnasss sen D
Sat TYPE DECLARATIONS ... csovnceooononsananan .n 54
5.5 VARIABLE DECLARATIONS ouinonvuwcvsnevna Gaessea e &5
b.6& FUNCTION AND PROCEDURE DE{LRRATIONS WWWWWWWWW . BB
.67 Functions tedmeareeanansecnna weee HTA
H.6.2 Procedures L.....e hEmemmamn s anr e L

H.6.5 Forward Declarations L.eevseswcsaas sasawn &=

ALPHA PASCAL USER'S MANUAL ' Page v

b6.6.4 Formal Parameters coscosesacsonsasssana G711
Habhah.t Value Paramelers cesveoansss R

G.6.4.2 Reference Paramelers .soooeas ee 612

6.7 EATERNAL DECLARATIONS .iscevcasnancomansnonsnman H=12

CHAPTER 7 DATA TYPES

7.1

bt
o

B

FRCIE R S [OOSR S
s

L LV I S PN R>—3g

DATA TYPES ..resnonsvnusanacnean .
INTEGER ..vvunaman smamemepsanwansassean.

REAL. cncanenrooscanns womanemseamecnacan

BOOLEAN svusvcnocaransasonssoosnsnsnsas

CHAR ceonvvamnemanancsannnannenns

User=Defined Scalalr ..ocvceesunssnnss .
User-Defined Subrange ccswsancassncnana
TURED DATA TYPES socnsnvnasnncoan
Packed Data TYDROS scecsnsnccannnaoso
ARRAY .wovancvwnnoans heem e s e m e s
7.2.2.17 Multi-dimensional Arrays
STRING scwvcveansncasnnnnsnaasena
TEXT ceconnnan emassasusscaaan e sn

"
i

§

]
#
i

i

£
"

]

1

i
proe]

z

3

e

7.2

§

o
ES

I

NN N N N e

)
o

®ann e

NN Y

&
=

#
o
%
#
s
a
#
“
i
JREY
]

E
E3

B e e
2

RCICINEIE N
k]

- O R B
o
FEES
_.g
1]

L]
s
a
L'l
k]
.
o
.
.
.
]
)
k]
s
.
s
.
y
2
.
1]
L]
2
L]
A
.
.
s
I 1
& &
B &
. s
4 3
-
g
i
U .
[

FILE wuwacsnnnoans emsaEmsseaBesasnaanm o =158
RECORD cowvncons emummamemnas s s e e s enas =16
7.2.7.1 Variant Parts cesecssansnnos waw =18
7.7.8 Pointer TyDe ccwescaonvascan s rameREn =19

§
@

CHAPTER & EXPRESSIONS

B.1

i

DPERATORS .occna hmmemEemamnses s E W
8.1.17 Operator Preced®nie sscsssessnnsanan .
8.1.2 Agsignment Opersltorn ecewesnonnss
R.1.2.1 Modifying Assignment
Operators ssencs chmEsssmEe s
B.1.3 Arithmetic Operators sesesassasaoa
£2.1.4 Relational Operalors seaewsssensscassens
8.1.5 lLogical 0perators seccosnanacassannanna
6 Set Operators seenrssnsssasss

u
o 08 0o
A

§

i

aaaaaa

}

j

8.1

,
b
s
.
.
.
0 ooo 0o e gza>m:msm
00 00~ o O O A B

8.2 CONSTANTS ..ceuos hsssavowsenasmans swswanwannana -
8.3 VARIABLES wawosemusecanmmassaeanensasre O
B.4 IF-THEN-ELSE EXPRESSIONS .cvcavanuwnnne cnenanns U7
8.5 CASE EXPRESSIONS svucanmnnnns seccamazannaseaean O

CHAPTER 9 STATEMENTS

ASSIGNMENT STATEMENTc.cn
PROCEDURE CALLS ..ucsnwasacnanana

EXIT cevwanncsnosussnannoannsnncvonssannnansa .o

9,1
9.2
9.3
Fob GOTO STATEMENT c.ovowsnassanan
2.5
Gab
9.7

i

i

i

i

NULL STATEMENT .ucvuscvsasssnnas
COMPOLINE STATEMENT oscrevnnnrns
CONDITIONAL STATEMENTS
9.7.1 IF-THEN ..

9.7.1.1 IF-THEN-ELSE ...

i

}

]

.

.

*

)

o

.

3
00000000
I NN S A

ALPHA PASCAL USER'S MANUAL Page wvi

Fa7u2 CASE~OF .uuuon... S amEamnesenanaene s o Q= hy
F.7.2.7 CASE-OF~ELSE smeREn e haesnneas Q7

F.8 REPETITIVE STATEMENTS \n i annonconcnnnnnne.. Y8
P.8.7 WHILE-DO A s s e mansn s e saanenens G
9.8.2 REPEAT=UNTIL [- 0.
Fo8.E FOR-DO L nnnen.. T h s memmentemmanG e e s Q=3
Fo? WITH=DO nimevonvrannnnnnn. fmem e st e R R s e e e . G100

CHARTER 10 INPUT/0UTPUYT FUNCTIONS AND FROCEDURES

1.1 BASIC FUNCTIONS AND PROCEDURES L ..ncvreannnas 101
10.1.7 The File Window seeeessoesssnnas. sres- 10-3
10.1.2 EOF (End~of-file Function) wws 103
10.1.3 EOLN (End-of-line FUNCEION) wewwwe... 10~4
10.7.4 GET and PUT fm B EmEsa e dmam e s e e s 10-5
10.7.46.7 GET wnivmanancocannnnocenaas 10=5

L T T10-4

10.1.4.3 Sample Program Using

GET and PUT .ovueveconnnnna 106
10.1.5 READ, READLIN, WRITE, and WRITELN 10-7
T0.1.5.7 READ ioeiurvenanen armmexann 107

10.1.5.2 READLN ... iivnnnaccnsnanae 10-8
10.7.5.3 WRITE wuvvunnorncnnnunnonan 10=0

T0.1.5.4 WRITELN ©ovecvnnnaons e aas 10-9
10.1.5.5 Formatting OUEPUT . unsawnn-s 10=-140
T0.1.6 PAGE oauvunen. ssesnasmsnssanana vemaan H-13
T0:1.7 RESET sevrnvococccones smassanavanan s T0=-13
100708 REWRITE . isvvmusvonnnannnscnons wnass 1013
0.7 SPECIAL FUNCTIONS AND PROCEDURES
FOR FILE I/0 suvucncucononconnnsscncanannsnss T0=-%4
10.2.17 Information on AMOS Files ...v.vw.... 10-14
10.2.7.1T Random Files .ueewwsa sasmaan TO-T5H
10.2.7.2 Sequential FIles .sovewsscnn 10~15
10.2.1.3 Logical Recordsoeeveere 10-16

10.2.7.4 Opening and
Setting Up Files suuvuannaa 10-15

10.2.2 CLOSE ..u..sas T 1 s T
10.2.3 CREATE tovvronrvornnncersnnnncnnnnees 10-18
T0.2.4 ERASE tiiniiniivancnnnuconsonnnnonsan 10-19
10 2.5 EXTENSION winvancnuwununnnaannn cwnneaa 10718

w2afi FILESTZE uuiieasnusncuannennanncnnss 10-20
15 27 FSPEC wiencuncernnccccascnnnnes “iaena 10~-21

22.8 GETFILE cmnanedseamemnnaanaan 10-22

2.9 JOBDEV mheceaea ey awan 1023
?uRE 10 JOBUSER 1024
102,11 LOOKUP 4 ae i innnnneonnorenssnnes wee HI-24
10.2.12 OPEN Wme ke e s e am e ke o 14-25
T0.2.793 OPENL wiunneuaunnconnnnasnmnnennnnns 1025
10.2.14 OPENO ..vnuan. smam s ausn e nean . arames 10-25
T0H.2.15 OPENR iuvwnnovwuonn sermsmavane. cansnea 10-26
T0.2.1T6 PFILE tontninnincnnanmnannonanan sesae 1026
10.2.17 RADSD L.nnununn. amcsmevanamanansa vana HI-24

T0.2.18 RENAME .. v ennnsanncacnannrcasanss 102-27

ALPHA PASCAL USER'S MANUAL ‘ Page vii

T0.2.1%9 SEEK secescarmnannsasnens snomas. vewss 1027

10,2.20 SETFILE ...ua . weeammseaama e 10=27

10.3 SAMPLE PROGRAM TO DEMONSTRATE FILE HANDLING . 1029
o 10,301 Sample RuUn wewsen ermEme e . 10-22
10.%.2 The Program ..eseseuses ewmen casaan 1031
10.%.% Program Organizatdon ...eeeensasscno= 10-328

10.3.3.1 The AMOS file NAMREC.INC .. 10-38
10.3.3.2 The AMOS file EMPREC.INC .. 10-3%
10.%.%,3 The AMOS file FIND.PAS 10-39

CHAPTER 11 MISCELLANEQUS FUNCTIONS AMD PROCEDURES

11,1 BASIC FUNCTIONS ANG PROCEDURES ...cvansnon=ns 111
T1.1.1 CHR t.icvasaanns armcacsesasusann s 111
11.1.2 KILCMD o oivvecan masnmanna meemE cnens 112
1T1.1.% MARK seesmsnensa ewewmensaransas -2
T1.7.4 NEW sasasmnaana vemsane amme eeo 1%
11.7.5 ORD iuuuosacnmesnvsmoncnsannnnnanasass 11735
1T1.1.6 PRED .oanws Smemesamcwsszesmonnevanyan . Ti-a
11.%.7 RELEASE ...cacivevannnsnnnannusnnsnns 115
11.1.8 SUCL caenencann amwsasssenseemnmaum oD 19-5

11.2 SPECIAL TERMINAL DISPLAY PROCEDURESn.- -4
11.2.1 CHARMODE ..oceaanannns memamasaamansn s -8
11.2.2 CRT iuviviunosonsansnnsencanasmuencnss -7

11.72.7.17 Cursor Positioning ce.wswe. 1177
11.2.72.2 Extended Screen

Digsplay Options c.eeeeans U R
st INCHARMODE covcosnaceanmuonunacscns wna T8
w2ef LINEMODE [.cuceceas covmsmanmmae e weew 11=0

CHAPTER 12 MATHEMATICAL FUNCTIONS
2.7 TRIGONOMETRIC FUNCTIONS ..ccecnsnusonacsna eeasas 171
12,77 CO8{X) s nenenencanns sewoEaam e oe 121
T2.7.2 SIN{X) scanenmrnanon famannnan pe s 171
12.17.3 TAM(X) L. uienwanana wem s womaunnEnenna 121
12,746 ARCLOS(X) snuvvnvooonmvosnsrennanans W 1272
12.7.5 ARCSINCAY v iseoonossanaensascsasnurns 122
12.7.6 ARCTANCE) L .. cevonsnannaansnnsrnennsn 12~2
12.7 HYPERBOLIC TRIGONOMETRIC FUNCTTONQ mmomEa 12=2
T2.2.7T COSH{X) sovsvnmnccnana wmmwam A e 12-2
12.2.2 SINH{X) aonnacne chamsmsoEsensessaany 12-2
12.2.% TANH(X) ..uivucwannna camsmmsan e cwes FED
12.7.4 ARCUOSHIX) nessescnsnnn wam A w R wann 123
12.2.5 ARCSINM(X) suwuwnenosusnanascncrnsens R
12.2.6 ARCTANH{X) ..uconsnvsunnsvanannucansas 127
12.% MISCELLANEGUS MATHEMATICAL FUNCTIONQ asensnen 1E™R
12.3.1 ABS(X)- temBaswwasam RS camman e n 12-%
12.3.2 EXP(X) L.uccanvwnoonnna meenacennon sewna 12m3R
12,.3.% EXPONENTIX)} cconevcnncanans daeaamae N A
12.3.4 FACTORIALIN? L.veansas A s sz e R E
17.3.5 LNIXY L .coicaoancnna hemmmmmn e 12-4
T7.%.6 LOGIX) tuieuemeonconncntonaasnnnannnon 12-4

{(Changed 30 April 1981)

ALPHA PASCAL USER®'S MANUAL Fage viii

TEL3.7 DEDUXY v ewe e femmenEsanae e weews 17=4
12,038 POWER(X,Y) ot e nemnccnonnennomn e . T2l
12.3.9 PWROFTEN(ND woowovanens e e
125,10 PUROGFTHOC(X) L uvsveeonnnes sra carnnae 128
T2.3.11 RANDOMIZE & in e s e nnnn wrsessnsannean HOD
12,312 RND tievnneennnmas “asemananassaesaennn 12-5
T2.%.1% ROUNDCKY v vvnnn e
12.3.16 SHIETOLY) vuueenennnns Ceeean Ceenan 12-6
T2.3.15 SAREY v unnvnee.n . awannae . 126
T2.3.18 SARTHY i nevenmeranes B
12.%.17 STROXY and STR{X,3,0) +vvean . 126
T2.3.718 TRUNCOND wemneuon T
12.4 SAMPLE PROGRAM TO PAD A MUMBER WITH LEADING
ZERDS cinanon camam e manan hemuneamean e a e 1a-&
CHARTER 13 STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES
13,7 STRING INTRINSICS cvwern. b memmeman m e n s wew 13-2
13.1.1 CONCAT B, meanmamwkonenons e 13-2
13T .E COPY i hienncconocauunancnsoonnennonnas 13-2
T3.1.3 DELETE L. enncouwn Gemsesomdcanssuacan . 133
T3.7.6 INSERT Luieveoosans creaaneaea camamaesa LA
T2.1.5 LCS seveonnann creemsmmERRacERLae wa e ww T34
13.7.6 LENMGTHc.. amsdsotmessmaaRn Ay TR
I T P T mamsnaannum semananes 1%~
T3.71.8 STRIP ...oveea. feasaue s T L .
T3.1.9 ULS tuvsvnnnsnanannoena charmsaenesana A
[] T3.7.%10 VAL weevvvncsosansanoanacsunnnnnnss e T3-A3
13,2 CHARACTER ARRAY INSTRINSICS wuevenvcennnannenn 135=7
T35.2.7 FILLCHAR . cevconanas aensassosamn oo . 137
13.2.2 MOVELEFT and MOVERIGHT suwwonmerannae 157
13.2.% SCAN ... vunnncnn Wedsssanena smsesanse 127G
PARY 111 ADVANCED PROGRAMMING ON THE ALPHA PASCAL SYSTEM
CHAPTER 14 SYSRTEMS FUNCTIONS AMD PROCEDURES
14,1 LOCATION snan. wemeranm e hemonmamae ammmee s 14-1
T4.2 SIZEOF (v enas semucanmn cmeammsmEmET s e AT s 14-1
14,35 MEMAVATL cesamannewen T A
Té.d MATHPROG ..vvevocvwowns s kmmememEmen e wommme e Vo~¢
Ta4.5 SPOOL 4 uuvvuvevonmanannsonsannsses shusaenanas R
T4,.5.7T Suitches .onuwesonenconnnanunnns sasmes 1hHmE
14.5.2 Error codes hwswsoemsesmnanansaa 144
14.5.3 Function definition .c..eecessossanene 1h=h
T4.5.4 The SPOCOL subroutine hedemeao s Th~d
T4.6 XLOCK AND GETLOCKS L nnevonaane wemawsaneaancas Th=5h
14.6.17 The XLOCK subrouting m.wees. amascanee A
T4,6.2 Setting a2 Llock .evean Heamomvamaeae 14-7
T4.6.3 Setting a2 lock {and waiting
unt il 3t ds available) o eonncocaona 14-7

{Changed 30 april 1981)

ALPHA PASCAL USER'S MANUAL ' Page 1x

14.6.4 Clearing 2 Lock ecacevesncs cnecomnnene 1H8
14.,6.5 The GETLOCKS subroutine wmmaees . 14~

14,7 AMOUNT emmwaaama semmsenssnsesnawe cese e 1&~9
W T&.7.1 Error €0deS sesussnasesmenssscassnsen 14~10
14,7.2 Unmounting & 9iSK .eernecasnsencescces 14710
14.7.3% Error COOBS% sancesnwuansonssvssoaans ee- V-0
14,7.%.1T MOUNTED .nenvwanane ecsacanena T&=10
14.7. 5.2 UNMOUNTEDinsuunncns cen 1410
14,7.%.%5 DEYNOTFOUND wownvennovecass 1410
14.7.3.4 BADHASH ...covwnonanns emenae T&=10
. 14,7.3,5 MOVOLID ...vuwancnconsannnca 14-10
T4.8 TIME ..ccacsancnncan nsmseansmsaw ensascnessness 14T
14,9 TOD sevrccnnmecenes wsammmEEssenamnAasAAe e b1
14,10 ERRCR HANDLING PROCEDURES AND VARTABLES- 1412
14.10,1 Including ERTLINC .sevsveoe weaasanana T4=12
14.10.7 ERRORTRAF .. .sencnocansnns censassawe T4~12
14,10.3 XERRORTRAP .ucnsconmscanmnannns we o oa Th-15
14.10.4 ERROR wnvoa- we s s enonnanan fesansoasss 14—%E

CHAPTER 15 ASSEMBLY LANGUAGE SUBROUTINES

15,7 CALLING ASSEMBLY LANGUAGE SUBROUTINES ...un.s 151
15,2 ARGUMENT PASSTING CONVENTIONS (.ceecncconn wwan 15-2
1%.2.1 Argument Passing ..cesnacsena peasaana 19m3
15.2.2 Data Formals .cecocnmnenanssnsa ehma e 15t
15.2.2.7T CHAR .vovconunmuannoa fae e 154

15.72.72.2 INTEGEReuwsans weansann 1974

15.2.2.%3 BOOLEAN wevvsanuwnnmoneaasnns 1274

15.7.2.4 Subranges and

Scalar TYDES .anasosnnsns ws 154

150275 REBL Lacamonencansunsannsnas TE-b

15.2.2.6 STRING .awvuws wensosanne e 1O-4

15.2.7.7 POINLErS wavnsans mmesaman s 15=&

15.2.2.8 5€1S wsseassasa mEassaansm e 15=4

15.2.2.9 Arrays veoceas wrwsnmnsumaacs 1973

15.2.72.710 Records w.ecscmsancsonnonssan 15=5

15.2.2.7T7T Files necnvomnnnesns srwwana 155

15.2.% Error EXit cuesvenencaena . wan 155

15.% CODE RESIDENLY . oiwcvsonamnsnnonsesnss Gaanme s 15~5
1%.3.1 Routine PLINKed with /LINKn ces 155
15.%.2 Routines PLINKed without /LINK 15-6

15.4 OBTAINING MEMORY FOR DATA AREAS- cas e 154
15,5 RESTRICTIONS . .cevavnunnanaans wamrummemesaans 15=6

CHAPTER 16 WRITING AND MODIFYING AN EXTERNAL LIBRARY

T4.1T STBHBLIB ..uvecarosncannnen Weesnesanasenus e woa 16-2
16,2 WRITING LLIBRARY FILES svannass smssssanssmmenT 14-3
16,3 MODIFYING STOLIB ..ncvvsnacannas e nan wna 1H—4

16.4 VERSION CHECKING ..cevcassancnnasosas erasanas 16-5

{(Changed %0 April 1981

ALPHA PASCAL USER'S MANUAL

RPage x
PART IV APBENDICES
APPENDIX & QUECK REFERENCE TO ALPHA PASCAL
BT PROGRAM STRUCTURFE wen e ssarannansas O™
A.2 DECLARATIONS AND DF??N?T?ONQ waanmssnannsansanae ATE
A.2.% Label Declaralions uuweveeoesseneonnn.. A=
A.2.2 Constant Definitions cemeasneanannnnnnn OGP
AeZ.B Type Definitions ouveee .o oo nsnnnn, A=D
BaZ.b Variable Declarations voweeoesvensesas an AT
A.2.5 Procedure Declaralions wumeesesecoonna. A7
A6 Function Declarations smmma e A
ALE DATA TYPES tvevmvnononconnnonnns aEsae s . snane A=k
AaBa® Simple DATA TYDPES L ...veweecnnorereannes B=d
5.3.1.1 Standard Data TYD®S wuwenoens . A6
£.5.7.2 Scalar Data TYPES .enuee. I
A.3.2 Structured Dats TYPES weweawasanan wevss A4
AR 2.1 Btring Le... chbenmnanas O
A3.2.2 APravs seasecenes saanamana e A5
A.23.2.3 SBTS f.awens wmaana seannassnsns ATH
AsB.2.4 File TYPE weveenonans amsaeroee A5
A.3.2.5 Record TYPE L uuesvcconcnnenn v. A-E
A.3.2.6 Pointer Data TYRES wowvecones . Pb
A.d EXPRESSTIONS tnvcvvevscnnncnnea wessnssmannnssaaes 476
Bub T ODEraltors wuee-cenorencaansnsnnennessns A=k
Auda1.T AssSignment L ..eeeasewnasnsnens A"
Avt.1.1.1 The Modifying
Asstanment
Dperators ...seee-s A7
Auh.1.2 Arithmetic Operators:sae. A=7
8.4.7.3 Relational Dperaltors ..o.eeresos BT
Bubt b Logical Operators @o.eevensase A=7
Alk.1.5 St Operators .owsenconscancas A™7
ALé.2 Constanis w.veows cwssmmaas e meserassee AR
B.4.% Variables hemEevssssana e wnvwa B8
A.4.4 Function Calls ... semsecsrrnanan wenee A8
A.4.5 TF-THEN-FELSE and CASE-0F Constructs
N EXPressions wheeesavasnranaan A~G
A% STATEMENTS L. ianwonen srnanesesassscnresannnnas BT
A.5.1T Simple Statementsececucesannses ws o AP
A.5.1.1 Assigrment Statement ...ew.ees A£G
A.5.1.2 Procedure Call oo uienanevonnae, A=9
ALS.T.3 GOTO Statementw.. sesmasasn B0
A.5.7.4 Null Statement oo voconenass wo AT
A.5.2 Structured STatements weeeoweoneases veo A=10
A.5.2.7 Compound Statements eenea A=10
ALS.2.2 Conditional Statements .uveen. A~10
£.5.2.3 Repetitive Statements ...we. we A=
B.5.2.4 WITH-DO Statements ,.oneowanees A=T1
A.6 ALPHA PASCAL STANDARD
FUNCTIONS AND PROCEDURES L .ubecnmonancnneoonsse B2
APPFENDIX B THE ASCIY CHARACTER SET
APPEMDIX O ALPHA PASCAL COMPILER ERROR MESSAGES

INDEX

CHAPTER 1

INTRODUCTION

This book is a refersnce manual for the AlphaPascal programming sysiem. We
reslize that some of you may be experienced Pascal programmers, while others
may never have seen a Pascal program before., Therefore, to suit the wide
range of interests and backgrounds our readers are Likely to have, we have
tried to organize this book so that vou can easily find the information that
you need without spending unnecessary time on chapters that contain
information that you already know or that is not important to yoeu. (For
information on the organization of this book, see Section 1.1, below.)

Because there are so many excellent books available that teach vou how to

proegram in Pascal, we have not attempted to do so in this book. (For a list
of some of the books that we found helpful, see Section 1.2, "Pascal

Bibliography.”) However, our intentien is to provide a detailed encugh
description of AlphaPascal that an experienced computer programmer who is
unfamiliar with Pascal can get some idea of how to write Pascal programs.

The major purpose of the book is threefold:
T To describe this implementation of AlphaPascel;

2. To discuss how this implementation differs from previous versions
of AlphaPascal and from the standard Pascal as set forth in the
Pascal User Manual and Report by Jensen and Wirth f(and to give

hints on converting programs written in these versions of Pascal to
the current AlohaPascal format); and

3. Yo give operating instructions for the various components of the
AlphaPascal programming system: the compiler, the linker, and the
run—time package.

This book also gives information to systems programmers on wWriting their own
assenmbly language subroutines callable by Pascal programs, and on Writing
and modifying an external procedure lLibrary.

INTRODUCTION Page 1-2

1.1 ORGANIZATION OF THIS BOOK

Some of the chapters 1in this book are aimed at experienced Pascal
programmers, while others are specifically for new Pascal users. To help
vou find the information that you are particularly interested 1in, we have
divided this book into four general parts:

PART 1 = THE ALPHA PASCAL SYSTEM

PART IT = SUMMARY OF ALPHA PASCAL

PART I11 - ADVANCED PROGRAMMING ON THE ALPHA PASCAL SYSTEM
FPART IV - APPENDICES

The rest of this section discusses which chapters may be of particular
interest to specific readers.

IF YOU ARE AN EXPERIENCED PASCAL PROGRAMMER:

You will probably want to skip Chapter 2, "Getting Started,” and go
directly to Chapter 3, “Compatibility and Conversion," which tells you
how this version of Pascal differs from earlier versiocns of
AtphaPascal and from the Jensen and Wirth standard. Chapter 4
discusses how o operate the various components of the AlphaPascal
programming system. Rather than read through Chapters § through 13,
which give detailed discussions of the AlphaFascal statements and
procedures, you may want merely tc turn to Appendix A, A Quick
Reference to AlphaPascal,” to get an idea of the functions and
procedures included in this implementation of Pascal.

After you are somewhat familiar with the AlphaPascal system, you may
want to read Chapter 15, "Writing and Modifying an External Library
File.” If you are a systems programmer, vou may want to read Chapter
16, "Assembly Language Subroutines.”

IF YOU ARE NEW 10 PASCAL:

You will probably want to read Chapter 2, "Getting Started,”™ which
gives & bhrief discussion of Pascal, and goes through a oguick
demonstration of building, compiling, and rurnhing a small, simple
Pascal program. Next, you will probably want to start reading Part
L, "Summary of AlphaPascal,” for information about this version of
the Pascal language.

When you are ready to begin writing Pascal programs, turn back to
Chapter &, "Operating Instructions and Characteristics,” for
information on using the AlphaPascal compiler and run—time package,

NOTE: We would appreciate any comments or suggestions; note the Reader's
Comments Farm in the back of this book.

INTRODUCTION Page 1-3

1.2 PBASCAL BIBLIOGRAPHY

The most important -scurce book for Pascal programmers (containing the
definition of standard Pascal) 1is:

Jensen, K. and Wirth, N.
Pascal User Manual and Report: (Second Edition)
Soringer-vVerlag, 1976

I1f you are interested .in learning to program in Pascal, you might want to
take a lLook at one or more of the following textbooks:

Conway, R., Gries, D, and Zimmerman, E.C.
A Primer on Pascal
Winthrop, 1976

Grogono, P.
Programming in Pascal
Addison-Wesley, 1978

Kieburtz, R.B.

Structured Programming and Problem=Solving with Fascal
Prantice~Hall, Inc., 1978

Schneider, G.M., Weingart, S.W., and Perlman, D.M.
An Introducticn to Programming and Problem Solving
with Pascal
John Witey & Sons, 1978

Wilson, T.R. and Addyman, A.M.
A Practical Approach to Pascal
Springer-Verlag, 1978

1.3 GRAPHICS COMVENTIONS USED IN THIS RBOOK

The symbol (BET) indicates the place in an example where you would press the
termimal carriage return key if vyou were entering the example into the
compuUier. {The carriage return key on the terminal keyboard is usually

Labeled RET or RETURN, and tells the computer to accept and process the
surrent Line.)

INTRODUCTION Fage 1-4

It 13 often confusing when looking at a program in a new computer language
to determine which elements are an inherent part of the Language (¥for

example, orogrem statements) and which elements are to bhe supplied by the
programmer. To help eliminate some of this confusion, our sample programs

follow these conventions:

Reserved words are all upper <ase and underiined.
Standard ddentifiers are all ubper case, but not underlined.

ALL wuser ddentifiers (for example, variable names, constants, etc.’
are 1n & combination of upper and lower case, and are not underlined,

(Note that reserved words are underlined. For clarity's sake, therefore,
this manual deviates from the usual Alpha Micro documentation practice of
underlining sil output the computer displays on your terminal display. We
Wwill try to clearly indicate which portions of our examples are entered by
you and which portions are printed by the computer.,)

CHAPTER 2

GETTING STARTED

This chapter 4s primarily for the benefit of the programmer who 13
interested in Learning Pascal, but who has not vet had the chance to become
familiar with the language. If vou are already familiar with Pascal, vou
will probably want to skip to Part I of this book, "The AlphaPascal System,™
for information on Alpha Micro's specific implementation of Pascal, and for
operating instructions for the AlphaPascal compiler. (You may be interested
in Section 2.3 of this chapter, however, which containg a brief
demonstration of creating, compiling, Linking, and running a small Pascal
orogram.

The rest of this chapter gives a brief discussion of Pascal and walks you
through a guick demonstration of buillding, compiling, linking, and running a
program under the AlphaPascal system.

We also show you a small Pascal program and discuss its component parts.

2.1 WHAT IS5 PASCAL?

The Pascal tanguage 15 based on the 1970 work of Jensen and Wirth, and is
related to the ALGOL-family of languages.

Pascal is a fairly new programming language, and is considered by many to he
"cleaner” and more powerful in design than many older Languages as well 2as
more reflective of current trends in the phileosephy of program design and
structure. However, this does not mean that programs writfen in Pascal will
necessarily be clearer or more powerful than programs written in other
Languages=~ that will depend on the programmer. The major claim made for
Pascal i1s that the language makes it easier to write programs that may be
zasily understood and maintained.

It was developed in response to increasing concerng that current programming
languages uere not encouraging good programming “style,’” and is based on the
idea that an effective programming language should help the programmer to
apply desiagn technigues in a natural and simple way. The result should be
well—-made, well-structured oprograms that are easy to read and easy te

GETTING STARTED Page 2~7

maintain., Because most of a program’s life cycle ds spent in desian and

maintenance, the creators of Pascal tried to develop a language that helps
programmers in these areas.

Fascal’s use, acceptance, and availability have become widespread in recent
years. An éﬂcreasisgty Large number of students are being taught Pascal as
their first programming tanguage. Pascal's use in industry is also becoming

mare prevalent as project planners become more aware of ity usefulnpess 1in
implementing large programming projects.

some of Pascal’s advanteges stem from these characteristics:

* Fascal encourages well-structured programming by requiring that
programs be built 4in a block structure in which the beginning and
end of each procedure is clearly marked. Because orogram structure
is hierarchial in nature, programming in Pascal lends itself
naturally to top-down design.

f Ore of the most important fratures of Pascal is its
gxtensibility. It ds very simple to add your ocwn functions and
procedures 11 the routines provided by Pascal do not exactly match
your needs. In addition, on the AlphaPascal system, vou can acd
these wuser-defined routines to an external Library whers all
Pascal programmers can make use of them.

* Pascal was designed to be a general-purpose language. Since it is
not specifically aimed at scientific or data Drocessing
applications, it can be used to solve a wide range of oroblems.

An important feature of Pascal is its powerful data structures
larrays, sets, records, pointers, user-defined, =2tc.), and the
sophisticated structures vyou can build *rom those primitives
(e.g., Linked lists).

e Any variable used in a program must be declared within that
Drogram. That is, Pascal reguires that the type of values that a
variable may assume {2.0., integer or hoolean) be clearly stated
by the programmer, This helps both in program design and
maintenance, since the readability and organization of your
praogram are enhanced. Variables may be global or local in scope,
depending on where they are declared.

* Most dmplementations of Pascai, while they may include extensions
te the language, also contain a subset of Pascal which adheres
firmly to the standards for the language as set forth hy Jensen
and Wirth, This means that programs written in standard Pascal
are transportable between computer systems on which Pascal g
implemented.

GETTIMG STARTED Page 2-3

2.2 SAMPLE PROGRAM

If you have never -before seen a Pascal program, you may be interested in
taking a lock at the small, simple program belaow:

{hetermine what % is deducted from vour gross salary}
PROGRAM Salary;
?@Eﬁwmﬁkoss, Takehome, Deductions, Percentage : REAL;
SEGiN"{Beg%n Program Salary}

{Print questions and read answers from terminall

WRITE (*What is your gross salary? ')

READLN (Gross):

WRITE (*What is vour takehome salary? ');

READLN (Takehome):

Peductions 1= Gross ~ Talkehome;

Percentage := 100*{Deductions/Gross);

WRITELN ('They keep', Percentage, ' percent of your salary!’)
END {End Program Salaryl.

NOTE: To help vou keep track of which words in the program are elements of
the Pascal tlanguage -and which are variable names and data supplied by you,
we have written in upper case and underlined those words (called "keywords™)
that are actually part of the Pascal language. (0f course, you do not
underline such keywords when vyou write your own Pascal programs.) Those
words that are in upper case, but that are not underlined, are called
“"standard identifiers’; they are elements of the Pascal language which can
ne re-defined by you. The words that are upper and lower case and that are
not underiined in the example above are variable names, comments, and string
data supplied by the writer of the program.

The first Line of our sample program is called a "comment.” It is ignored
by the computer, and has no effect on the execution of the program. itsg
purpose 1is to make the program easier to read for humans. (Comments in

Pascal are denoted by enclosing text either with the symbols "(*" and "%}7
or with the symbols "{" and "}".0

The second Line “declares' the program name, "Salary.”

The third Lline "declares” the variables "Gross,” “Takehome,” "Deductions,”
and “Percentage,’ and tells Pascal that they can only assume the values of
real numbers. (For information on declaring programs and variables, see
Chapter &, "Declarations and Definitions.'™

The fourth Line contains a BEGIN statement; this statement marks the
beginning of a pregram block. The end of this block (and in this case, the
and of the program) is marked by the END statement on Line 13. Within this
biock, we send questions to the terminal display {(sixth and eighth lines)
and read data from the terminal keyboard (seventh and ninth Llinesd. On the
tenth and eleventh [ines we compute the answer we need based on the dats we
received from the user of the program. The twelfth line sends the computed
answer to the terminal display. (For information on Pascal program
statements and procedures, see Part 11, "Summary of AlphaPascal.’)

GETTING STARTED Page 2-4

(NOTE: So that we could identify specific lines of the program to you, we
menticned ddentifiers such as "first Line'" or "fourth Line." This was for

our convenience only; the Lines 1in Pascal programs do not ordinarily start
With numbers.?

2.3 BRIEF DEMONSTRATION

New that you've taken g7 Look at a small Pascal program, we would like 1o

walk you through a brief demonstration of building, compiling, Uinking, and
running the program.

We'll assume that the computer and your terminal are on, and that you have
been assigned an account in which to work. Make sure that you are at AMOS
command level (that is, that you see the prompt symbol, “.", that indicates
that vou are communicating with the operating system).

First, log into the svstem by typing LOG6 foilowed by the device that
contains the account you want 1o tog into and then entering the number of

that account. Then press the RETURN key on your terminal. For example, if
you want 1o woerk in account [20,.3) on device DEKT:, enter:

LOG DSK1:120,37
Now you see something Like:
Logged into DSK1:020,3]

You can now begin to create vour Pascal Drogram.

2.3.1 Building a Pascal Program

Te build a Pascal program, use one of the system text editors to create your
program as a text file. If you are using a video-display terminal, vou will
probably want to use the screen-criented text editor, VUE, rather than the
character-oriented text aditor, EDIT.

2.3.1.,1 The VUE Text Editar - First, we'll make sure that no earlier
versions exist of the program we're going to create. So, we'll arase from
the disk any file called SALARY.PAS. At AMOS command Level, enter:

ERASE SALARY.PAS
If vou zee:

SALARY .PAS erased
Total of 1 file deleted, 2 disk hlocks freed

GETTING STARTED ‘ Page 2%

that means that the file did exist on the disk, and that we have now grased
it. If wou see;

%No files arased

no error oceurred, itfe iust that no file named SALARY.PAS was in the
account you are Logged into, and so we couldn't erase it. 1n aither case,
vou now ars free to create a new file of the name SALARY . PAS.

S0, enter:
VUE SALARY.PAS [GET)

Now VUE toolks for the disk file SALARY.PAS in the account vyou are Llogged
into. Since the file does not vet exist, VUE says:

SALARY,.PAS doss not exist - create 117

Enter a Y followed by a RETURN to tell VUE that you do want to creafte a new
file named SALARY,PAS.

Now you see one or more Lines of asterisks. (IL.f vou do not ses this
display, but instead see a displavy whose first Line begins: "AlphaVue n.n
Status:” (where n.n s the version number of VUEY, simply type an Escape
(sometimes Labeled ESC or ALT MODE on your keyvboard), and VUE will display

the asterisks.)

The display of asterisks means that you are in editing mode, and that VUE 1s
ready for you to type your program in. Start typing the sample program in
Section 2.7 just as you would if you were using a typewriter. Type in the
example exactly as shown, including all semicotons, quote marks, and
parentheses,

1¥ vyou make a mistake, you may erase single characters by using the RUB key
(sometimes labeled DEL or DELETE). To erase the characters on an entire
Line, type a Control-RUB, (That is, hold down the CONTROL key while you
press the RUB kev.?

The cursor (which may appear as a small white rectanale, triangle, Line, ar
other svmbol) marks vyour place on the screen; the next character you type
sppears at the cursor position. Lf more extensive corrections are needed,
you may back up in the display by using the arrow-keys to move the cursor
back and forth in the text on the screen. (If your terminal doss not have
these arrow-keys, vyou must move the cursor by typing Control-J, Control-H,
Control-K, and Control-L. For example, to move the cursor to the left, hold
down the CONTROL key and type an H.D

When the cursor 1s positioned iust to the Lleft of the error, vyou can
overwrite the error by typing your new characters over the problem spot.
or, if you do not want to overwrite the error, type a Control-@. From this
point on, the new characters vyou type will be inserted into the current
line, rather than overwriting it. (To resume overwriting characters, 1type
anether Control-g.0

{Changed 20 April 1987)

GETTING STARTED Page 2~6

0f course, there are many more WJE aditing commands that we won't discuss
here. You can, for example, erase characters 3 word at a time, insert
entire new Lines of text, search for particular groups of characters, or
mova the cursor a word at a time. For more information on using VUE, see the
AlphaVlE User's Mamual , (DWM-D0100~15),

When the program is entered correctly, you are ready to lLeave WIE. Type an
Escape. The screen clears, and the cursor is now positiened next to the VUE
oromot symbol , >, (You are now in command mode.) Type an F followed by a
RETURM. This tells VUF that vou are finished:; it therefore writes your file
SALARY.PAS out to the disk. Next you see the AMOS prompt symbol, 2 dot,
which tells you that you have exited VUE, and are now back at AMOS command
Ltevel ,

Here is a summary of the keys that vyou will wuse the most when editing
programs with VIE:

RETURN End each line with a carriage return symbol by pressing the
RETURN key {(sometimes labeled RET, LR, or CARRIAGE RETURM).

£5C¢ To change from editing mode to command mode (and back
again), type an Escape by pressing the FSE key {(sometimes
Labeled ALT MODE or ESCAPE),

CONTROL Most of the VUE commands are control-characters. To type a
control~character, hold down the CONTROL key (sometimes
Labeled CTRLY, and type the appropriate character, For
example, to type a Control~C, hold down the CONTROL key
while you type a (.

RUF To delete 2 single character, press the RUR key (sometimes
Labeled DELETE or DEL).

ARROW-KEY To move the cursor around on the scgreen, use the keys
marked with arrows (labeled with a left-arrow, right-arrow,
up-arsow, and down-arrowl, For example, to move up on the
screen, press the up-arrow kev. IT vour terminal does not

have arrow kevs, vou will wuse these control-characters
instead:

Control—H To move left

Control=J To move down

Control~K To move up

Control-L To move right

IT WUE s new to you, you may want to ask the System Operator to place into
your account a copy of the VUE dnitialization file in which the menu-display
option has been enabled. VUE will then display a summary of its commands when
you enter command mode. You may also want to ask the System ocperator to modify
the YUE dinitialization file so that the default extension is set to PAS (which
means that VUE will sxpect vou to edit _PAS files and thus will not require vyou
to enter a file's extension unless vou want to edit a non-.PAS filed.

{fhanged 30 April 1981

GETTING STARTED ‘ Fage 2-7

2.%.2 Compiling end Linking a Pascal Program

The first step after creating your program 1is to compile it wusing CMPILR.
After vou have compiled it, the program is still not ready To run until you use
the Llinker, PLINK. (8oth PLINK and CMPILR are themselves programs written in
Pascal.) Chapter 4, "Operating Instructions and Characteristics,” discusses the
operation of PLINK and CMPILR in detail. For:now, we'll simply show you one
way to use them-— to compile and link a new program made up of only one file,
For this demonstration, we will use one of the commend files provided with your
system, PCL,DD. This command file contains a series af commands and data that
automatically invoke CMPTILR and PLIMK for vou, and provide necessary
information to those programs. NOTE: Remember that the - larger your memory
partition is, the faster vour programs will compilet

&t AMOS command level, enter PCL followed by the name of your orogram {leaving
oft the .PAS extension). Then type a RETURN. For example:

POL SALARY(RET)

Mow the PCL command file runs CMPILR and PLINK for you. As your program 18
compited, vou see a display something Like this:

PRUN C{MPILR

AlphaPascal v2.0

Source file name? SALARY

Diagnostic file name (<return> for terminal})?
AlphaPascal Compiler Version 2.0

< (=

PROGRAM < F o

12 Lines

10.47 seconds, 48.7% Lines/minute

Mo compilation errors.

Tf CMPILR spots an error while it is compiling vour program (for exsmple, it
we left the semicolon off the end of the second Line), CMPILR pauses, and
tells vou about the oproblem, For example:

VAR Gross, Takehome, Deductions, Percentage : REAL:

ine P: CINISQPT ':F or ')' expected -~ inserting ';'

Hit RETURN to continue

The message above tells us that a semicolon is missing in front of the
symbol VAR, ("[INISOP]! identifies the portion of the compiler that caught
the error-- you can disregard that information.)

Now vou may type a RETURN to resume program compilation, or vou may Type @
Controi~C C(hold down the CONTROL key while you type a) to interrupt the
compitation. {If vyou type a Control-C, CMPILR displays the message:
“9Compitation aborted” and then returns you to AMGS command level. 1T you
type a RETURN, CMPTLR resumes the compilation, and then returns you to AMOS
command lLavel. In =ither case, because an error has occcurred PCL does not
qo on to Link the program and you are returned to AMOS command tevel.)

Tf (MPILR reported something other than 'No compilation errors,” vyour
program is incorrect. You should use VUE on the orogram and check your copy

{Changed =0 aAprit 1981)

GETTING STARTED Page 2-8

of the program against the one in this book. Correct any discrepancies, and
use the PCL command file again. (For full information on using CMPILA and
its options, refer to section 4.3, "The AlphaPascal Compiler.”"” That section
alsa discusses the compiler display.)

Let's say that your orogram has compiled without error. PCL.DD goes on o
invoke the Linker, PLINK, At this point, CMPILR has created three
intermediate fileg: SALARY.POT, SALARY,.P02, and SALARY . POZR, However, your
praogram still s not completely ready to rum. PLINK will fully resalve
references within the intermediate files and will produce the finat,
executable _PCF file, The second part of the screen display that vou see
looks something like this:

SERASE SALARY.PCF

“No files deleted

LPRUN PLTINK

AlohaPascal ¥2.0

fode file = SALARY

Creating new code file SALARY.PCE

Library code file for SALARY.PCF = STDLIR

Please specify files to be linked into SALARY,
one per Lline, ending in a biank Line

File 1
File 2
Loading program snd Library dictionaries
Processing SALARY
Linking in glebal func/proc PROGRAM
Transferring temporary file to new code file
SALARY completead

SALARY

HOH

The first thing that the command file does before Linking vour file 4s 1tn
erase any file SALARY.PCF that already exists. (This is because PLINK asks
different guestions depending on whether or not the specified program
already exists, and we want to make sure that PLINK asks a particular set of
gquestions.? Now it invokes PLINK.

For more information on linking a file, see Section 4.4, "The AlphaPascal

Linker.” That section also discusses the meaning of the display vou see
above, and talks about the concept of a "{ibrary.”"

2.3.% Running a Pascal Program

To run the program you have compiled, use the Pascal run-time package, PRUN,
At AMCE command level, enter:

PRUN SALARY.PCF (RET)

followed by a RETURN. AU last your program is running? (For full
information on executing Pascal programs, refer to Section 4.5, “The

(Changed 30 Aprit 1987

GETTING STARTED : Page 2-9

AlphaPascal Run—time Package.™
As you run SALARY.PAS, vou see:

AlphaPascal V2.0
What 1s your gross salary?

Let’s assume that vou want to enter 250 as your gross salary and 175 as vour
takehome. RBelow is a sample run of your program:

AlphaPascal v2.0

What is your gross salary? 250 (FE)
What is your takehome satary? 175
They keep 30 percent of vyour salary!

ALPHA PASCAL USER'S MANUAL

PART 1

THE ALPHA PASCAL SYSTEM

The next two chapters introduce you to the AlphaPascal programming system.
Chapter 3 i3 aimed at the experienced Pascal programmer; it discusses the
differences between this implementation of Pascal and previous versions of
AiphaPascal. It also discusses the major differences between this Pagcal
and the standard Pascal as described in Jensen and Wirth's Pascal User
Manual and Report. The last section of Chapter 3 gives some hints for

converting programs written in earlier versions of AlphaPascal over to the
current AlphaPascal standards.

Chapter 4 gives full operating instructions for the varicus components of
the AlphaPascal system; the compiter, the linker, and the run~time package.
Chapter & tells vou everything you need to know about the actual processes
of creating, compiling, Ulinking, and running an AlphaPascal program.
Chapter 4 also discusses file requirements and memory LUimitations of the
AlphaPascal system.

CHAPTER 3

COMPATIBILITY AND CONVERSION

This chapter 1is aimed primarily at the experienced Pascal programmer who
wants to know how this implementation of Pascal differs from previous
versions of AlphaPascal and from the standard Pascal described by Jensen and
Wirth in the Pascal User Manual and Report.

We have also dncluded a section that provides hints on converting Pascal

orograms written under earlier versions of AlphaPascal to the format used by
the current AlphaPascal.

If vou have never before programmed in Pascal, you will probably want to
skipg this chapter and go directly to Part I1, “Summary of AlphaPascal,” for
information on the Atpha Micro Pascal, or to the next chapter, "Operating
Instructions and Characteristics,” for information on using the AlphaPascal
comptler and Linker.

3.7 PREYIOUS VERSIONS OF ALPHA PASCAL

Previous versions of AlphaPascal were based on the UCSD Pascal programming
syatem, Version 1.4. In order to provide a Pascal that is more fully
integrated with the Alpha Micro operating svstem and file system, we now

ofter this new version of AlphaPascal that was expressly developed for the
Alpha Micro computer.

To make Life easier for programmers who have written programs using previous
vaersions of AlphaPascal, we have tried to keep many of the same features and
functiens, while adding a number of new extensions and abilities. Most of
the changes Dbetween this version and earlier versions are added features
that do not reguire that you rewrite vour earlier programs.

Several of the most important difference are:

The opereting instructions for Alphafascal have changed. An important
difference is that vyou will use the Alpha Micro screen-oriented text
editor, VUE, to create vour programs. You must also use the Linker,

COMPATIBILITY AND CONVERSION Fage 3~72

PLINK, to Link any compiled program, whether or not it consists of mere
than ore file. See Chapter 4, 'Operating Instructions and
Characteristics," for complete instructions.
Expression handling has heen considerably enhanced:
1. You may now include the assignment operator in an expression.
For example:

5+ X = 7

The expression above is equivalent to 5 + (X 1= 7), and means
"Let X assume the value of 7, and ther be added to 5.

2. Wherever an expression is legal, you may include an IF-THEN
expression of the form:

IF condition THEN expression ELSE expression
For example:

Year = (If Feb = Leap THEN 29 ELSE 28)+337:

Lf Ffeb equals the value Leap, then Year assumes the value
29+337;: otherwise it assumes the value 28+337.

3. Wherever an expression is legal, you may dinclude a CASE
expression of the form:

CASE value OF valuel : expression;
valued @ expression;

"

"

ELSE expression

For example:

WRITECCASE Errorcode OF

: 'Illegatl iﬁgﬁt’;

: "Mumber too large':
3 & Number too small':
ELSE ‘undefined error'):

AN Q. ¥

= AlphaPascal now recognizes modifying assignment oaperators. These
operators are:

+= Adding assignment aperatar

= Subtracting assignment operator
o Multiplying assignment operator
i= Dividing assignment operator

COMPATIBILITY AND CONVERSION ‘ Page 3-3

These aperators tell the compiler to modify (instead of vreplace} the
value of the variable on the left of the assignment operatoer with the
vatue of the expression on the right of the operator.

For example, in the case of the adding assignment operator:
K =

tells the compiler to Llet X assume the value of X+1. For more
information on these operators, see Section 8,.1.2.7, "Modifying
Assignment Operators.”

- Operator precedence has been. changed to make it more compatible with
operator oprecedence in other Llanguage processors on the Alpha Micro

system. The relational operators have been made of higher precedence
than the Boolean operators. (See Section 8.1.1, "Operator PFrecedence,.”
for more information.)

~ AlphaPascal allows you to label BEGIN-END bDlocks by following the BEGIN
and END kevwords-with a colon followsd by an indentifier. These Labels
allow vou to tell the compiler which BEGINs and EMDs should mateh. If
the structure of your program 1s such that they do not maetch, the
gompiler will tell you s0. o

For example:

BEGIN = Block1

BEGIN : BlockZ

EY

END : Block?

®

END @ Block?

The compiler checks these Labels to make sure that the designated pairs
of BEGIN-END keywords are indeed properly matched. For example, the
following program would cause an error because the BEGIN-END bilocks are
not properly nested:

BEGIN : Block]

=

BEGIN : Block?

-

END @ Blocki

@

END - Rlock?

(Changed 30 April 1981

COMPATIBILITY AND CONVERSION Page A=-4

= Twd new keywords have heen added to AlphaPascal: EXTERNAL and MODULE.
These words may no longer be used as identifiers., T1f they do abpear in
Your o programs, you see an error message (e.g., "LTRYSCAN] VAR,
PROCEDURE, or FUNCTION expected ~- scanning”) when you compile the
programs,

EXTERNAL sllows vyou to access variables, procedures, and functions in
an external Uibrary, and ailows a file in a multiple-file program to
access wvariables, nrocedures, and functions in another file. See
Section 4.7, "External Declarations,” for more information.

the MODULE keyword designates a file that does not contain the main
program portion of the program. Modules may contain declaration and
definition statements, but may not contain the final BEGIN-END hlock.
{That s, BEGIN-END blocks may only appear in function or procedure
definitions if they appear in modules.) See Section 4.1, "Program
Declarations.” for more information.

= The SEGMENT keyword and segment procedures are no longer supported,
(5ee the discussions of EXTERNAL and MODULE, above.) Remove the
SEGMENT keyword from vour programs.

- Floating point numbers are now three words in length (i.e., 12 digits).
(They used to be two words, and could only represent six digits.)

- You may call assembly language subroutines from within your Pascal
programs. For information on writing assembly language subroutines,
see Chapter 15, "Assembly Language Subroutines.®

- Opening, closing, and specifying files have c¢hanged. You may now
access AMOS files, and make full use of the Alpha Micro file system.
Refer to Chapter 10, "Input/Output Functions and Procedures,” for more
information on the procedures and functions that allow vou to search
for, open, and read and write sequential and random files. (NOTE: Thase
of you who have done assembly Language programming using monitor calls
on the AMOS system will recognize some of the new procedure names such
as FePEC, OPEN, OPENI, OPENO, and DPENR.)

=~ Alphafascel supports an external oprocedure Llibrary. This bLibrary
contains a series of procedures and functions available to your
Orograms. You may write your own external Libraries that make use of
the Library provided. See Section 16.1, ¥“STDLIB," for a List of
procedures and functions in the Library. If you wish to access these
routines in your programs, your programs may not use these names in
global identifier definitions, since such definitions will override the
standard Library definitions.

f vyou wish to access these procedures and functions, simply invoke
them in your program. If they are not defined within that Rrogran,
AlphaPascal assumes that they are in the external Library.

{Changed 30 April 19871)

COMPATIBILITY AND CONVERSION Page 3-5

- Several procedures and identifiers wused by oprevious wversions of
AlphaPascal are not supported by the current version:

BLOCKREAD

BLOCKWRITE

UNTTREAD

UMITWRITE

UNITWAIT

UNITBUSY

UNITCLEAR

GOTOXY {(Refer to Section 11.2.2, "CRT," for
information on cursor positioning.)

HALT

IGRESULT

INTERACTIVE files

- PROGRAM {(the main program) may not be called recursively.

= You shouild be aware of these changes to the standard procedures:

1. RESET and REWRITE accept only one argument: a variable of type
FILE. You may not specify a filename after that argument.

7. The file type INTERACTIVE is no longer supported or needed; replace
it with the standard file type TEXT.

3, In earlier wversions of AlphaPascal, CLOSE took an option as an
argument in addition to a variable of type FILE; it now accepts
only a single argument—— a variabie of type FILE,

4. When vyou use the EXIT statement to exit a program, you must supply
the PROGRAM keyword as the argument, not the program-nanmne, {That
is, EXITLPROGRAMY 1s valid, but EXIT(MewProgram) is not.} You may,
however, exit a procedure or function by giving the name of that
nrocedure ar function {(e.g., EXIT{(EvalErrorl}.

5. WRITE and WRITELN do not accept a Boolean variabile as an argument.
That s, if MewFile is a Hoolean variable which evaluates to TRUE:

WRITELMN(NewFile);

does not print TRUE, but instead generates an error.

COMPATIBILITY AND CONVERSION Page 3-6

3.2

The

STANDARD PASCAL

standard Pascal is described by Jensen and Wirth, in the Pascal User's

Manual and Report (Second Edition). AlphaPascal differs from this standard

0 several ways (also, note the extensions discussed in Section 3.1, abovel:

The program heading fite identifiers are scanned but ignored. That is,
' vou have any information in the program heading after the program
name, that information is ignored. (for example, "PROGRAM MailBox;" is
equivalent to "PROGRAM MailBox (INPUT,OUTPUTY : "D This s because
AlphaPascal uses its own form of file handling that s consistent with
the AMOS file structure. (Note, however, that +the remainder of the
heading after the program name i3 scanned, amnd that therefore the
program heading must be syntactically correct. For example: "“PROGRAM
Newhccount (;" will generate an error because of the open parenthesis.)
I you want to use any files other than the predeciared file INPUT and
OUTPUT, you must use VAR statements to declare them,

Operator precedence has heen changed to meke it more compatibie with
other language processors on the Alpha Micro system. 1f it is
important that vour program be able to run under another Pascal that
uses standard Pascal's rubtes of operator orecedence, you will have to
use parentheses in your expressions to override AlphaPascal's rules of
operator precedence.

this will only become necessary 1f your expressions use relational
operators to compare Boolean expressions. For example, if A, 8B, £, and
I are Boolean variables, standard Pascal evaluates: IF A = B AND C = D
THEN. . . 8% IF (A = (B AND C2)Y = D THEN «nep, whiie AlphaPascal
evaluates it in this way: IF (A = B) AND (C = D) THEN...

(See Section 8.1.1, '"Operators,” for information ar operator
precedence,)

TwWo new keywords have been added to the List of reserved WOrds:
EXTERNAL and MODULE. In addition, several identifiers have been added
te the standard identifier List. <{(For a List of AlphaPascal standard
identifiers, see Section 5.4.72, "Standard Identifiers.')

Also, several standard identifiers used by standard Pascal are NOT used
oy AlphaPascal (DISPOSE, PACK, and UNPACK) since AlphaPascal does not
use these procedures, AlphaPascal uses MARK and RELEASE to reclaim
memory allocated by NEW, and automatically unpacks packed data
structures for you when necessary. (Ses Section T1. 7.4, "NEW," for
information on allocating dynamic variables.)

Standard Pascal supports the data type CHAR (single character),
AlphaPascal also supports a non-standard type, STRING, which containg a
length field as well as a field of tharacters. (See Section 7.2.3,
VSTRING,™ for a description of this data type.?

COMPATIBILITY AND CONVERSION Page 3-7

5.3 MAKING PROGRAMS.QQMPATIBLE WITH THE NEW ALPHA PASCAL

In genersl, programs written in previous versions of AlphaPascal or standard
Pascal will reguire very Little modification before being runnable under the
current AlohaPascal. For example, the sample program given in Chapter 2
runs correctly in any of these versions of Pascal. The largest number of
changes will probably dnvolve functions and procedurés that read and write

disk files, since the new AlphaPascal is fully imtegrated into the AMOS file
structure, " ' '

If vyour programs were written under previous versions of UCSB/AlphaPascal,
vou will need to transfer vour programs to AMOS files before vou begin o
perform any necessary conversions. To do s0, use the UCSD/AlphaPascal

programming system {which was provided only 1n earlier releases of
AiphaPascall:

1. At AMOS command Llevel, enter the UCSD/AlphaPascal programming
system by typing PASCAL followed by a RETURN:

When you see the initial prompt:
Command:E(dit,Run,Flile, Clompile, Xlacute,D{ebug,Ilnit, Hialy
Tyvpe an F.
2. You are now communicating with the Filer. You see this prompt:
Filer:G(et,$Cave,Wihat N(ew,L(dir,R{em,Clhng,T(rans, Diate,dluit
To see what is in your Library, type L. Now you see the question:
What volume?

Enter a colon followad by a RETURMN. Now you see a list that might
Look something lLike this;

SCR:
ROMAN. TEXT 4 28~ Jun—80
POSTFIX.TEXT 4 28=Jun—-80

2 files, 8 blocks used, 26 unused

This is a tist of the files in vour Uibrary.

3. You see the Filer prompt again. To write one of the programs out
to an AMOS file, enter T.

&. The Transfer function asks you:
Transter what file?

enter gne of the files Listed in the directory. For example:

COMPATIBILITY AND CONVERSION

Page 3-8

Transfer what file? ROMAN.TEXT
b &ow Transfer asks:
To what file?
Enter "REMOTE:" and type a RETURN:
To what file? REMOTE:
€. Mow Transfer asks:

Using what AMOS file?
Enter a valid AMOS file specification. For example:

DSKT L CONVRT, PAS

IMPORTANT NOTE: You must make sure that this file does not
already exist; if it does, the ULSD/AlphaPascal system will not
do the transfer, and will make the accessed drive inaccessible
te yeu (that is, it will declare that drive "off Line™) until
vou exit or re-enter Pascal.

d, Now Transfer asks:
CONVRT.PAS mode: Tlext, I(mage:

Enter an upper case T followed by a RETURN.

2. Now transfer begins to copy ROMAN.TEXT intce the AMOS fite
DSKT:CONYRT.PAS. When Transfer is done, vou see:

SCR:ROMAN.TEXT transferred to REMOTE:

You may now use the text editor, VUE, to modify the AMOS file that
contains your program. NOTE: If your file is too large, Transfer
may ask for additional AMOS file specifications. When vou are
finally finished, you will need to append all such files into a
single file, using the AMOS APPEND command.

Here 1s List of things to check when converting your old programs to current
AlphafPascal format:

1.

Make sure that you do not use the reserved words FXTERMAL or MODULE
as identifiers,

Check the Llist of standard identifiers 1in Section 5.4.2, “Standard
identifiers,” to make sure that vou do not redefine any identifiers
that designate functions or procedures vou need by including them
in global declarations.

COMPATIBILITY AND CONVERSION Page 3-9

3. Remove any information concerning input or output Tiles from your
oregram heading.

4. The INTERACTIVE file type 13 no longer supported. Change any
aceurrences of the INTERACTIVE file type in your programs to TEXT.
It might be easiest to just redefine INTERACTIVE at the front of
Your programs via a type statement:

TYPE INTERACTIVE = TEXT;

5. Previous verzions of AlphaPascal expected a UCSD file specifigation
for the argument of the compiler include option, $I. Mow tThe &I
option request accepts an AMOS file specification. The default
extension is JINC. If vou have used the $I compiler option, you
will have to change vour file specifications to valid AMOS file
specifications, and make sure that those files exist. For more

information on include files, see Section 4.3.2.2, "The Include
Option {F10.7

6. If 3T pcours in your programs, remove the SEGMENT keyword.

=

. Note that the cperator precedence used by AlphaPascal is different
from that of standard Pascal and previous versions of AlphaPascal.
You may need to check expressicons in which Boolean expressions are
compared with relationat operators to make sure that the

expressions wilt be evaluated correctly. See Section 8.1.1,
"Operator Precadence,.” for more infermation.

Besides changing your programs so that they will run under AlphaPascal, vou
might also want to add some of the new AlphaPascal features LUisted in
Section 3.1, above. As an example, instead of the statement:

TOTAL = TOTAL + SUM;
vou might want to say:

TOTAL += 5UM

Or, vyou may want to break vour programs up into modules. (For information
on modules, see Section 6.1, "Program Declarations.”? 0f course, it vyou
want your oprograms written in standard Pascal so that they can run with
other Pascal implementations, you may want to restrict vyour programs to
using featurss found only in standard Pascal.

CHAPTER 4

OPERATING INSTRUCTIONS AND CHARACTERISTICS

This chapter assumes that vYou are ready to start compiling and running
Pascal programs. If you are not familtiar with AlphaPascal, you may want 1o
skim through Part 11, "Summary of AlphaPascal,” before you attempt fo start
using the AlphaPascal system. This chapter gives you information that you
will need to know about the programs that meke wup the AlphaPascal
programming system. The first few sections talk about file and memary
reguirements. Operating instructions begin with Section 4.2, "Creating a
Pascal Program.”’

The AlphaPascal system consists of the compiler, CMPILR; the Linker, PLINK;
the run-time package, PRUN:; and, the standard external library, STDLIB.

To c¢reate a Pascal Ssource program, use the system screen-oriented text
editor, VYUE. VUE 1s an easy to use, powerful editor that allows vou to see
vour Pascal program on the screen of your terminal, and to make changes to
that program by moving the cursor around on the screen display and entering
the new or replacement characters. For information on using VUE, see the
AlphaVUe User's Manual, (DWM-00100-155, (Also, a brief introduction to
VUE 1s given in Section 2.3.17 of this book, "Building a Pascal Program.™)

atter creating vour proaram, you will exit VUE and use the AlphaPascal
compiler, CMPILR, which compiles your source program (a file that has the
JPAS extension) into a series of intermediate files. Next you will use the
AlphaPascatl Linker, PLINK, which uses the intermediate files created by the
compiler to create a fully resolved, runnable P=-code file that has the .PCF
extension. The linker also allows vou to Link together separete files into
one program, and allows you te update one portion of an existing compiled
program without re-compiling all of the modules thal make up that program.
To run vour PCF file, vou will use the AlghaPascal run~time package, PRUNM.

The external Library contains a set of procedures, variables, and functions
that are available to your Pascal programs. For a List of the routines
within the external library, see Section 16.7, "STDLIB.” For information on
writing and modifying your own procedures within this library, see Chapter
14, “wWriting and Modifying an External Library File."

{(Changed 30 April 193871

OPERATING TNSTRUCTIONS AND CHARACTERISTICS Page &-7

4.1 FILE AND MEMORY REQUIREMENTS
The AlphaPascal system consists of these files:

BSKOs PRUN.PRGLT , 4]
DSKO: CMPILR.PCELT,5]
DSKO:PLINK.PCFL7,5)
DSKO:STPLIR.LPCFT7,5]
DSKO: DEMO.PASL7,5]
DSKO:DEMO,PCFE7,S]

DSKO:ERT.INCL7,5]

DSKO: SPOOL. INCTT7, 57
DSKOXLOCK.INCTT, 5]
DSKDXLOCK, SYSTT, 47
BSKO: XMOUNT . INCT 7,57

DSKO:PC,DOL2,2]
DSKO:PCL, DOLR,2]
DSKO:PL.DOL2,2]
DSKO:PCU,DOL2, 2]
DSKO:PULDOLR, 2]

The first four of these files must be on your system if yvou are to use the
AlphaPascal system. PRUN.PRGLT .41 is a re-entrant assembly Language
program; you may lead it into system memory. CMPILRI7,53, PLINK[7,57, and
STDLIBL7,53 are Pascal code file programs. (.PCF files may not be loaded
into system memory.) DEMO.LPAS and DEMO.PCF are the source and compiled
versions of a sample Pascal program that demonstrates file handling., (This
program also appears at the end of Chapter 10 of this book.)

The LINC files are special files you will include in programs that make use
of several of the subroutines we have provided with the AlphaPascal system.
{(The special routines that make use of the .INC files are described in
Lhapter 14, "Svystems Functions and Procedures.”) {(See Section 4.3.2.2, "The
Include Option ($1)," for information on include files.)

The last five files listed above are DO files: these are special command
files that help you to compile and lLink files. They invoke the compiler and
Linker for you, and automatically answer all of the guestions asked by those
programs. Although these command files are not for use in all cases, you
will probably be able to use them most of the time when you are compiling,
Linking, or updating a single file., For information on how o use these
files, see Section 4.6, "Helpful Command Files."

4.1.1 File Extensions

some of the extensions recognized Dy wvarious components of the Pascal
programming system are:

(Changed 30 aprit 1981

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-3

< PAS Pascal source file, created by text editor.
PO Pascal intermediate files, created by the

LE02 compiler. Not directly executable.

P03 ‘

LPCF Pascai code file. The executable program file

created by the Linker.

PS8 Pascal assembly language subiroutine.
- INC Include files

NOTE: No .PSE files have been included with this release, although many of
the routines in the standard tibrary are actyally Llinked-in asseambly
Language programs. 1 vyou write your own assembly language subroutines,
they must have the .PSB extension. The advantage in using assembly Language
programs in combination with your Pascal functions and procedures is that
some systems functions can best be performed by an assembly Language program
because of speed, size, or hardware reguirements.

4.1.2 File Search Pattern

pascal uses a standard search pattern in looking for those files that it
needs. For .PCF and .INC files, this pattern is:

The account vou are Logged into
Your project Uibrary account: [*,0]
The Pascal Library Account, PAS: =-- DSKO:(7,5]

For PRUN.PRG, this pattern fis:

Zystem memory

User memory partition

System Library Account, S$YS:—- DSKD:D1,41
Your project Library account: [, 07

The account vou are lLogged into

For PSR filies, this pattern is:

System memory

User memory partition

The account you are logged into

Your project Library account: LDx,01

The Pascal Library Rccount, PAS: -— BSKD:[7,5]

For example, if you are logged into DSK1:0100,33, and want to execute the
program PRIME.PUF, vou enter: :

PRUN PRIME

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4~4

(PRUN assumes & file extension of .PCF.} Pascal first Looks for the file

?RIMEB?CF in the account you ere logged inte (in this case, DSKI1:0100,37:;
next it looks in wyour project Library account, DSK1:0100,01. Finally it
Looks in the Pascal Library Account, DSKO:07,51., If it doesn't find the

fite in any of these places, you see the error message:

Cannot OPEN PRIME.PCF ~ file not found

Bt course, if vyou give a complete file specification {including device
and/or account specification) Pas¢al will look for the file on the device
and account vou have specified, without going through its search pattern.
The standard, complete AMOS file specification consists of a device
specification, a file name, a file extension, and an account specification.
For example:

PRUN HWKT:PRIME.PCFL200,56]

4.1.3 Program Restrictions

AlphaPascal handles your programs via a virtual memery paging system. Thisg
means that there dis no Llimit to the size of your programs. {(MOTE: Only
programs are paged, not data allocated by NEW.) However, there are minor
Limits on the size of components of those programs:

1. The object code version of any one nrocedure may not be lLarger than
2000 bytes.

2. You may not have more than 255 global procedures and functions in
any one program or librarv.

3, Any global procedure or function cannct have more than 255 local
procedures or functions.

4. Maximum nesting of program block declarations is 15.

5. Maximum nesting of procedures, WiTH-D0s, and RECORD type
descriptions s 12.

4.1,4 Memory Requirements

Because AlphaPascal uses a virtual memory paging system, thers is no Llimit
te the size of your programs, However, a certain amount of memory 1ig
required to use (MPILR, PLINK, and PRUN. Although the minimum size of vyour
memory partition depends on the data space requirements of the Pascal
pragram you want to use, you should have at least 16K of memory fo run a
small program. To compile and Link a program, you should have at least 24K
of memory.

OPERATING INSTRUCTIONS AND CHARACTERISTICS : Page 4~5

Also, vyou should note that even though youw may execute a program that is
Larger than your memory partition, the lLarger that memary partition is, the
Less paging must he done and, in general, the faster Your programs will rum.
To help even more in speeding up program execution and in reducing the
minimum mehory partition size, remember that you may load PRUN.PRGIT.4T into
system memory. Also, if the assembly Language subroutines that you write
are re-entrant, you may Lload them into system memory. If vou should run out
of room in memory while compiling a program, CMPILR displays the messagesy

TInsufficient memory

TAttempt to call ERRORTRAP while in ERRORTRAP

4.2 CREATING A PASCAL PROGRAM

To create a Pascal source program, use one of the system text editors, VUE
or EDIT. 11 vou are using a video display terminal, you will probably want
ta use the screen—ariented text editor VUF. For a full description of how
to use VUE and a List of all of 1its commands, see +the AlphaVUE User's
Marnual , (DWM-00100-15), Also, Secrion 2.3.1, "Building 2 Pascal Program,’
of this hook contains a brief introduction to VUE.

4.5 THE ALPHA PASCAL COMPILER

The compiler reads the source program that you have created, and compiles it
into three intermediate files that have the same name as the source orogram
fite and the extensions .P0O1, .P0Z2, and .P03. These files are used by the
Linker to create the final, executable program file, which has a3 .RCF
extension, {(1F WP0Y, .POZ, and P03 files aslready exist with the same name
as the program, CMPILR deletes them before compiling the new source
DrOGran. ‘

To use the compiler, at AMOS command level enter:
PRUN CMPILE
The compiler now asks vou for the name of the source file:

AiphaPascal V2.0
Source file name?

Enter the name of the file that contains the program or module you want to
compile followed by a RETURN. (CMPILR assumes the .PAS extension.) This
source fite may be in any account, but the .POY, .P0OZ, and .POZ files for
the program will be gemerated in the device and account vou are logged +dnto.

{Changed 30 April 19281

OPERATING INSTRUCTIONS AND CHARACTERISTICS v Page &4~6&

4.%.% The Diagnostic pisplay

After vou have given CMPILR the name of the source fiie vou want to compile,
it asks: '

Piagnostic file name {(<return> for terminal}?
The diagnostic file contains information about the program compiltation. You
will usually want to see this information on the screen as the compilation
proceeds, and therefore will enter a RETURN. If you want this information
sent to a file so that you can have a permanent record of the compitation,
enter a valid AMOS file specification. For example:

Diagnostic file name (<return> for terminal)? DIAGFEET)

The default extension is .LST. The diagnostic display might look something
Like this, depending on the program vou are compilings

AlphaPascal Compiler Version 2.0

P D ——
NEWCHECK < Admme—-
PROGRAM < 0>=meem-

16 Lines
7.07 seconds, 152.83 Lines/minute
Mo compilation errors.

The diagnostic display above shows the Line numbers at which the procedures
within the ogrogram begin (line #6 for the procedure NEWCHECK: line #10 for
the main program?. Each desh indicates the compilation of one program Line.
The Llast three lines tell you a) how many Llines were in the program; b) how
auickly the compilation was done; and ¢} how many errors cccurred,

If an error occurs, you see it reported at the appropriate place in the
compilation. For example, suppose we had left off & statement separator
{the semicolon) at the end of the first Line of the program. The diagnastic
display would look Like this:

AlphaPascal Compiler Version 2.0
< (-

PROGRAM MYPROG

VAR Target : REAL}

?Line T: [CINISOPI 2% ar "(' expected - inserting
S D
NEWCHECK < Bl e
PROGRAM < 10veswmew
16 Llines
.97 seconds, 155.02 Lines/minutes
TTotal of 1 compilation errors.

w
&

NOTE: If wyou tell CMPILR to send the diagnostic display to the terminal
screen instead of a file, IMPILR pauses when an error cccurs, and gives vyou
a chance either to continue or guit. For example:

(Changed 30 April 19812

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4~7

AlphaPascal Comniler Version 2.0

< o=
PROGRAM MYPROG
VAR Target : REAL;
Thine T: CINISOPT ;' or (' expected == inserting ":°

Hit RETURN to continue

At this point you may continue the compilation by typing a RETURN, or you
may stop the compilation by typing 2 Control-=C (in which case vyou see the
message: TCompilation aborted). If an error pcocurs, CMPILR does not
genarate the P01, P02, and ,POX intermediate files; this s to prevent you
from Linking a2 program that contains a compile~time error.

4.%.2 Compiler Options

The AlphaPascal compiler has a number of options available to you. You may
select one or more of these options at compile-time by including the
zppropriate option codes in your program.

You tell the compiler that you want to maske an gption request by including
the symbol % at the front of a orogram comment followed by the specific
option code you want to use. The compiler acts upon the option requests as
it reaches them in the program.

Option codes may be in upper or lower case. No space may separate the left
comment delimiter and the option code. For sxemple, 48G6-F s wvalid, but
{ $6-> is not.

4.%.2.1 The 80T0 9ptions (36+ and $6~) - The %6+ code tells the compiler
to allow use of the GOTO statement: the 3$6- c¢ode tells the compiler to
generate an error message if 1t encounters a GOT0 statement. You may use
these options to turn GOTO recognition on and off within your program. {(The
compiler uses the $6~ option as the default; that is, i1t does not recognize
GOTH statements unless vou use the $G6+ gption in your program.’

4.%.2.2 The Include Option {$1) - The %I code tells the compiler to
include the contents of the specitied file in your program. Supply a valid
AMOS file specification. For example:

%1 MACRO.INCY

The default extension s LINC. The 31 aption c¢ode tells the compiler to
physically insert the contents of the specified file 1inta the file being
compiled, The insertion takes place at the point of the option request. You
may not dnclude any other option codes after the file specification. The

{thanged 30 April 1981

OPERATING INSTRUCTIONS AND CHARACTERISTICS - Page &-%

purpose of the %1 option is to save you from havina to duplicate freguent Ly
used declarsations or lines of code.

The include file can contain any valid program elements, as long zs those
elements can legally be inserted at the place 4in the praogram where the
include file option occurs. (For example, you will not use the %I option
request in a program’s variable declaration section to include s file that
contains a proaram header.)

NOTE: You cannot nest include file reguests. That 15, the include fite may
not itself contain an include file request.

[

£,%3.2.3 The List Options (%L, $L+ and $L-) -~ The SL option reguest tells
the compiler to send 2 Listing to an AMOS file. (You do not see a program
Listing if vou do not use the %L optiom.) Supoly & wvalid AMOS file
specification. For example:

£l 08K1:DIAGLTE, 212

The Listing will now be written to the specified file. The default file
extension is LL8T. If you do not give a file specification when vou use the
Sl request, CMPILR creates a listing file bearing the name of vour source
fite and a .LST extension in the account you are logged into.

Of course, vyou may not create a Llisting file outside of the project of the
account you are logged into. For example, 3if you ars logged into
DSKO:L100,21 and try to create the Listing file DSKO:LIST.LSTEZ00,2], the
AMOS system will respond with a "protection violation™ error and abort the
compilation because you tried to create the file in an account outside of
the 100 proiect area.

You may use the codes 3L- and %L+ to turn program listing off and back on
ATBIN. For example, suppose vou have a Long program that contains a large
section of comment that you don't want in your listing file. At the front
of your source program vou might says

{8 MYPROG}

Directly 1in front of the section you do not want in your listing, vou would
place:

B3
At the point where you want the listing turned back on again, place:
THL+3

The compiler tells you in the diagnostic display that it s writing a
Listing file. For example:

{Changed 30 April 1981

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-9

AtphaPascal Compiler VYersion 2.0
< 0>
List to LIST
FRRCHECK < Qo

PROGRAM < 13bememo-

200 Lines

12.%6 seconds, 96.90 lLines/minutes
Mo compilation errors.

If vyou want the tisting to appear on your terminal screen, use the devige
speciftication ¥TY:, For axamplie:

{HL TTyY:)

{NGYE: This display will bhe intermingled with that of the diagnostic display
untess you send the diagnostic display to a file=~ see Section 4.3%.%, “The
Diagnostic Display,”? No other option reqguests may appear after thez $L
aption. The listing consists of a display of your program with additional
information to the left of the program. If your program contains errors, the
Listing file contains the appropriate error messages at the places in the
program whare the errors occurred, The listing takes a form that looks
sometning Like this, depending on the program yvou are compiling:

Line# proc lv 1L dsp ic/le

1T = o1 0 1 1 {31 DIAGY

2 - 1 0 1 1 PROGRAM Validate { Validate numeric entry; make
A= 1 0 1 sure that it is between 1 and 100.7%;
& -- 1 0 1 1

5 == 0% 0 3 1 VAR Target : REAL;:

Ho== D1 0 1 1

7o 2 0 2 b FUNCTION ErrCheck(local 3 REAL)Y : BNOLEAN:

g2 -~ pz2 0 2 7 { function checks entry, 11 100<number<i,

@ -— 2 0 2 7 Erriheck reports error by returning a TRUE, ¥
0n-- ¢2 1 2 o BEGIN € Begin function Errlheck %
11 e L2 1 2 G ErrCheck = Local < 1 OR Local > 100
12 -~ £ 2 0 2 12 END { End function ErrCheck J;

13- L2 0 2 40
14 w1 1 1 {1 REGIN { Main Program *

1% =-- ¢ 1 1 1 2 WRITEC('Enter a number between 1 and 100: °'2;
6 -~ 1 1 1 45 READLN(Target):

17 = 11 AZ TF ERRCHECK(Target)

18 == 1 2 1 69 THEN WRITELNC'Invalid entry: try again,®)
R A R 112z ELSE WRITELN('Very gooed, Correct entry.’)
20 -—— .1 0 157 END { Main Program .

O compiltation errors,

n the right vou see a Listing of the orogram., The left contains additional
informaticn about the program:

Line# - This s the number of the program line on the right-hand
side of the display. The rest of the information on this Line
refers to this program Line.

{Changed 30 April 1981}

OPERATING INSTRUCTIONS AND CHARACTERISTICS Fage 4~10

Proc = You see the name of e&ach locally declared procedure asg
CMPILR comes to i1,

Cor B ~Pascal tells vyou if data (D) or code (L) s being generated
for the program Line.

Ly and
%ﬁg - Internal information used by the compiler.

ilo- Indentation level. Tells vyou what nesting level the
current orogram Line is at.

ic/lc = Internal code location counter, This number tells you how

) many total bytes have heen allocated at this point inm the
program compilation for the cbiect code of the current
procedure aor function. The ic/lc number can come in handy
Later when vyou debug programs, Tt you interrupt proaram
execution and backtrace that program, the backtrace gives you
the "IPCY number-- the "Interpreter Pregram Counter.” The
IPC is the number designated by ic/lc in the program Listing.
You can thus compare vyour backtrace with vour program
tisting, and see exactly where the problem occurs.

Also, if . a8 run-time error occurs, the error message gives the
TPC in the oprocedure at which the error occurred {(2.g9.,
Yalue range error in PROGRAM at IPC = &4 within FILL.PAS),
{For dinformation on backtracing, see Section 4.5.2,
"Interrupting a Program.'')

4.%3.2.4 The Page Option {$P) - fhe option allows you to start a new
page in the Listing by telling the compiler to ingert 3 form~feed at that
point din the program listing. (%P 4s ignored if the SL aption is not in
effect.) :

4.3.2.5 The Quiet Options (Sa+ and £q=-3 - $a+ designates the
quiet-compile option, This option reguest tells the compiler to give vou a
brief diagnostic display, leaving off procedure names and line numbers. To
turn fuli-display mode back on (the default condition), use the %8~ option
code .,

4.3.2.6 The Range Check Options (%R~ and $R+) ~ The $R- option tells the
compilter to turn off ‘range checking: that 1s, the compiler does not output
additional code to perform checking on array subscripts and assignments to
subrange type variables, Frograms compilted with range checking off run
stightly faster; however, since the compiler is not checking for range
errors, 1% an dnvalid index or assignment is made by vour program, the
run-time package will not stop the orogram when that error occurs, You

{Changed 30 April 198712

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-11

should not turn off range checking until your program has been tested and

You are absoiutely sure that vour program runs without error. To turn range
checking back on (the default conditionl), use the SR+ option,

4.4 THE ALPHA PASCAL LINKER

The linker, PLINK, reads the ,PO1, P02, and .PO3 files created by the
compiler and resolves the files into a single executable program. You may
use PLINK to Llink multiple files together into one program, However, even
if your complete program consists of only one file, vyou must wuse PLINK on
that file to generate an executable program file. The final file created by
PLINK has the .P(F (Pascal Code File) extension. Although the use of PLINK
may at first lock complicated, once you begin to use it, you will find that
its guestions are rather self-explanatory. The paragraphs below discuss the
different ways in which you can use PLINK, The Llast few paragraphs of this
section (Sections 4.4.4 and 4.4.5) discuss the PLINK options.

To use PLINK, at AMOS commmand level enter:
PRUN PLINK

Now PLINK asks:
Cade file:

Enter the specification you want given to vour final L.POF file. This
specification may be that of an existing file, or it may designate a new
file. It may be the same as or different than the specification of one of
the #iles vyou are going te Link. Make sure that vou supply a valid AMDS
file specification that contains a filename of no more than six characters
(for example, DSK&4:VALIDLT10,401). For the purposes of our discussions,
Let®s say that vou enter VALID '

Code file: VALID

(PLINK will automaticaily assign the file a .PCF extension.) If vou do not
include a device and account specification, PLINK assumes that you want to
Linkk a file that is in the device and account you are logged into. At this
point PLINK asks vyou different questions, depending on whether or not the
specified .PCF file already exists. In the next sections we will step
through the three situations which can occur: 1) you are c¢reating a new
fite; 22 you are replacing an existing .PCF file; 3) vou are updating a
single module in the .PCF file.

For now, let's assume that PLINK has asked its next few guestions, and knows
what files to link together and what external Libhrary to use. You see:

Loading program and Library dictionaries

OPERATING INSTRUCTIONS AND CHARACTERISTICS | Page 4-12

This teils you that PLINK is getting ready to process your file. For each
file that vou are Linking, PLINK tells you when it begins working on that

file. For example:

Processing NEWMOD

Next PLINK tells vyou what globally declared functions and procedures are

being linked into your PCF file. (These routines are in your program and
the external library.) Ffor example:

Linking in glohal func/proc ERRCHECK
Linking in global func/proc PROGRAM

At last, PLINK dsg finished, and begins to copy the resolved code into the
POF file:

Transferring temporary file to new code file
FLINK's final message tells you that it is finished:
VALID completed
Now, let’s get back to the questions PLINK asks when it is determining which

files to Llink together. NOTE: Keep in mind when answering PLINK's guestions
that PLINK converts all of your input to upper Case.

4.4.1 Linking a New .PCF File

If vou use PLINK to create a PCF file, and that File does not already
exist, PLINK knows that you are linking a new program, and not trying to
replace or update an existing program. For example, suppose you have told
it that yvou want to create VALID.PCF. It tells you:

treating new code file VALID.PCF
Now it asks which external Library you want to use for the new program:

Library code file for VALID.PCF =

Enter the file specification of the Library you want to use. In almost
every case, this witl be the standard Library File, STDLIB.PCF. The

external Library contains routines ysed by your program and the compiler.
You must specify a Uibrary (except in the Vary rare case where vyou are
Linking a "root'"™ Llibrary—-- that i$, a Library that has no Llibrary of its

own== such as STPLIB itself). For information on the external Library, see
Chapter 16, "Writing and Modifying an External Library File." Now PLINK asks
which files vou want to Link together:

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-13

Please specify files to be linked into VALID
Lone per line, ending in a blank Line

#
File 1 =

Enter& the specification of the first file; then type a RETURN. Mow PLINK
asks for another file:

File 2 =

Remember that a single .PCF file may be made wup of several separately
compiled modules. It you are Linking only one file, enter a RETURN here;
otherwise enter the file specification of the next module., It vou are
Linking together more than one file, the file specifications do not have to
be entered in any special order, but at Least one of these files must be a
main program file (rather than a modulel, or you see the message: TAttempt
to create new code file without main program block. {(For information on
module files, see Section 6.1, "Program Declarations.”) Remember that vou
are entering AMOS file specifications, and not the internal names of Your
pregrams or modules; each specification must contain a six~character or less
fite name that designates an AMOS disk file.

NOTE: Although you will usually be Linking together compiled Pascal files,
you may also want to use .PSB (Pascal assembly Ltanguage subroutine) files,
To telt AtphaPascal that a file is an assembly language subroutine rather

than a Pascal program file, vou wiil specify the .PSB extension. For
axample:

Fite 1 = MODUL1

File 2 = MAINPR (RET)

Fite 2 = INPUT.PSB (RED)

File 3 = ANYCN.PSB/LINK (ET)

File &4 = (REF)

The example above shows us Linking together a main program file, MAINPR, a
module file, MODULT, an assembly Language subroutine file reference,
INPUT.PSE, and an assembly language subroutine, ANYCN.PSB. For a discussion
of how these .PSB files are lLinked in, see Section 4.4.4, "Linking Assembly
Language Subroutines (the /LINK Option).” For information on assembly
tanguage subroutines, see Chapter 15, "Assembly Language Subroutines.”

4.4.2 Replacing a .PCF File

If the VALID.PCF file that we specified as "code file" already exists, PLINK
knows that we want to either update or replace the file. Therefore, after it
asks for the code file, PLINK asks:

Do vou wish to 1) replace or 2) update VALID.PCF?

To replace the file, enter a 1, PLINK now says:

OPERATING INSTRUCTIONS AND CHARACTERISTICS. Page 4—14

Creating new code file VALID.PCF
It asks which external {ibrary to UsE:
Library code file for VALID.PCF =

Once again, vyou will probably want to answer “STDLIB." Now PLINK asks for
the names of the files you want to link together:

Flease specify files to be Llinked into VALID,
one per Lline, ending in a Glank Line

File 1 =

Enter the specification of the first file; then type a RETURN, Mow PLINK
a5ks for another files:

Fitle 2 =

Type a RETURN if you are only linking one file; otherwise, supply the file
specification of the next module. When vyou ‘have fTinished entering all
module specifications, enter a single RETURN. {See Section 4.4.4 for
information on Llinking assembly language subroutines.)

4.4,% Updating s .PLF File

It would be extremely inconvenient to re-compile and re-link 2 huge Pascal
program every time you wanted to change a tiny portion of it. AlphaPascal
allows you to split one program up into a number of files catled “modules,”
which are Llinked together with one main program file. You can change a
modiule file, re-compile just that file, and then re-link the changed module
inte the main PCF file, '

Te update a single module, make vyour changes and then re-compile that
module. Now, use PLINK to re-link the module inte the program. When PLINK
SaYS s

Do you wish to 1) replace or 2) update VALID.POF?

enter a 2 followed by a RETURN. Now it will tell you what external Library
was used to link that PCF file. For example:

The standard library code fite for VALID.PCF is STDLIB.®CF
U0 vou wish to change this?

Answer Y or M. You will probably want to answer N, to instruct PLINK to use
the same library the file was originally linked with. If wvou answer Y,
PLINK asks for the new library:

New standard library =

OFERATING INSTRUCTIONS AND CHARACTERISTICS ' Page 4-15

Enter the specification of the external library you want to use.

Now PLINK . asks what files you want to link together., Just enter the
specifications of the module or modules you have re-compiled., The rest of
the modules in the .PCF file will be left alone. NOTE: If you do change to
a new Library, vou will have to re-link all modules used in the program and
the main program file, since the old modules will bhe incompatible with the
new Library. (See Section 4.5.1, “Library Version Checking," for more
information on program~iibrary compatibility,)

PL;NK will tell vyou what new procedures or functions have been tinked in,
and what old procedures or functions have been kept. For example:
Keeping global func/proc ERRCHECK
Keeping global func/proc PROGRAM
Linking global func/proc NEWPROC

4.4.4 Linking Assembly Language Subroutines (the /LINK Option?

We mentioned briefly above in Section 4.4.1, "Linking a New .PCF Fiie,” that
you can Uink assembly language subroutine (.PSB) files inte your .PCF file
by specifying the .FSB extension when you use PLINK to link the subroutine
files into the program. (For information on such routines, see Chapter 15,
“Agsembly Language Subroutines.’™)

What actually happens is this: when you specify a .PSB file to PLINK, PLINK
then inserts a reference to that file in your final LPCF file. When vou
execute the LPCF file, AlphaPascal searches for the specified .PSB file
fusing the standard file search pattern we discussed at the front of this
chapterl, and then loads that fila into memory from the disk (i1 the fiie is
not already 1in system or user memoryl; next, 1t executes the routine when
called by the program. When PRUN finishes executing the .PSB file, it
deletes 1t from memoary. (You can force PRUN to leave the .PSB file in
memory by explicitly loading the file into memory wvia the monitor LOAD
command hefore wusing PRUN to run the program that calls the .PSB file, If
the .PSB file has been placed into memory via the LOAD command, the file
remaing in memory until yau use the DEL cammand to remove it.)

It vyou want the contents of the ,PSE file to be physically part of vour .PCF
file {so that this search—and-load procedure does not take place), you may
specify the /LINK option after the name of the .PSB file when you Link that
file in. For example;

File 1 = MODULT
File 2 = MAINPR (RET)
File 3 = XPUT.PSB/LINK

The /LINK option refers only to the single file specification on the same
Line as the option reguest. If you are going to physically link a .PSH fite
into your .PCF file, the .PSB file cannot be Larger than one disk block.

OPERATING INSTRUCTIONS AND CHARACTERISTICS. Fage &-14

NOTE: Usually if you modify a medule or .P3SB file, you only need to re-link
the modified file 1inte the Linked -PCF file of which it is a2 part. <{For
example, 1t you changed the file XPUT.PSB in our example above, vou would
not need to re-link MAINPR and MORULT; only XPUT.PSB.) However, if vou
decide to replace a .PSB file with a Pascal file of the same name or vice
versa, you will need to re-link all modules that form the .PCF file of which
that file 1is a part. For example, Looking at our example above again, if
you decide that the file MODULT would be better as an assembly Language
file, MODUL1.PSB, vou will need to re-Link all of the fites that form the
complete PCF file~~ MODULT.PSB, MAINPR, and XPUT.PSR,

4.4.5 Preventing Backtracing of .PCF Fiies (the /SMASH Optiond

AlphaPascal allows you to trace the functions and procedures called by a
program. This dis a wuseful debugging feature when you are developing 3
program, since you can interrupt the program at a trouble spot and see what
functien or procedure it is in. (For more information on backtracing, see
Section 4.5.2, "Interrupting a Program.'™)

However, once a program has been finished and tested, vou may not want users
of that program to be able to find out the names of the program functions
and procedures (which they can ordinerily do by interrupting the sxecution

of the program and backtracing?. Therefore, AlphaPascal provides the Linker
FSMASH option.

When you Link a program using the /SMASH option, users of that program are
prevented from seeing the names of the program's procedures and functions
when they backtrace the program; instead, .the names are replaced with
asterisks. For example, instead of the backtrace display:

Interrupt (?=Help): B

In STRLIB.PCF

RDR at IPL = 33
In YALID.PCF

PROGRAM at IPC = 43
In STDLIB.PCF

PROGRAM a1t IPC
Exit to AMOS

423

i

they see:

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4-17

Interrupt (?=Help): B (RET

In STRLIB.LPCF

RDR at IPC = 33
In VALID.PCF

wkkkdkkE zt [P = 4%
In STDLIB.PCF

PROGRAM at 1p(
Exit to AMOS

i

423

Mote that in the smashed version above, the name of the function in your own
program, VALID.PCF, is blanked out with a line of asterisks.

To use the /SMASH option, place the option reguest after the name of the
code file vou want to smash, For example:

Code file = VALID/SMASH

When PLINK finishes Linking the specified files, it tells you that the names
of the functions and procedures in the code file have successfully been
hidden from the backtrace option. In the case of the file discussed above,
VALID.PUF, vou see:

SMASHed VALID/SMASH Completed

NOTE: CMPILR and PLINK have both been Llinked using the /SMASH option.

4.5 THE ALPHA PASCAL RUN-TIME PACKAGE

The AlphaPascal run~time package, PRUN, is the program that execCutes Your
program by interpreting the .PCF file created by the Linker. To use PRUM, at
AMOS command level enter PRUN followed by the specification of the file that
contains the program you want to execute. Then type a RETURN. For example:

PRUN LSTSQRI200,13

4.5.1 Uibrary Version Checking

Because vyou can add routines to the external Library, the sitruyation can
arise where an old program was tinked with an external Library that is
different from the current external Library. PRUN will not execute a
program That is not compatibile with the Library it is being run with. By
“compatible,” we mean that a program that was Linked with a certain external
Library cannot be run with an older version of that Library, or with a
completely different Library.

OFERATING INSTRUCTIONS AND CHARACTERISTICS) Page 4-18

You will rarely have to worry about library version numbers; if you modify a
Library, you can run programs Linked with earlier versions of that Library
without re~linking the programs (unless you changed functions and procedures
used by those programs, in which case you might have to change your programs
to be compatible with the new procedures and functions).

AlphaPascal wuses & system of wversion numbers and version stamps to keep
track of program and Library versions. <{(These numbers are for internal Uuse
only=- they are not accessible to your programs.) Whenever z library s
created or modified, AlphaPascal writes a unigue identifying nrumber called
the Tversion stam@” to that library. It also keeps track of the number of

version stamps generated for a library:; this number 1s called the ‘“version
number.” '

Whenever you Link a program, AlphaPascal writes the version stamp and
versian number of the external Llibrary yvou are using to the .PCF file being
Linked. Whenever you execute a program, PRUN checks to make sure that the
version stamp for that program matches one of the program stamps in the
current external Uibrary. This makes sure that the current library is not a
completely different Library than the one the prodgram was linked with., If
the Llibrary is a modified version of the Library the oprogram was Linked
with, checking to s2e& that the version stamp in the program exists in the
List of versicn stamps in the lLibrary makes sure that the Library is not an
garlier version than the library with which the program was iinked.

It the Llibrary and program are not compatible, vou cannot run the program
with that version of the library; instead, vou must re-link vyour orogram
with the current Librarv.

PRUN displays the following message 1f the program version stamp and number
of the Uibrary are older than those of the program:

tWrong version of xxxx for use with yyyy

where xxxx 5 the exfternal tibrary, and yyyy is yvour .PCF fite.

If you update an external Llibrary, check to see if vour eld .PAS files thave
to change because of the revisions. For example, 1f a hypothetical
procedure REVERSE now expects three arguments, while a previcus version
expected two, your programs will have teo change *to accommodate the changes
in the procedure. (For more information on the external Library, see
Chapter 16, "Writing and Modifying an External Library File.')

OPERATING INSTRUCTIONS AND CHARACTERISTICS | Page 4-19

4.5.2 Interrupting a Program

whE?ever yaeu use PRUN, vou can tell it to interrupt program execution by
typing a Control~{. PRUN stops the program being executed and displays:

Interrupt (7=Help):
You may enter one of four responses: Q, R, B, or 7, followed by a RETURN:

& = Tells PRUN that you want to terminate program execution, PRUN
returns you to AMOS command Level.

R - Yelis PRUN te resume program execution at the point of
interruption,

B - Tells PRUN to print a backtrace aof all the procedures and
functions dinvoked during the program execution to this point.
These procedures and functions are Listed in order, with the
last-called procedure or function Llisted first. The display
might look something Like this, depending on the program vou are
executing:

Interrupt {(?=Help): B (HET)

I STRLIB.PCF

RDR at IPC = 33
In VALID.PCF

PROGRAM at IRC = 43
In STDLIB,.PCF

PROGRAM at IPC
Exit te AMOS

423

i

Interrupt (?=Help): Q [(RET

@

(For information on keeping program users from using the
backtrace function to see the names of the functions and
procedures in your programs, see Section 4.4.5, "Preventing
Backtracing of .PCF Files (the /SMASH Option).™

T o~ Talls PRUN that you need help. PRUN now displays a menu of
the responses you can enter:

Interrupt (?=Help): ? FEED

& = Quit
B = Backtrace
R = Resume

Interrupt (7=Helpl):

GPERATING INSTRUCTIONS AND CHARACTERISTICS | Page 4~20

4.6 HELPFUL COMMAND FILES

Although our discussions above on the compiler and Linker discussed several
special uses of thos#g programs, in gemeral the information that you give to
the programs will be fairly standard. For example, you will rarely want to
use an external library other than STDLIB. To make CHMPILR and PLINK easier
to use, we have provided a number of special command files that vou can use
for most cases of compilation and linking; these files automatically supply
much of the information needed by CMPILR and PLINK.

These command files are in the Command File Library Account, DSKO:02,21. (A
command file dis a text file that contains a series of AMOS commands and
input for those command programs. Such a file allows you to execute a

string of commands and provide a stream of input by simply entering the name
of that file.?

You will use these command files at AMOS command lLevel. To invoke one of
the files, enter the name of the file followed by one or more file
specifications. For example, suppose you want to use the command file named
PC (for Pascal-compile) to compile your progrem file SMALL.PAS. At AMOS
command level, enter:

PCOSMALL

The PC command file now invekes the Pascal compiler, and tells 4t that vyou
want to compile the file SMALL. Then it telis CMPILR that vou wani the
diazgnostic Tile to be displayed on the screen., NOTE: If an error ocours
while you are using one of these command files (for example, if vour program
contains an error or it AMOS cannot find the specified file), AlphaPascal
stops execution of the command file. After vou clear up the problem, you
can then use the command file again.

The command files we have provided are:

DEKO:PC.DOLZ, 2] Pascal~compile
DSKO:PL.BOLZ, 2] Pascal-Link

DR PCL.DOLZ2,2] Pascal—compile and —Llink
BSKOrPCULBOLZ 2] Pascal-compile and -update
DSKO:PU,.DOL2,2] Pascal-update

Remember that these command files do not cover all c¢ases of compiling and
Linking files. If after you read these descriptiens you realize that the
file will not de exactly what you need, you will have to run CMPILR and
PLINK vourself to perform the actions vou want.

4.6.1 Compiling a Single File (PC.DO)

To use the PL file, enter PC followed by the name of the file that containg
the program you want to compile. Then type a RETURN. For sxample:

PLODRWELIN

OPERATING INSTRUCTIONS AND CHARACTERISTILS Page 4~21

CMPILR compiles the file DRWLIN.PAS into the fites DRWLIN.POT, DRWLIN.PDZ,
and DRWLIN,ROZ,

4.6.2 Linking a Single File (PL.DO}

To use the PL file, enter PL followed by the name of the file that you want
to Link. For example:

L ODRWLLIN FET)

PLINK now Links the files PRWLIN.POT, DRWLIN.POZ, and DRWLIN.PO3 together
into DRWLIN.PCF., Before you try to Link a fite, make sure that it has
already been compiled; that is, that the SPOT, WPDZ2, and P03 files exist.
Fl. assumes that you want to Link a single file, and that vou want to use the
standard external library, STDLIB.

4.6.5 Lompiling and Linking 2 Single File (PCL.DO)

To use the PO file, enter PCL followed by the name of the file vou want to
compile and Link. For axample:

PLOL O TRSREOH

The compiler compiles the file TRSRCH.PAS into the files TRSRCH.POT,
TRSRCH.POZ, and TRSRCH.PO3. Next, PLINK {inks these intermediate files into
TRSRCH.PCF. The command file assumes that you want to Link a single program
file, and that vou want to use the standard external Library, STDLIB.

4.6.4 Updating a Single Program Module (PU.DO)

To use the PU file, enter PU followed by the name of the module ¥Oou want o

update, followed by the name of the .PCF file vou want to Link the module
into. For example:

PU MODULT TRSRCH

PLINK now Links the module into TRSRCH.PCF. This file assumes that MODULY

has already been compiled, and that yOou want to use whatever external
Library TRSRCH was originally linked under.

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4~22

£.6.5 cCompiling and Updating a Singte Program Module (PCU.DO)

To use the PCU file, enter PCU followed by the name of the module You want
fe compile and update, followed by the name of the .PCF file you want to
Link the module into. For example:

PCU MODULT TRSRCH

CMPILR now compiles MODULY; PLINK then Links 4t into TRSRCH.PCF. FCU

assumes that you want to use the external Library TRSRCH was originally
Linked under,

ALPHA PASCAL USER'S MANUAL

PART II

SUMMARY OF ALPHA PASCAL

The next nine chapters discuss the elements of the Fascal language a&as it has
been implemented by Alpha Micro. If you are interested in a quick summary,
refer to Appendix A, "A Quick Reference to AlphaPascal.”

CHAPTER 5

GENERAL INFORMATION

This chapter contains very general information about AiphaPascal program
concepts such as: basic program structure, statement senparation and spacing,
legal identifiers, compound statements, scope of identifiers, etc. For
detailed information on specific elements of a Pascal program, see the Index
and Appendix A, "Quick Reference to AlphaPascal."

5.7 BASIC STRUCTURE OF A PROGRAM

This section lists the major elements of a Pascal program. We'll talk more
about each element in the following paragraphs, but this witl give You a
genaral idea of what goes where. Every Pascal grogram follows the general
forms:

Heading
nlock.

The heading follows this form:
PROGRAM program-name;

Qe
PROGRAM;

NOTE: Standard Pascal requires that vou follow the program-name with a st
of names that are concerned with pragram input and output (for sxample:
PROGRAM Schedule (INPUT,QUTPUT)), AilphaPascal, however, 1ignores these
names, and you may omit them altogether. However, make sure that the
program heading is syntactically correct. (For example, "PROGRAM NewAccount
;' generates an error message because of the open parenthegis.)

The oprogram block which appears under the heading consists of a declaration
section that defines the names and properties of various data objects (such
as wvariables and constants) and subprograms (such as procedures and
functions) that will be used in the program, and a statement section, which

GEMERAL INFORMATION Page 5-2

Lists the actions to be taken uwpon the declared items. (The names of the
data objects, as well as the names of the procedures and Ffunctions of a

Pascal program are called "identifiers.') The orogram block takes this
form: '

Label-declaration part
Constant—definition part
Type=decliaration part
Variable—declaration part
External=-declaration part
Procedure-and-function~declaration part
Statement part.

(For information on the definition and declaration sections of the program
block, see Chapter 6, "Declarations and Definitions.” For information on
the statement section of the program block, see Chapters 9-13.

Any mumber of spaces and/or blank Lines may appear between words and symbols
in a Pascal program. Because program stateéments may be broken up by blank
Lines and spaces, Pascal requires that you identify where one statement ends
and anpother begins by separating them with a semicolon. For example:

PROGRAM NewTest;
VAR founter : REAL;

The last element of a Pascal program must be the END keyword followed by a
period. (The period indicates that the end of the program has been reached,
rather than just the end of a group of statements within the program.)

fs a final word on program structure, we would lLike to mention that your
program can congist of more than one file. The advantage of splitting vour
program up into muitiple files is that when a change needs to be made to one
of the files, vou only have to re-compile the one file and then re-link the
fites, rather than re-compile all of the files.

1f your program does consist of multipte files, only one of those files will
foliow the main program format we discussed above: the rest will follow a
stightly different format. (This is because only one main program file may
be linked together with other files.) These non-program files follow this
format:

MCDULE module-name;
block.

Qi3

MODULE;
block.

Thiz heading tells the Pascal compiler that the file is not a main program
file, and that it is part of a multiple~file program. The module-name
identifies this non-program fite, and does not necessarily have to be the

GENERAL INFORMATION Page 5-3

same name as that assigned to the actual file or to the main program.
The block takes this form:

Label~declaration part
fonstant-definition part
Type-declaration part
Variable-declaration part
External-deciaration part
Procedure-and-function-declarat ion part

@

As you can see, the file does not contain a statement part, {Although, of
tourse, the procedure and fumction declarations can contain a statement
section.} The file ends with a period (even though it cannot end with an
END keyword followsed by a period).

Balow 18 2 small sample of a module and the main program with which it s
Linked:

A MODULE

ﬁQ?ULE;
FUNCTION MAX(Argd,Arg?2 @ REALY : REAL:

S?GEN { MAX }

TIE Argi>arg?2 THEN MAX:=Arg] FL%E MAX:=RArqgz
FND L End of ma¥ ¥r
A MBAIN PROGRAM

PROGRAM Main;

VAR NumT, Numg : REAL;

EXTERNAL FUNCTION MAX(Argt Arg2 : REAL) : REAL;

BEGIN { Main Program ¥
CWRITEC Enter two numbers: ') READLN(Num? ,Num2 3 ¢
WRITELN;
WRITELNC'The Larger number is:', MAX (Num1,Num?))
END { Main Program 7.

5.2 COMPOUND STATEMENTS (BEGIN AND END)

The statement section of the program block starts with a BEGIN kevword and

ends with an END keyword. The elements within these two keywords may

congist of one statement or many, and comprise the executshble section of the
Drogram,

{Changed 30 April 1981)

GENERAL INFORMATION : Page H=4

Ary one statement may be replaced by & combination of statements called a
"compound statement.” A compound statement is a series of statements, and
starts with the REGIN keyword and finishes with the END keyword, 8y
convention, the orogrammer usually indents each compound statement one level
within the program (see the example below) so that he or she can visually
keep track of how compound statements are nested.

The individual statements within the compound statement must be separated by
a semicolon., For - example:

PROGRAM Average;, .
{This program computes the average of a series of numbers ¥

VAR Count 2 INTEGER;
Arnswer . Total, Num 1 REAL:
CONST Maxval = 10;

BEGIN { Average ¥
Total = {
FOR Count 1= 1 T0 Maxval DO
BEG TN o o
TTURITE ('Enter number, please: ') { Prompt user for number ¥;
READLN(Num? £ Get number from user ¥;
Total := Total + Num { Sum numbers ¥
ENE
answer := Total/Maxval { Compute average ¥;
WRITELN (fAverage 1s: °, Answer)
END { Average Y.

in the example above, the statement section of the program block contains
two nested REGIN-END compound statements. Note that the BEGIN keyword does
not reauire a semicolon after 11, and that you do not precede the END
kevword with a semicolon. This is because BEGIMN and END are keyuwords, but
are not statements. Therefore, there is no need to separate BEGIN from the
WRITE statement: in fact, doing so causes an error. For the same reason, do
not place 2 semicolon between the END kevword and the statement before it.

5.F COMMENTS

Somet imes the function of & section of a program is not immediately obvious
to the casual obssrver, To help the reader aof a program understand what
that program s doing, Pascal allows vyou to enter ‘comments” in your
program,

Comments are ignored by the compiler, and serve only to document the scurce
program. AlphaPascal accepts as comments any text enclosed either by a pair
af "{F" or (% %37 zymbols. For example:

READ(PlaneRoute) {+* Thig variable 75 accessed by FLIGHT procedure #*3;

A comment may appear between any two symbols in a2 program, cover more than

(Changed 30 April 19813

GENERAL INFORMATION Page 5-%

one Line, agd may appear in the middle of g3 statement. Comments may not be
nested, but {} symbols. may appear within the symbols (% %), and vice VErsagz

this allows you to “comment out’ areas of programs that contain comments.
For exampie:

O WRITELN(RecCount) { Report # of records sorted
READLN;

IF Error THEN ErrorFix { Error condition Y o®)

5.4 LEGAL IDENTIFIERS

Identifiers are groups of characters that denocte variables, ty¥pes,
constants, procedures, functions, programs, record fields, and record
tagfields. As one example of an identifier, consider a wvariable that

assumes the wvalues of a range of school test scores; it might appear in a
program as the identifier Scores.

Identifiers in AlphaPascal may consist of combinations of upoer and |ower
case letters and numbers, but must begin with a letter. Identifiers may be
as many characters as you wish, but only the first eight characters are used
by Pascal in recognizing the identifier. {That means that the identifiers
STANDARDBUFFER and STANDARDBUFFOON will be recognized by Pascal as the same
identifier—— STANDARD.D

IMPORTANT NOTE: AlphaPascal "folds” lower cage identifiers +to upper case.
This means that it translates all lower case letters fo upper case when
congidering identifiers. In other “words, AlphaPascal considers the

identifiers Eval@uote, Evalguote, EVALGUOTE, and evalQUOTE to be Tthe same
tdentifier,

You may choose any combinations of letters and numbers for identifiers with
the following exceptions. Certain words (called “kevwords” or "reserved
words") have been reserved by Pascal to identify statements and sgtructures
inherent to Pascal, and may not be used as identifiers. (These keywords are
Listed in the section below.) Other ddentifiers ({called standard
identifiers”™) have bheen pre~declared by AlphaPascal. This wmeans that
AlphaPascal recognizes these ctandard identifiers as denoting procedures,
functions, and types already defined to AlphaPascal. The difference between
standard identifiers and keywords is that you MAY redefine standard
identifiers so that they no longer represent predefined Pascal types,
functions, and procedures. In other words, 1f you attach a new meaning to a
standard identifier, no error megssage is generated; but, the procedure,
function ar type previcously associated with that identifier is no longer
avaitable to the procedure or function in which vou redefined the
identifier. (Of course, a re~definition onty applies to the program in
which it appears.)

For this reason, you must be very carsful when assigning identifiers not to
inadvertently redefine a standard identifier whose procedure, type, or
function vou may have need for later on in the program.

GENERAL INFORMATION Page 5-6

5.4,1 Reserved Words

Below is a3 list of the Pascal reserved words. You may not use these
reserved words as identifiers.

AND ARRAY BEGIN CASE CONST
DIV Do DOWNTO ELSE END
EXTERNAL FILE FOR FUNCT LON GOTO
IF IN LABEL MOD MODULE
MIL NOT OF QR PACKED
PROCEDURE PROGRAM RECORD REPEAT SET
THEN TO TYPE UNTIL VAR
WHILE WITH

5.%.2 Standard Identifiers

Below 148 a List of all AiphaPascal standard identifiers. You may redefine

these identifiers. However, bhe careful not to unintentionally redefine
them,

Caonstants:
FALSE TRUE MAXINT

Types:
INTEGER BOOLEAN REAL CHAR STRING
TEXT

Predeclared files:
INPUT QUTPUT KEYRBOARD

Frocedures, wvariables and functions. (NQTE: Several of these procedures,
variables, and functions are for internal use of the compiter and standard
Library. For a List of all functions and procedures available for your use,

refer to Appendix A, "Quick Reference to AlphaPascal,” or to the Table of
fontents.

GENERAL INFORMATION

5.5

Because Pascal is a
naturally into

then

happens 1f, for example,
re-ageclared n a
declaration 15 valid?

the identifier; that is, by defining the area of a

ABS
ARCSINH
CHR

Cos
DELETE
ERROR
EXP
FILLCHAR
GETFILE
INSERT
LOs
LOCATION
MARK
NEW
OPENG
PETLE
PUY
RADSE
RDR
RELEASE
RLN
SEEK
STINH
5QR
STRIP
TIME
Ues

WhC

WRR
XMNT

ARC(CDS
ARCTAN
CLOSE

SLOSH

EOF
ERRORINFO
EXPONENT
FILESTZE
GETLOCKS
JOBDEV

LENGTH

LOG
MEMAYVATL
opn
OPENR
pog
PYIRT
RANDOMIZE
RDS
RENAME
RND
SETFILE

 SIZEOF

SQRT
SUCC
TR
VaL
WRE
WRE
XMOUNT

SCOPE OF IDENTIFIERS

block

structured
a nested structure.

procedure

ARCCOSH
ARCTANH
CONCAT
CREATE
EOLN
ERRORTRAP
EXTENSION
FSPEC
IDSEARCH
JOBUSER
LINEMODE
LOOKUP
MOVELEFT
OPEN

ORD

POWER
PUROF TEN
RDC

READ

RESET
ROUND
SHIFT

SPL.
STDERRORTRAP
TAN
TREESEARCH
WLN

WRITE
XERRORTRAP

Languegs,

ARCSEIN
CHARMODE
coey

CRT

ERASE
EXIY
FACTORTAL
GET
INCHARMODE
KILCMD

LN
MAINPROG
MOVERTGHT
DPENT
PAGE

PRED
PWROFTWO
RET
READLN
REWREITE
SCAN

SiN

SPQOL.

STR

TANH
TRUNC

WRE
WRITELN
XLOCK

Pascal

(See Figure 5-1, helow.
the diagram represents some procedure or function within the program.) What

called by

declaration of an identifier ig valid.

The
it is defined and any enclosed blocks which do not redefine it.
in the same block ag
use of an identifier declared in an ocuter block i3 called a
reference.,?

an

tdentifier
reference; the
“mon~lLocatl”

Feope

{Changed 30 April 19813

its

program

declaration

is called

progra
Each Block in

for

Page S~7

falls

a varjable is declered in the maein program, and
main program?
This preblem is resclved by defining the “scope' of
which the

Which

of an identifier is the program, procedure, or function in which
(The use of

Tilocal"

GENERAL INFORMATION Page 5-8

Main Program
Blockh BlockR
glockAl Blockri
BlockA? BlockR?
Figure 5~1

Nested Structure of Program Blocks

Let's say that a constant ig defined both in the main program and Blockh,
8lockA dtselt and the blocks enclozed in BlockA (BlLockf? and BlockAZ) use
the definition made in BlockA. The main program, BRlocks, BlockBl, and
BlockBZ use the constant definition made in the main program.

The following small program demonstrates identifier scoping. The variable

Counter 1is declared hoth within the main program and within the procedure
InnerBlock:

(Changed 30 april 1981

GENERAL INFORMATION | Page 5-9

PROGRAM Scope { This program tests identifier scoping ;

VAR Counter : INTEGER:
{ "Counter" declared far main program b

FROCEDURE InnerBlock;
YAR Counter : INTEGER;
L "Counter” declared for Procedure InnerBlock 1}
BEGIN ’
Counter = 1;
FOR Counter z= 1 10 10 po
- BEGIN T
QQEETELN(§9rmcedure InmerBlock-~ Counter = ' _Counter);
END
g§§)2”§ﬁd Procedure InnerBlock I

BEGIN { Main Program }
Counter = 20;
WRITELN("Main Program—— Counter = *.Countery;
innerBlock { Invoke Procedure InmerBlock }:
WRITELN('Main Program again-~ Counter = ',Counter)
END { End Main Program .

If our description of ddentifier scoping is correct, we would expect the
statement;

WRITELN('Main Program again-- Counter= ', Counter)

to produce the value 20, regardless of the value assumed by Counter within
the procedure InnerBlock. That is exactly what happens.

5.6 MNOTATION

AlphaPascal uses several conventions inp handling and representing numbers
and strings.

5.6.1 MUMBERS

Pascal recognizes two types of numbers: integer and reai. The integer
numbers are the "whole numbers"; that is, they cannot contain a fractional
part. Real numbers are numbers that contain a decimal point, and which
therefore contain a fractional part (even if that fractional part is zerod.

For example, these numbers are integers:

251
7
goea

GENERAL INFORMATLION Page 5-10

These are real numbers:

567.8
-25.00
4,318

(For information on the REAL and INTEGER data types, see Chapter 7, "Data
Types.”? Pascal has two methods of displaying numbers: decimal notation and
scientific notation. Decimal notation allows us to represent a rumber with
an optional sign, a whole number part, a decimal point, and an optional
fractional part. If the fractional part extsts, there must be at Least one
digit on each side of the decimal point. For examples:

24053

Scientific notation is handy for representing very small or wvery large
numbers. A number represented in scientific notation is shown as a value
multiplied by the appropriate power of 10. To indicate the exponent, Pascal
uses the symbol “E". For example:

=2 4053E+43

represents "negative 2.4053 times 10 to the third"; that is, in decimal
notation, the number would be =-240%.3, A positive number after the E tellis
you how many places to shift the decimal point to the right, in order to
read the number {din decimal notation: a negative number tells vou how many

places to shift the decimal point to the left. For exampie, to represent
the number:

3.678E~2

in decimal notation, shift the decimal point to the left two places: 0.0567.

AlphaPascal generally uses decimal notation tao display real and integer
numbers. (0f course, if the number s integer, no fractional part is
shown.) However, if a number is too lLarge or too small to represent easily
in decimal notation, AlphaPascal displays it in scientific motation.

You may use either scientific or decimal notation when entering numbers to a
Pascal program, or within the program itself.

(For dinformation on using the WRITE and WRITELN procedures to farmat numeric
and character output, see Section Ta1.5.5, "Formatting Output.’™)

5.6.2 STRINGS

A string is a group of characters. These characters may be numbers,
letters, or any combination of characters, including the delimiters for a
comment—— 1 ar (# x), A string is identified to Pascal by enclosing it in
single guotation marks. For example:

GENERAL INFORMATION ' Page 5-11

'This is a string.’
*Bata; 123
'The END & neagr!

The characters in a string represent themselves, rather than numeric values,
reserved words, etc. For example, the third example contains the characters
123", but does not represent the number 123. The fourth example contains
the characters TEND", but does not represent the keyword END.

It you wish a string to contain a quotation mark, place two quotation marks
where you want the single guotation mark to appear. For example:

You dont't say.t
A string may he defined in a constant definition. For example:

CONST Message = 'Error -~ Type CR to recover!

(e then say that Message is a string constant.) Or, a string may be used
as a string Literal. For example:

WRITELNC'Do not forget to write—enable the disk."?

NOTE: AlphaPascal includes the data type STRING as & standard data type,
bata of type STRING consists of a group of characters (data of type CHAR}
rather than a single character. For information on CHMAR and STRING, see
Chapter 7, "Data Types."

CHAPTER &

DECLARATIONS AND DEFINITIONS

One of the important features of Pascal is that it requires that vou define
and name the date obliects vou are going to wuwse in a program before you
reference those objects. For example, if you are going to be using a
variable named "Cost”, yvou must "declare" that variable at the start of the
program or procedure in which that variable appears. Besides declaring
variables, you must also declare the program name, Labeis, functions and
procedures, and modules. In addition, yvou must define any numeric or string
constants vou are going to use, as well as any data types. ALl declarations
and definitions appear at the front of the main program or the procedure or
function containing the declared data objects.

These centralized declarations and definitions greatly enhance the
legibility and o¢rganization of vyour program, and aid the compiler in
performing error detection. :

You'lt rememher from Chapter 5 that the declaration and definition part of
the program block takes the form:

Label declarations

Constant definitions

Tyne declarations

Yariasble declarations

External declarations

Procedure and function definitions

4.1 PROGRAM DECLARATIONS

The nprogram declaration consists of the PROGRAM. kevword. It may also
contain a program name. This program declaration assigns the name of the
main program, and marks the start of the main program file. A program name
may be any legal identifier (gee Section 5.4, 'Legal Identifiers"). The
program declaration statement takes the form:

FPROGRAM program-name;

DECLARATIONS AND DEFINITIONS Page H-2

Qr.
PROGRAM;

Untike other versicns of Pascal, AlphaPascal does not require or recognize
any information about external input or output files after the pregram name
in the program declaration, Nejther does AlphaPascal attach any significance
toc the program name. That is, the program name serves only as a type of
comment, and does not actually identify the file.

Erd the program declaration with a semicolon to separate it from the rest of
the program statements. For example:

PROGRAM BubbleSort;

An AiphaPascal program may consist of more than one file. You can compile
these filtes separately; then, using PLINK, vou can Link them together into
one program. O0F the files that vou are going to Link together, only one may
be a main program file. You tell the linker which files are not the main
program file by including an external program declaration at the front of
vhose files, This declaration tells the Llinker that the file 1is not the
main program {that it is, in effect, an extermnal file to the main program:.
The declaration takes the form: -

MODULE module-name;

{where module~name identifies the non—-program file, and does not need Lo be
the same as the name of the main program) or:

MODULE ;

If a file does not contain the main program, there are some restrictions on
the elements that it can contain. For information on the format of a
non-program file, see Section 5.1, "Program Structure.’

6.2 LABEL DECLARATIONS

It wyou want to transfer control to a particular section of a program, you
must label that section with a ‘Vstatement Label.” i.abels are unsigned
integers from 0 to 32767, and must Dbe declared 1n a label declaration
statement. The label declaration statement takes this form:

LABEL ane or more numbers, separated by commas;

For example, 1% we want to use the labels 25 and 100 in a program, fhe
declaration looks like:

LABEL 25, 100;

Labels appear 1in the program in front of the statement they designate, and
end with a colon. For example:

DECLARATIONS AND DEFINITTONS Page 6-3

25: IF EOF THEN WRITELN('End of file.');

To reference a labeled statement, use the GOTO statement, {(For information
aon BOT0, see Sectiom.9.4, "GOTO."™)

In addition to the standard labels we talked about above, AlphaPascal also
recognizes another type of label which appears after the BEGIN and END
keywords. The purpose of these labels 1% te enlist the compilerts help In
determining whether or not vou are properly nesting BEGIN-END blocks. Tf
the same label appears after two BEGIN and. END keywords, the compiler checks
te make sure that the keywords do indeed mark the beginning and end of =&
biock; if they do net, the compiler reports an error ("ISTMBIRI Wrong
BEGIN-END ddentifier -~ XXX expected,” where XXX 43 the block label
expectedy. This helps vou to make sure that the structure of vyour program
15 correct, An example may help to clarify. Look at the following program
diagram:

BEGIN @ Label?

&

BEGIN @ Label?

=

END @ Label?

=

END @ Labeld
The example above shows a program in which the blocks are oproperly nested.
By including the Labels "Label1” and “Label2”, we have asked the compiler to
check the program structure and make sure that the BEGIN and END kevwords
are indeed nested properly. The program helow will cause the compiler to
regort an erroer:

BEGIN : Blockt

-

BEGIN - Blocks

"

END s Block?

e

END 1 Block?.
since the END keyward for Block?! appears before the END kevword of Blockd.

The BEGIN-END label may take the form of any legal identifier, and must be
separated from the keyword by a colon.

(Changed 30 April 19813

DECLARATIONS AND DEFINITIONS Page H-&

&.7% CONSTANT DEFINITIONS

pefining constants will be helpful whenever: you have a gtring or numeric
Literal that s used frequently within a program; a Lliteral is important o
understanding the Logic of the program; or a literal may possibly be changed
in future versions of the program. {For dinformation on constants, ses
section 8.2, "Constants.')

The constant definition takes the form:

CONST identifiert = number or string;
identifier? = number or stringg

H

§

L3
@

@

identifierN = number or stfing;'

For example, instead of repeating the expression 'Radius # 3. 14159270
throughout a program, you might want to define the constant Pi:

CONST Pi = 3,1415927

Then, wherever vyour program used to say "Radius * 3.1415927", you can now
say: "Radius * Pi". This keeps your program easy to read. Also, if At a
future date you have to change a literal in your program, it is now a simple
matter since vyou have only to change one constant definition statement
instead of every occurrence of that Literal in the program.

As an example of a3 string Lliteral, consider the statement:.
WRITELN('You have entered an invalid number—- try again');

T+ you use this string more than once, vou might want to replace 1% with a
constant :

CONST Error = *You have entered an invalid number-- try again'};
Now vour statements can read:

WRITELN(Frror):

&.b4 TYPE DECLARATIONS

The most important feature of Pascal s its use and definition of the
concept of "data types.”™ A data type is a set of data (for example, whole
numbers) that are alike in some way. For mere information on data tyoes,
see Chapter 7, "Data Types.” For now, let's just say that Pascal gives vyou
some wvery powerful ways of representing different kinds of datas types.
Besides the standard types that Pascal recognizes (for example, the type
TNTEGER, that reprasents whole numbers), Pascal alsc allows you to define
your own data types. You must declare a user-defined data type at the front

(Changed 30 April 1981)

DECLARATIONS AND DEFINITIONS ' Page 6&-5

of the main program or procedure in which you are going to access that data
type., The tvpe declaration takes this form:

i

TYPE identifierl typet;
identifier? = typed;

il

identifierN typeN;

For example, suppose you want Lo define a new data type that is a simple
zcalar type whose elements are: MON, TUES, and WEDS. You can do so by
gimply enumerating the elements of that type:

TYPE Days = (MON,TUES, WEDS)

On the other hand, suppose you want to declare @ more complicated data type,
such as a tvpe of array:

TYPE NewArray = ARRAY [1..101 OF INTEGER;

The declaration above declares an array named NewArray which contains 10
elements {which are %o be findexed by the numbers 1 through 103, The
elements are of type INTEGER.

&.5 VARIABLE DECLARATIONS

Pascal reguires that all variables bhe 'declared."” This means that vyou
assign a name to a variable and permanently associate a data type to that
variable, Since vou tell Pascal the data type of each wariable, Pascal
knows what operations can be performed on that variable, and which functions
and procsdures can be used on it.

Be aware that Pascal does not assume an initial value (e.g., zero) for a
declared variable; vou must explicitly assign a value to a variable. If you
try to assign a2 value that is not consistent with the data type associated
with that variable, the Pascal compiler generates an error message.

The wvariable declaration statement takes the form:

VAR identifier...,identiftier : data-type;
identifier... ,fdentifier : data-type:

-

@

identifier...,identifier : data-type;

Far example:

DECLARATIONS AND DEFINITIONS Page 6~6&

VAR TestScores, Yariance, Mean : REAL;
StudentIl, ClassName,
StudentName, Teacher : STRING;
Passed @ BOOLEAN;

The wvariable name may be any Llegal identifier. The data types you can
assign to a variable are discussed in Chapter 7, "Data Types.'

£.6 FUNCTION AND PROCEDURE DECLARATIONS

You may often need to perform the same sort of actions on a body of data
throughout vour program. Rather than forcing you to tediocusly duplicate one
piece of code every place it 1is needed, Pascal gives you two ways to
generate "subprograms’ which may be called upon wherever needed 1in 2
Drogram. These subprograms are called "functions” and "procedures.” Such
subprograms atso help vou to maintain your programs since, if a2 change must
bhe made, it only needs to be made once.

Althaugh vyou may invoke these functions and procedures any place in the
statement part of your program (cr within the declarations of other
functions and procedures), vyou must first define the functions and
procedures within the declaration part of your program before you invoke
them. (A szpecial case exists for referencing functions and procedures
within other functiens and procedures before they have been defined; see
Section 6.6.3, "Forward Declarations.'

Functions and orocedures can bhe thought of as programs within a program.
They can declare variables, define and invoke procedures and functions of

their own (known as "local" procedures and functions), and input and output
data, '

f.6.1 Functions

& function s a subprogram that performs some computation and returns a
value. (For example, the standard function ABS takes & number and returns
the absolute value of it.) Pascal allows you to define your own functions
by including function declarations at the front of the program or procedure

that will call that function. Function declarations must appear after any
variable declarations. '

The function declaration takes this form:

FUNCTION function—name (formal parameters) : data-type of result;
function-block;

where the formal parameters are identifiers that describe the variables {and
their data types) which will be used within the function. These variables
4o not have to appear in a variable declaration statement, since they are
being declared within tThe function heading.

DECLARATIONS AND DEFINITIONS Fage &7

Following the formal parameters is the data type of the result of the
function. For example:

FUNCTION SufficientFunds(Request @ REAL) : BOOLEAN;
BEGIN

SufficientFunds := Request <= AmountAvailable
END;

The heading above might identify a function that returns TRUE if a checking
account has enough . funds to cash a specified check. The function block
starts with the BEGIN keyword and finishes with the END keyword. The
statements in between perform the action on the inmput data when the function
is executed. The function block takes this form:

i.abel declarations

Constant declarations

Tyoe declarations

Varijable declarations
Procedure/function declarations
BEGIN-END block

&

Az you can see, the block of the function follows much the same form as the
erogram block dtself, except that a function definition ends with a
semicolon, rather than a period. At some point within the BEGIN-END block,
a value must be assigned to the function name i¥self. This is the wav that

the result of the function 1is returned to the program or procedure that
nvoked 1t.

Te invoke a function, include the name of the function within the program
block along with the names of the variables that are going to supply that
function with data. For example, to invcke the function SufficientFunds,
vou might include a statement Line Like this:

IF sufficientFunds (100,507
THEN WRITELNC'Geood check®)
ELSE WRITELN('Sorry, overdrawn'};

The statement above prints 'Good Check® if SufficientFunds returns TRUE, and
"Sorry, overdrawn' if it returns FALSE. You may supply wvariables,
expresstons, or constants as the arguments of the function. MNote that the
names of the variables you pass to the function do not have fo have the same
names as those variables listed im the function heading. The first variable
or constant) mentioned in the function invocation is substiturted into the
function for the first variable mentioned im the function heading, ths
second variable (or constant) in the dnvocation replaces the secomd variable
in the function heading, and so on. (0f course, the data types of the
variables must be consistent. For example, if vou supply the variable CLheck
to the function SufficientFunds, it must contain a number of type REAL.)

Remember that a function invocation is always part of an expression, For
example, given the fumction MaxNum, these are valid function invocations:

DECLARATIONS AND DEFINITIONS Page 6-8

WRITELN(*The largest number is: ', MaxNum(Number?, Numberdll};

ar;

IF MaxNum(valuel,Value2) < 0 THEN WRITELN('Numbers are negative.’);

Let's Llook at an example of a function and function invocation. Suppose
your program freguently needs to check the range of input numbers. A simple

function to make sure that a number is between 1 and 100 might look
something Like this:

PROGRAM Validate; { Validate a numeric entry; make sure
that it is between 1 and 100G. 7

VAR Target : REAL;

FUNCTION ErrCheck(lLocal : REAL) : BOOLEAN;
{ Function does error checking on entry. If 100 < number < 1,
ErrCheck reports error by returning a TRUE. ¥
BEGIN { RBegin function ErrCheck ¥
ErrCheck := Local < 1 OR Locat > 100
END { End function ErrCheck ¥;

BEGIN { Main Program ¥
WRITE("Enter a number between 1 and 100: 'J;
READLN{(Target};
IF ERRCHECK(Target)
THEN WRITELN(*Invalid entry: try again.')

FUSE WRITELNC'Very good. Correct entry.'}
END { Main Program .

Note that until the program begins executing the main program, where the
function is actually invoked, the function is not executed, even though the
function definition appears at the front of the program.

6.6.2 Procedures

The major purpose of a function is to compute and return a value. The main
purpose of a procedure is to perform a set of operations. For example,
tet's say that vyou are designing a progrem that plays a card game. At
various times throughout the program you may need to simulate the shuffling
of a deck of cards. Rather than include this same piece of code throughout
vour program (which would make the program hard to read and maintainl , You
may designate this piece of code as a procedure. The procedure declaration
names the procedure, tells what kinds of variables it will use, and gives
the statements that make up the procedure. It takes this form:

PROCEDURE procedure~name (formal parameters?;
procedure-block;

DECLARATIONS AND DPEFINITIONS Page 6~9

The formal parameters List the variabies f{and their types) with which the
procedure will work., For example:

PROCEDURE PrintReport (Title : STRING; PageSize : INTEGER);
The procedure biock takes this form:

Label dectarations

Constant deglarations

Tvpe declarations

Variable declarations
Procedure/function declarations
BEGIN-END bhilock

£

To invoke the procedure, include the name of the procedure within your
DrOOram. Unlike & function invocation, a procedure invocation is a program
statement, not an expression. For example, say that you have & procedurs
named Shuffle that simulates the shuffle of a deck of cards:

BEGIN
IF Dealer = New OR Deck = Empty
THEN Shutffle
EMD 2

Although a3 procedure may take a form very much Like that of a function, it
does not necessarily return a2 value. Notice that it also does not have to
accept any arguments. (For information on using procedures to return
several results, see Section 6.46.4.2, "Reference Parameters,')

£.6.% Forward Declarations

What happens when a procedure ar function declaration invokes a procedure or
function whose declaration has not yet appeared in the program? There are
times when for aesthetic or practical reasons (or because the twe routines
tatl sach other) vyou must invoke a procedure or function before its
definition appears in the declaration part of the program. Pascal provides
a way to do this.

The forward declaration tells the Pascal compiler, "We'll define this later;
don®t worry that vyou haven't seen its declaration vyet,” The forward
declaration takes the same form as the heading of a procedure or function
declaration, except that the word FORWARD replaces the procedure or function
block. In effect, we separate the heading from the bhlock. For example,
take & Llook at the procedure Drawbline:

PROCEDURE Drawline (Character : CHAR; LineSigze, Angle : REAL);
FORWARD ;

DECLARATIONS AND DEFINITIONS Page &6-10

Now & function or procedure declaration may appear that invokes the
procedure or function. Later within the declaration part of the program,
the actual procedure or definition bLlock appears, preceded by the name of
the function. For example:

PROGRAM TaxReturn; ¢ This program computes tax returns. First 1t
asks 3 the user wants instructions (short or tongl.

YAR Short : BOOLEAN;
Query : CHAR;

PROCEDURE pDisplay{Short : BOCLEANI;
§EGIN L pi gphlay ¥
T This is the procedure that actually displays the
instructions. It prints a long or a short
file, depending on the value of Short. ¥

END £ Display ¥z

PRQCE%Ugﬁ)?riﬂtlﬂStFUCtiOﬂS (Short @ BODLEAND;
FORWARD; { The forward referencel ¥

FUNCTION AskAnswer (Query : CHARD = BOOLEAN;
QEQIN "L AskAnswer 1}
“hekAnswer :® FALSE;
IF Query = "Y' OR Query =Ty " THEN AskAnswer := TRUE

TELSE IF @ue?y = 120 THEN PrintIinstructions(Shortl;
END { AskhAnswer ¥;

FROCEDURE Printinstructions;

B%GIN { PrintInstructions }
TShort := EALSE { Initialized to Long instructioms. ¥;
WRITE (Do you want short Instructions? Y or N:f);
READLN (Query?;
IF Askanswer(Query) THEN Short 2= TRUE;
Display(Short)

END { PrintiInstructions I;

BEGIN 4 Main Program ¥
WRITELN('We''re going to compute vour tax return,'l; WRITELN;
WRITELNC'AtL any time in this program, You may
review the instructions'l;
WRITELN{'by answering any Y or N question with a "'2''.");

WRITE('Do you want instructions? (Y or N): '); READLN{(Query};
IF AskAnswer{Query) THEN Printinstructions (Shaortl;

WRITE('Do you want to average? (Y or N): '); READLN(Query);

IF AskAnswer(Query) THEN WRITELNC'OK, Wetfll average.'};

T NOW, COMpULE (E8XES... e ¥

"

®

ENP L Main Program F.

DECLARATIONS AND DEFINITIONS Fage 6-11

Note that when the procedure block PrintInstructions appeared after the
Function AskAnswer, we did not dnclude the formal parameters for that

procedure, since the procedure heading appeared at the time of the forward
reference.

H.6.4 Formal Parameters

We would Like to include a word here on formal parameters. Parameters are
variables used within a function or procedure. Pascal greatly extends the
usefulness of your routines by allowing your program to supoly those values
at the time that you invcke your function or procedure. This means that you
can use your routines in a wide variety of situations, on a wide range of
data, Farameters give your functions and procedures a way to communicate
with the program that calls them.

The variables that are specified at the time you define vyour fumction or
procedure are called the “formal parameters.” The values you supply with
the actual invocation of your routine are catled the "actual vparameters.”
For example, given the function heading:

FUNCTION Salary(Takehome, Gross : REAL) @ REAL;

the formal parameters are the variables Takehome and Gross. When we invoke
that function we might do so using constants:

Raise:=Salary{183,250);
ar, we might use variables which contain these values
Raise:=SalarviNet,Total);

Mote that the variable identifiers we use as formal parameters cdoe not have
to be the same as the identifiers for the actual parameters. You can think
of the formal parameters as "placeholders’” for the actual data which will be
used. The actual parameters are "plugged into" the formal parameters in the
same order as they appear in the routine invocation. {(For instance, in the
example above, Net takes the place of Takehome, and Total takes the place of
Gross. The total number of actual parameters must match the number of
tformal parameters.

6.6.4.17 V¥Yalue Parameters - The formal parameters we have ssen 1in our

examples above were all used to pass information inte the function ar
procedure. When we Lleft the function or procedure, the value of the
variable we passed into the routine was not actually changed, even though it
might have been wmodified within the routine. In effect, the function or
pracedure made a copy of the wvariable and used the copy for its
calculations. Thern when we Left the routine, the coriginal value of the
variable was unchanged.

PECLARATIONS AND DEFINITIONS FPage 6-12

This type of variable is called a “value parameter.’ Value parameters may be
variables or expressions.

6.6.4.72 Reference Parameters = It sometimes happens that you would Llike a
orocedure or function to actually modify a variable. (Otherwise, the only
values you could return would be the single value returned by 2 function.}
Ta tell a function or procedure not to usg a copy of a variable, but to use

the variable itself, include the VAR keyword in front of the parameter. For
example:

FUNCTION Justify{VAR InputString;STRiNG;PageW%dth:REAL);R&AL;

which might modify the string InputString by inserting blanks so that it
equaled PageWidth in Llength, and returns the number of blanks inserted. A
parameter Like InputString is called a "reference parameter.”

Another way of Looking at value parameters and reference parameters is that
in the case of value parameters we are really dealing with two different
cets of variables: those outside the routine and those inside. In the case
of reference parameters, we are dealing with only one set of variables.
Reference parameters must be variables, '

4.7 EXTERNMAL DECLARATIONS

AlphaPascal provides an external Library of procedures and functions. This
collection of useful routines is available for use by your program, You may
also write vour oawn external Llibraries. To tell AlphaPascal that you are
going to use a function or procedure that is in a sStandard Llibrary other
than STDLIB, you must precede the declaration of that function or procedurs
with the keyword EXTERNAL. For example:

EXTERNAL FUNCTION Graph (X,Y : REAL) @ REAL;Z

Qra

EXTERNAL PROCEDURE Printline {Line : STRING);

You do not inciude the procedure block or function block, since the actual
definition of the routine 15 in the external Library.

Besides identifying procedures and functions within your program that are
defined in an external Library, vou will use the external declaration o,
desigrate elements that appear in files that are not a main program file.
For example, suppose you have a main program file and three other files
which will be Linked together to form one program. (See Section 5.1,
"Program Structure,’” for information on main program and non=orogram Tiles.)
Wwithin one file vou may well want to use a procedure, function, ar variable
that was declared and defined in another file. If you are going to link a
number of files together f4nto one program, each file must contain ean

DECLARATIONS AND DEFINITIONS Page 6~13
external declaration . for every element it needs to reference, if¥ that
element was declared and defined in another file.

For example, if the variable CustomerlID was declared in file File3, and vou
need to reference that variable in File?, File2 contains the external

declaration:

EXTERNAL VAR CustomeriD t.STRENG;

There are some things vyou should Keep in mind when making external
declarations:

1. You may not externally declare Labels, constants, or types. If you
need to have common definitions of these items, use include files.
For information on include files, see Section 4.3.2.2, "The Include
Option (%137

2. If you are going to use data files in vyour program, the
declarations for those data files must be in the main program file.
{(that s, data files may not be externally declared in vour main
program file.}

3. You must be very sure that the types given in vour external
declarations exactly match the +types given in the ariginat main
declarations. for example, if one file has the deciaration:

VAR NetWork : CHAS;

the external declaration in another file for that wvariable must
specify type CHAR:

EXTERNAL YAR NetWork : CHAR:

GHARPTER 7

DATA TYPES

We've already mentioned that a variabile is a symbol that can represent more
than one data value. We've also said that you must "declare the type” of
gach wvariable used in 3 program. This chapter discusses the +idea of "data
type,” and the various data types available in Pascal.

A data tvpe describes the kinds of values that a variable can assume. For
example, if the variable CustomerID can assume only numeric, integer values,
we say that its data type is "integer.” Some languages allow vou to let one
variable assume a variety of types. (For example a variable could have the
integer value 34 at one point, and the real value 34.56 at another point.)

Pazcal, on the other hand, allows each variable to assume only one kind of
data type. ‘

Pascal requires that you declare the tvype of data that a variable can
ASSUME. This results in several advantages: 1) you can always deduce the
tvpe of vatues a vartable can assume by reading the program; you do not have
to run the program to figure 1t out; 27 certain operations may only be done
on specific data types; having to declare your variables aids the compiler
in making sure that vou are not performing an illegal operatiocn on a
variable; 3} +the compiler is able to make sure that you are not improperly
mixing variables of different data types, (For example, you may not
multiply & real number by an integer and get an integer result.) Once a
variable has heen assigned a data type, we have automatically defined the
operations that can be applied to that variable, the type of values it can
assume, and the standard procedures and functions that can be used on it.

Several data types have bheen pre-defined for you by AlphaPascal; these are
calied ‘'standard data types.” The AlphaPascal standard data types are:
INTEGER, REAL, BOOLEAN, CHAR, STRING, and TEXT.

Data types are grouped into ftwo categories: simple and structured. A simple
data type i3 a "scalar’” type. A scalar data type 15 one that contains a set
of elements, and those elements are ordered. For example, the INTEGER data
type contains the set of whole numbers. These elements are ordered; for
instance, -2 18 less than -1 which s less than 0 which is Lless than 1 which
is Less than 2, and =30 on.

DATA TYPES rage 72

structured data types are more sophisticated than the simple, scalar data
types. ¥ vou were to create your own structured types, they would be made
up of simple data types. Pascal supplies a set of keywords (SET, ARRAY,
RECORD, and FILE) that you can use 10O build structured types.

7.1 SIMPLE DATA TYPES

Simple data types can either be the pre-declared simple data types (INTEGER,
REAL, ROOLEAN, and CHAR), or they may be types defined by you. If defined
by you, a simple data type is either a scalar type or a subrange of another,
already defined scalar data type. '

7.1.7 INTEGER

Integers are whole numbers (thet s, numbers with no fractional part).
AlphaPascal allows you to use integers in the range of ~32767 through 32767.
They are stored by the computer as one-word, signed 2's complement hinary
numbers. These are integers:

32000
0

1

=450
MAXINT
+56

(Remember that the pre-declared constant MAXINT is the lLargest integer that
AlphaPascal can represent, 32767.)

The standard identifier INTEGER designates the integer data ty¥pe. For
example:

VAR Ellipse, Counter, Control : INTEGER;

The operators that have been defined for integers are; addition (+);
subtraction or sign inversion (=); multiplication (*); integer divisgion=—
rhat is, divide and truncate-— (DIV); modulus ¢MODY; the set membership
operator IN; and, the relational operators. tlging other operators {(for
example, the real division operator, /) on integers causes the rcompiler to
generate an error mMessage.

There are many functions that accept INTEGER argumente. {See Chapter 12,
"Mazthematical Functions,” for & List of the trigonometric, hyperholic
trigonometric, and mathematical functions.)

Two other functions often wused on INTEGER data are the PRED and SUCC
functions. PRED returns the predecessor element of the data type; SUCC
returns the successor element of the data type. For example, given three
variables, ONE, TWO, THREE of type INTEGER, and ONE = 1, TWO = 2, and THREE
= %: PFRED(TWOY returns 17 SUCC(TWOY returns 3. (See Sections 11.%1.6 and

DATA TYPES Page 73

11.1.8 for information on PRED and SUCC.D

T.1.2 REAL

Real numbers are decimal numbers that may contain a fractional part. As
noted in Section 5.6, “Notation,” we can represent real numbers either in
decimal notation or in scientific notatien. These are real numbers:

yon

P B
=56,7812
7 O3E+5
+45.0
1.03E-3

The computer stores real numbers as three-word flcating point numbers
significant to 11 digits (12 for real numbers in which the fractional part
is zero or less than TE12), with an exponent range of roughly 1E~37 to 1E3RT.

The standard identifier REAL designates the real number data type. Far
axamples

VAR Mean, Median, Variance i REAL:

The operators defined for real numbers ares: addition (+); subtraction and
sigrn inversion (~); multiplication (*); real division (/); and, the
relational operators. Many functions accept REAL numbers as arguments.

Note that you may not use the PRED and SUCC functions or the set membership
aperator IN on REAL data,

7.1.5 BOOLEAN

The Boolesan data type contains two elements: TRUE and FALSE. These elements
are ordered so that FALSE < TRUE. (And, SUCC{(FALSE) returns TRUE.) FALSE and
TRUE are pre-declared constants. A Boolean variable represents a logical
true or false value. For example:

IF Month = April THEN Spring := TRUE

In the statement above, Spring is a Boolean variable that can assume the
values TRUE or FALSE.

To designate a Boolean data type, use the standard identifier BOOLEAN., For
examples

VAR Query, Female, Emplovee : BOOLEAN;

The operators defined for Boolean data are: AND, OR, and NOT. These are
called Boolean operaters, and produce a Boolean result. For example:

DATA TYPES . Page 7-é&

X AND ¥

gives a -result of TRUE 1f both X and Y are TRUE, or FALSE if either X or ¥
(or bhothl are FALSE.

Whern we use the relational operators on INTEGER, REAL, CHAR, or STRING data
types, the result is always of type BOOLEAN.

You may use the PRED and SUCC functions on data of type BOOLEAN, and you may
use the set membership operator, IN. You may also use the ORD function:

ORD(FALSES = (0
ORD(TRUEY = 1

T.1.4 CHAR

The computer recognizes a specific set of c¢haracters that it ¢can represent.
The elements of this set are ordered; for example, A < B < (... In the case
of the Alpha Micro computer, this ordering is called the "ASCII coilating
sequence,” and the set of characters is called the "ASCII character set.”

(For & List of the ASCII characters, see Appendix B, "The ASCII Character
Set.')

4 CHAR variable contains one ASCII character. To indicate an element of
CHAR data type, enclose it in single guotes. For example:

VAR MenuChoice 3 CHAR;

MenuChoice 1= TA'";
The relational operators have been defined for use on CHAR data. Remember
that A < B because of their position in the ASCII collating sequence. You
may alsc use the set membership operator, IN on data of type {(HAR.
To designate data as type CHAR, use the CHAR standard identifier.

VAR Initial : CHAR;

or:
TYPE Lharacter = (CHAR;
YAR Item @ Character;

Because CHAR is a non-REAL scalar type, you can use the SUCC and PRED

functions to ddentify predecessor and successor elements of the type. For
example:

PRED(O'BS
returns an ‘A'. You can also use the ORD function to determine the position

of the character in the ASCII character set. (For moere information on PREDR,
SUCC, and ORD, see Chapter 11, "Miscellaneous Functions and Procedures.’)

DATA TYPES Page 7-5

NOTE: Remember that CHAR data is only one ASCII character. Another standard
data type exists, STRING, which represents a collection of CHAR data. For
example: TA' is CHAR data, but TABCD' is S$TRING data. For information on
STRING, see Section 7.2.%, "STRING.”

7.1.% User-defined Scalar

Pascal allows vou to define vour own scalar types. To do so, use the type
declaration statement. You will supply the name of the data type, and the
elements of which 1t is composed. For example:

TYPE Spectrum = (Violet,Blue,Green,Yellow,0range,Red);

Just Like any other scalar type, vyour data type consists of ordered
glements, This ordering 1is reflected by the order in which vou List the
elements 1in the type declaration statement. for example, given the
statement above, Violet < Blue < Green, and so on. You can then declare and
use a variable of the data type vou have defined. For example:

VAR Colors : Spectrum
EEFCDLDPS = Red THEN WarmColor = TRUE:

The relational operators have been defined for user~defined sgalar types,
and return a Boolean result. Internally, the computer stores each of these
elements as an integer value. (For example, in the example above Violet 1s
4, Blue is 1, and s0 on.)

You may not use scalar types in I/0 operations. For example, this statement
is iliegal:

WRITE(Yel low)

if Yellow is an element of a user-defined scalar type. However, you could
say something Like:

IF Colors = Yellow THEN WRITE('Yellow'):;
Note that Colors is & variable, hut Yellow is & constant of the scalar iype
Spectrum (just as the number 2 is a constant of the scalar type INTEGER),
You may only use relational operators and the set membership operator, IN,
on an element of a user—defined scalar type.

NOTE: Rather than using a type declaration followed by a variable
declaration, vyou may combine both statements into one variable declaration
whern defining your own data types. For example:

VAR Wavelengths,Coleors 1 (Violet,Blue,Green,Yellow,0range , Redl;

DARTA TYPES Page 76

However, 1f you are going to have more than one variable declaration that

declares variables of that type, you must have a separate type declaration
statement instead. '

You may use the ORD, PRED and SUCC functions on user~defined scalar types.
For example, given our example above: .

ORD(Violet) =
ORD(Blue) = 1

SUCC(violety = Blue
pRED{(Orange) = Yellow

L

T.1.6 User-befined Bubrange

Pascal allows vyou fto define a subrange of a previously defined data type.
For example, given the data type Spectrum above, suppose you want a variable
to only access the first three colors elements of that tvpe, Wiolet, Blue,
and Green. You could define a subrange scalar Type:

TYPE {oldColors = Violet .. Green;

You may define a subrange of any user-defined or standard scalar type except
type REAL. Use the type dectaration statement in this format:

TYPE Type-name = lowerlimit .. upperblimit;

The symbols ".." tell Pascal thet you are estabblishing a subrange,
Upperlimit and Lowerlimit are the beginning and ending elements aof the
subrange. For example:

TYPE Decimal = 0V .. '97;

tells Pascal that we want to define a type named Decimal that can assume
values in the range of '0' through '?' of the standard data type CHAR. We
can then declare a variasble of that type:

VAR Number : Decimal;

NOTE: You may also directly declare a variable to of 3 subrange without
using a type declaration statement. For example:

YAR Number 3 '0°' .. '97;

7.2 STRUCTURED DATA TYPES

Structured data types are built up of simple scalar data types, Severatl

keywords can be used to define structured data types; ARRAY, RECORD, SET,
and FILE.

DATA TYPES ' Page 7-7

You may define your own structured data types in much the same way that yOu

were able to define simple scalar types. (See Section 7.1.5, "User-defined
Scalar.") Two structured types have been pre-declared for you: STRING and
TEXT.

7.2.1 Packed Data Types

Before we discuss the various structured data types available to vou, we'd
like to digress for a moment and talk about how the computer represents data
types in memory.

Structured data types sometimes require guite a bit of room in memcry. For
example, consider how many memory Llocations must be allocated for a
structure such as:

ARRAY [0..10,0..10,0..10,0..103 OF CHAR;

where more than 10,000 elements must be handled. (NGTE+ We discuss the
ARRAY data type in Section 7.2.2, "ARRAY.) It is often the case that only
one element of such a structure is stored 1in one memory Location, even
though there ohysically may be room for more. 7To help minimize memory use,
Pascal allows vou to create "packed” data structures, in which the data in
the structure are packed together in a minimum amount of space. To create a
packed data type, include the keyword PACKED 1in your type declaration
gstatement:

TYPE Type-name = PACKED data type

For example:

TYPE CustomerID = PACKED ARRAY £1..50] OF CHAR;

You may also pack records by preceding the keyword RECORD with the word
PACKED, Only the array or record immediately following the PACKED keyword
is affected, and any nested arrays or records must be explicitly packed. As
one example of the efficiency you can sometimes gain in packing data,
consider the following data structure of type RECORD:

TYPE pate =
o RECORD
Month @ (Jan,Feb,Mar fpr May, Jun,Jul ,Aug,Sept , 0ct Moy, Deck;
bay LA LS .
Year @ 0..99
END;

Unpacked, the data above takes up three words of memory; packed, it takes up
anly one word.

NOTE: Some types of data cannot be packed {(e.g., real numbers), and the
keyword PACKED 1in the type declaration for such data types has no effect.

ATA TYPES | Page 78

Your program does not need to handle a packed data type differently than any
other data type. (NOTE: Standard. Pascal requires. that you use the UNPACK
and PACK standard procedures to convert between packed format and a format
that your program can read and write. AlphaPascal performs this conversion
for vyou automatically. In fact, AlphaPascal does not support the PACK and
UNPACK procedures.)

Although you do save memory space by packing a data type, be aware of the
fact ‘that vyour program will run slower when it handles such a data
structure, because of the time required to unpack and repack data.

Tu2e2 ARRAY

An array has a fixed number of components which may be accessed in any order
by referencing the location of the element within the array. To reference
an element of the array, you give the name of the array, and the array index
(sometimes called a subscript) which selects the location within the array

whose contents you want to access. The subseript appears after the array
name in sguare brackets:

Array-namel Index1, Index2, ... IndexN 1
where each index is a simple type. For example, suppose the array PartNos

contains thirty part numbers, and you want to see what the twentieth one is.
You would access the twentieth location in the array by saying:

WRITELN(PartNosi201);
or perhaps:
WRITELN(PartNosl? + Offsetl;

ALL elements of an array must be of the same data type. Your dectlaration of
the array must include the data type of the elements of the array, and the
data type of the subscripts by which you will access elements of that array.

(peclaring the fype of the subscript tells Pascal how many elements the
array wili contain.) For example: :

TYPE MonthTotals = ARRAYD1..201 OF REAL:

The statement above tells Pascal that you are defining an array type named
MonthTotals whose elements will be real numbers, and that the locations in
that array will be accessed by refering to the numbers 1 through 20 (2.g..
MonthTotals[1l, MonthTotals(2]1, ... MonthTotals[20d2.

The subscript data type can be any scalar type except REAL. Aithough tThis
field will often be of type INTEGER, it doesn't have to be. For example:

f??Q”CompiaintNum = ARRAY [BobsOffice .. PaulsOfficel OF INTEGER;

DATA TYPES Fage 7-@

where Bobs&ffice,a?auLsOffice is a subrange of a user-defined scalar type,
such as (RobinsOffice, BobsOffice, PaulsOffice, BillsOffice).

After vou have declared an array type, vou may now declare a variable of
that type. For example:

VAR Problems @ ComplaintNum;

Fascal also allows a shorthand form that permits you to combine the type and
variable declarations:

y&ﬁ_PrmbLems : ARRAY [Bobs0Office .. PaulsOffice] QEDIN?EGER;

One of the features that help make arrays so useful 48 the fact that
subscripts may ke expressions. This allows vou to access elements of the
array using variables for the subscripts. Foar example:

PROGRAM Squarelt;

VAR Saquare : ARRAYL1..103 OF INTEGER;
Counter : INTEGER;

BEGIN { Squarelt ¥
Tounter = 1:
WRITELNC'Sguares of the integers 1 to 10 are: "3:
FGR Counter 3= 1 TO 10 DO
T BEGIN T
ScuvarelCounterd o= {ounter*lounter;
WRITELN (Squarelfounterl)
END;
enp { Sguarelt 3.

The small program above creates array Sguare of ten elements. The FOR-BO
loop increments the variable Counter from 1 to 10, accesses the array
Llocation indexed by Counter, and writes the square of Counter into that
location of the array. (For example, location Sguarel5] contains the number
5%5, or 25.) You can use a similar type of loop to retrieve data from an
array. NOTE: Sometimes vou can fill an array without using Lloops. For

example;
InvoiceNumi*A'] == InvoiceNum[®s8'];

accomplishes the same thing as:

FOR T 2= 170 5 DO InvoiceNuml'A', I3 := InvoiceNum['B',11;

DATA TYPES : Page 7-10

7.2.2.1 Multi-dimensional Arrays - Until now our discussion has been of
“one-dimensional’ arrays: that is, arrays with just one index. Pasgal also
allows you to constrict arrays with an unlimited number of dimensions. (You
might consider a multi~dimensional array as an "array of an array.”) To
declare such a structure, include additional subscripts in the deciaration.
Suppose vyou want to keep track of a five~eclement array, each element of
which is in turn a five~element array: '

TYPE InvoiceNums ARRAY[®A'..'E'J OF ARRAYL1..51 OF INTEGER:
Pascal also allows a shorthand form:

TYPE Invoicebums ARRﬁi{“A’u.’E“,lywS} OF INTEGER;
The statements above create a two-dimensional array of 25 elements. Each
element is referenced by a pair of subscripts. If we wanted to make 3

pictorial representation of our array InvoiceNums, it might Look something
Like this, with the Xs representing integer numbers contained in the array:

x 2 2 3 3
A X X X X X
8 X X X X X
X X Xx L7 X
DX X X X X
E X X X X X

1t we wanted to access any number in the array, we would have to specify the
subscripts that designate the proper Llocation. (In the example above,
", 'E' designate array “rows'; 1..5 designate array ‘'columns.™ The
subscripts for a two-dimensional array must identify the element’s row and
column. For example, to identify the element marked with a guestion mark in
the table above, we would ask for Row C, Column 4:

InvoiceNums[DCT 40

The number of dimensions an array may contain is Limited only by the room in
Mmemory .

7.2.53 STRING

We have already mentioned the data type L{HAR. & wvariable of type CHAR
contains a single ASCII character, However, we often need to refer to
collections of characters {(such as words, names, or addresses) rather than
just single characters.

DATA TYPES Page 7-11

The standard data type STRING allows vou to declare variables that contain a
group (or "string'? of ASCII characters. For example:

UAR AccountID ¢ STRING;

The default maximum string length s 80 characters, but you can set. the
string length maximum to from 1 to 255 characters. To set maximum string

tength, follow the identifier STRING with an integer constant in square
brackets., For example:

TYPE QOrderID = STRINGL25]:

The STRING data type is approximately eguivalent to:

TYPE STRINGIN] = PACKED RECORD
LEN o 0..255;
TXT + ARRAY [1..NT OF CHAR:
END; | .

If N above is omitted, STRING defaults to size 80O, (NOTE: The structure
given above for STRING is approximate, and is only given for illustrative
purposes; yvou cannet access the length of string X by referring to X.LEN.}
The computer stores strings with one character per byte, and one byte at the
front of the string which tetls Pascal how Long the string is.

Teled TEXT

The standard data type TEXT is equivalent to the type FILE OF CHAER., For
example, suppose you want to declare and open a text fite, you could say:

PROGRAM ReadListing;

TYPE ListFile = TEXT;

VAR Programlist : ListFile;

BEGIN 4 Readlisting 2
QPEN{(ProgramlList,'ACCNTT.DAT? LOUTPUT) ;

{ read data from file 2
END £ Readiisting .

MOTE: In the example above, it would alsc have been valid just to say: VAR
Programl.ist @ TEXT. (Note to users of previous versions of AlphaPascal--—
the file type INTERACTIVE 1s no longer needed or supported. Replace any
occurrences of the identifier INTERACTIVE with TEXT, or at the front of vour
program re-defime INTERACTIVE (e.g., TYPE INTERACTIVE = TEXT).) (For
information on type FILE, see Section 7.2.5, below.)

DATA TYPES : Page 7T~12

Tud.% BET

Sets give vou a very-efficient wéy ot handling certain kinds of infermation.
Although, they are not exactly analogous, you might think of sets as a kind
of packed Boolean array. The use of sets allows complex logical expressions
to be written concisely, and also gives a more flexible way of performing
logical tests. For example, instead of the cumbersome statement:

I1fF (Character = "A'") gﬁ‘(tharaater = 'B') OR

(Character = "C') OR (Character = AR
OR (Character = 'E7)
THEN Flag := TRUE;

using sets, you can simply say:

IF Character IN ['A'..'E'] THEN Flag := TRUE;
To define a set type, use the type declaration statement. Every element of
the set must be of the same type, and that type may not be structured. You
must specify the name of the set data type, and the base type of that set:

TYPE Identifier = SET OF base-type;
For example:

TYPE Player = SET OF 1..5;

Once you have defined the set, you can now declare a vartable of that type:

VAR Piece @ Player;

which can assume one. or more of the valtues of that set. Pascal also allows
a shorthand declaration:

VAR Piece : SET OF 1..5;

The symbal [3 s the set constructor operator. It takes a List of
expressions of the form:

Texpressionl
ar:
Lexpression .. expressionl

For example, given that ¥ is of type SET, the following is a wvalid
assignment statement:

¥ or= [N, X¥5 . X+71;

it assigns the element % and the elements X+5 through X+7 to the set Y. You
may mix sets of the same base type. For example:

DATA TYPES Page 7-13

VAR
X 5 SET OF 'A',.'X";
¥z SET OF 'Lr..izy;

BEGIN
Y o= ¥ + K;

END

You may use modifying assignment operators on sets. (So, for example, you
could rewrite the statement above to: Y += ¥i.)

The operations that you can perform on a set are those defined by set
theory: set wunion (+); set difference (=); set intersection (»): set
equality (=); set Tnequality (<»); set finclusion . (<= and »=); and, set
membership (IN). The empty set, "[1", is a wvalid set,

If we define a type Newset that is a set of integers:
TYPE NewSet = SET OF 1 .. 10;

VAR Setl : NewSet;
Setd : Newset;
Result : Newsel;

and then assign values to the sets Set1 and Set?:

Sett = [1..5]1;
Set? := [5,6,7,.8,9]:

We can use the sets Setl, Set2, and Result to talk about the operations you
can perform on sets:

- Set Union. An element is contained in the union of SETT and SETZ if
and only if it is an element of SETT or SET2 or both., For example:

Result 1= Set1 + Set? { Result 1s the set [1,..91
- Set pifference. An element is contained in the difference of two sets

it and only if it is an element of SET1 but not an element of SETZ.
For example:

Result := Setl -~ Set? 1 Result is the set [1..471 3
* Set Intersection. An element is contained in the intersection of two
sets if and only if it is an element of both SET1 and SETZ, For
axample:
Result = Setl * Set? { Result is the set [S1 %
= Sat Egualitvy. Setl = SetZ 18 TRUE if and only 1% every member of

Set? is also a member of Set2, and evervy member of Set? iz also a
member of Sett.

BATA TYPES Page 7-14

o

N

Result == Setl = Setd { rResult is FALSE &

Set Tnequality, Setl <> Set2 is TRUE if and only if Set1 = Set2 is
FALSE.

Result = Setl <& Setd { Result is TRUE

Set Inclusion. The relation Setl <= Set? is TRUE if and only if every
member of Set? is also a member of Set2. In other words, Setl <=
Set? s TRUE 1T Set? 1s included in SetZ.

Result := Setl <= Setd { Result is FALSE}
£6,97 <= Set? is TRUE.
S5er Inclusion. The retation Set 1 »= Set? is TRUE it and only if
every member of Set? is alsc a member of Seti. In other words, Set]

»= Set? is TRUE if Set? is included in Seti. If X <= Y is TRUE, then
¥ »= ¥ s TRUE.

Set Membership. It X is of the type declared as the hase~-type of
Set1, then X IN Set?l is TRUE if and onty if X is tontained in Setd.
For example:

Result = 5 IN Set] { Result is TRUE }

Result := 26 IN Set' { Result is FALSE)

The IN operator takes as a left argument a simple data type variable
or constant (e.g., CHAR or INTEGER); the right argument wmust be 2

set of that data type (e.g., set of CHAR or set of INTEGER).

Below 13 a small sample program that uses sets:

DATA TYPES ‘ Page 7-15

PROGRAM;
VAR Y1,Y2,Y3,N1,N2,N3 @ CHAR:
Query : CHAR;
Yes , No : SET OF CHAR;
BEGIN o
Yes 1= ['Y'J; No := ['N'];

WRITELN('The only valid response toc a Yes/No question is Y or M.");
WRITELNC('We''LL let you add your own answers.'): WRITELN;
WRITELNC('Enter three one-character symbols that can stand for YES 32
WRITE (' (separate them with a space, not a comma): *);
READLN(Y1,Y2,¥3);

Yes 1= [¥1,Y2,Y31 + Yes; { Add user~defined symbols to Yes ¥
WRITEC'Now, enter three symbols for NO: ');.

READLN (N1, N2 ,N2) ;

Mo 2= DNT,N2,N3] + No; { Add user-defined symbols to No ¥

WRITELN;

WRITE('Let''s test this out. Enter a Yes or No answer: '):
REARLN(Query)

WRITELN:

1F Guery IN Yes THEN WRITELNC'Yes!')
ELSE IF Query IN No THEN WRITELN('No!')
ELSE WRITELNC'T didn' 't understand vou.')
END .

Tefab FILE

A file is a structured data type that contains a sequence of elements of the
same Lype. Since vyou can only access one element at a time, files might
seem much Like an array. The mportant differencer is that file are
assoctated with AMOS disk files, and so can store data permanently beween
program runs. Files are the means of communicating with devices such as
terminals and printers,

In addition, unlike other structured types, the size of a file does not have
to be deciared, and may be of any size supported by the AMOS file structure.
Files typically hold data of type CHAR or they contain records (see Section
7.2.7, "RECORDS').

Use the type declaration to declare the data type:

TYPE identifier = FILE OF base-type;

where identifier is the name you want to assign to that type of file, and
base~type is the data type of the data in the file.

Yo use this type of file, vou will have to define a variable of that tvpe:

VAR filte~identifier : identifier;

DATA TYPES Page 714

The file~identifier acts as a communication channel. Using commands such as
OPEN (see Section 10.7.12, "OPEN'), you can associate the file-identifier
with an actual AMOS file, and transfer data between your program and the
disk file.

fRather than using a type declaration followed by a variable declaration,
&lphaPascal also permits you to use a shorthand method of combining type and
variable declaration statements:

VAR Newbata : FILE OF INTEGER;

Remember that you must use one of the functions or procedures discussed in
Chapter 10, "I/0 Functions and Procedures,'” te tell AlphaPascal which AMOS
file you want to associate with the file variable that you have declared.

NOTE: The chapters in this book, especially Chapter 10, frequently use the
term “file-identifer.” Other books that describe Pascal may just call this
identifier "file." The file-identifier is not the same thing as a file
specification. The file specification identifies the actual AMOS disk file
that you want to read data from or write data to. The file—tdentifier

identifies the Pascal fite variable. Think of the file-identifier as
epecifying the Pascal data structure with which the actual file will be
assooiated, Several of the functions vou can use to handle files accept a3

file~identifier and a file specification. For example, the FSPEC procedure
accepts three arguments: the file-identifier, an AMOS filespec, and a
default extension. For instance:

FSPEC(Filel,"ACCNTS," "DAT 2 ;

where Filel is the file~identifier, and ACCNTS.DAT is the AMOS file we want
1o gusociated with that file variable.)

The standard identifier TEXT has been pre-~declared for you; this identifier

is equivalent to FILE OF CHAR. (See Section 7.2.4, above, for ' information
on TEXT.?

f.2.7 RECORD

b record is a data structure that consists of a number of components {(called
“fields™y. Unlike arrays, the recerd elements do not have to be of the same
type, and you access the elements by name, not by subscript. You can use
records to develop wvery sophisticated deta structures (e.g., array of
recaords, file of records, pointers te records).

When you declare a record type, you are defining a2 template for a group of
variables that contain related information, but which do not have to be of
the same type. Toe define a record, use the type declaration. You will

provide the name of the record, and names and types of the fields within
that record:

DATA TYPES Page 7-17

TYPE Identifier =
RECORD field-name....field=nameN : field-typet;
field-name...,field-nameN : field-type2:

“

field-name...,.field~nameN : field-typeN;
END

For example, a record to represent a date could be defined as:

TYPE Date =
T RECORD
Month (lan,Feb,Mar,Apr ,May,Jun,Jul, fug,Sept ,0ct Nov,Dec) :
Pay : 10037
Year : INTEGER
END;

You may then declare a variable of type Date:
VAR Deadline : Date;

such 8 wvariable would contain three pieces of information: the month, the
day, and the year. However, all the information may be treated as a unit if
you want 1o do so. ’

If several fields share the same type, you may list them on one Lipe,
separated by commas. You may also nest record definitions. For example:

TYPE Credit =
o RECORD
" Finances : RECORD
~Thecking, Savings, Loans : INTEGER;

END 2
Name : STRINGDS{O]:
Birth : Date

END;

After defining a record, you may then declare a variable of that type. For
example:

VAR Customer : Credit;

To select a field of a record, use both the name of the record variable and
the name of the field, separated by a period. For example:

IF Customer.Name = 'Smith, John C.' THEN CheckCredit;
You may assign the value of record to another. For example, given:
VAR Customer, Employee : Credit:

you may assign the contents of record Customer to record Employee:

DATA TYPES Page 7-18

Employee 2= Customer
which s equivalent "to:

Employvee.Finances := fustomer.Finances;
Emploves . .Name = Customer,Name;
Employvee . Birth = Customer.Birth;:

7.2.7.% variant Parts -~ Records of the same type do not necessarily have
to contain the same Tields. Suppose, for example, that you are maintaining
g record of customer information in which one of the Tields fells vou
whether or rnot the customer has a car.

~

Lar @ Boolean;

if, in fact, the customer does have a car, vyou might want to maintain
another set of dAnformation {(such as License number, model, year of make,
gtc.l, but it doesn't make sense to fill in that information for a customer
who doesn’t have a car. Pascal allows you to allocate fields which may or
may not exist, depending on the value of another field. These fields, which
act as variations to the basic record structure, are called “variant®
fields. The variant field definition takes this form:

ﬁﬁﬁg‘fieidmtype OF
i (ase~label...,Case~labelN
Lase-lLabel...,Case~LlabelN:

e

(field-1ist1d;
(field-Listd);

LYY |

o

Cagse~label....Lase-LabelN : {Field-listhN)

ar e

CASE case-field-identifier : field-type OF
' Case~label..,.,Case~labelN ; (field-List1i;
Case=label...,Case~LabelN 1 {(field~Llist?);

s

L]

Case~-label...,Case-LahelN : {(field-Llizth)

Several case labels may be writien on one line, separated by commas. The
List of variant fields must be enclosed with parentheses. (If no wvariant
fields are to be used in the case of a certain value, empty parentheses may
be used or the value may be omitted.) If vou create a variant part, the

variant fields mwust appear at the end of the record definition. For
example:

DATA TYPES , ‘ Page 7-19

TYPE (ustomer = RECORD

“Name : STRINGLS0I;
Number : INTEGER;
CASE Car @ BOOLEAN OF

TRUE : (LicenseNo : STRINGL?7];

Model : STRING[DIS]:
Year : INTEGER):
FALSE = (3 £ You may omit this Line 2

END

VAR Queryw; ARRAY [1..2007 OF Customer;

7.2.8 Pointer Type
Pascal recognizes two categories of variables: static and dynamic.

Static Variables -~ Static variables are declared in variable declarations
which determine their types and identifiers. You use
these identifiers to refer to the variables. Static
variables are created when the bleck im which they are
declared 1is executed, and remain in effect until vour
program leaves that block. Most of the variables shown
i this book are static variebles. They can only be
used when you know ahead of time what the storage
requirements of your program is going to be.

Bynamic Yariables - Dynamic varisbles are created on demand. They do not
appear in wvariable declarations, and so cannot be
referenced by wariable ddentifiers. Instead, each
dynamic variable of type ¥ has associated with it a
value of type "X which is called the pointer to ¥. The
pointer to X is used to access the corresponding dynamic
variable, and contains the value of the address of the
value,

The pointer type is declared via the type declaration statement:
TY#E Identifier = "base~type;

{The " symbol identifies a pointer.} For example:

i

TYPE Location

TINTEGER;

The declaration above establishes a pointer type Location whose pointer
variables will point to variables of type RECORD., To use the pointer type,
we must declare variables:

VAR NewNumber 1 Location:

NewNumber i3 a pointer variable that is associated with an integer value.
Ar ddentifier followed by the pointer symbol, °, designates the actual value
being pointed to. Therefore, NewNumber™ is the actual integer wvalue being
sointed to by NewNumber.

DATA TYRES Page 7-20

Now, to actually -use the data types we have defined, we must use the NEW
function to allocate the dynamic variable:

NEW (Newhumber) ;

creates an unnamed variable of type INTEGER, and stores the pointer to it in
NewNumber. To access the new pointer, we reference it as NewNumber™. {See
Section 11.1.4, "NEW,” for information on NEW. AlphaPascal also uses two
functions called MARK and RELEASE for manipulating pointer data; see
Sections 11.1.3, "MARK,” and 11.1.7, "RELEASE.D

Pascal contains a special pointer constant that indicates that a pointer s
not pointing to anything: Nik. This 1is useful for indicating special
conditions, such as the end of a Llist. For example:

Endinghode 1= NIL;

The wuse of pointers gives the Pascal programmer an extremely power ful tool
for developing sophisticated structures (for example, Linked Lists). There
are many examples of wuseful applications for pointers. As one simple
exampie, suppose you want to sort an array of records:

'?{fg. Rec = RECORD
_* Name : STRING;

DPata 1 ARRAY [1..501 OF INTEGER
END

VAR X © ARRAY [1..203 OF Rec;

vyou would have to perform a great many record moves; a slow and Jinefficient
process. 1f vou instead use pointers:

VAR X : ARRAY [1..201 OF "Rec;

vou only need to sort pointers, which is much faster. Here is a very
small sample of the use of pointers:

VAR X, ¥ 1 TINTEGER;

BEGIN
NEW(X)
A §-
X© o= By WRITE(X"):
YU osm by WRITE(Y)
WRITE{(X™)

{ Note, X and Y are pointing to the same
location, so output will be 3,4,6 %
END .

A Linked List is one exampie of a useful data structure you can build with
pointers, (Yo might also consider building doubly bLinked Lists, trees,
gqueues, etc.) Let's take a Look at the linked List and see why it is so
useful, and how to build one.

GATA TYPES : ' Page 7-21

Each element of a {ihked List contains: 1 data; and 2) a pointer to the
next element of the List. To change the order of the eiements in the List,

therefore, vyou only have to change the pointers, not the eslements
themselves, o ’

Let's say that you have a sorted array of integers. 1f you add another
number to the array, vou must sort the entire array to get the elements back
into the proper order. If, however, the numbers are stored as a Linked
List, adding a new number just entails changing ftwo pointers im the list.
For example:

List? 23 »(32) >(67) — 1,

Newlist @3 (32) e (7)) motc,

40D

To delete an slement of the list, you only need to link around it.
Declare a Linked list as follows:
TYPE Mode = RECORD
i Data : INTEGER:
Next = "Node
END

Notice that we said that the data portion of the List element will hold
integer data; you can use whatever data type vou want.

tet®s butld a simple Linked list, and then display it in revarse:

{(Changed 30 April 1981

DATA TYPES Page 7-22

PROGRAM Linkedlist;

TYPE pPointer = "Element:

Element = RECORD
TData : INTEGER;
Next @ Pointer
END;

VAR T.% o INTEGER:
P,List : Pointer:

BEGIN { LinkedList ¥

TWRITE('Enter integer: '); { Get first number of Llist }
READLN(X) ;
Ligt = NIt ; £ Initialize List 7}
WHILE X <> 0 p0 { gnd list when X = [%
REGIN o
NEW(P) ; { Allocate dynamic variable T
F".Data = X; { Put number inte List ¥
P” . Next := List: { Set List pointer to next element 3
List = P;
WRITE('Enter integer: *2;
READLNCX?
END 2

P o= List;
WHILE P <> NIL DO
TTRBEGIN e
TTWRITELNC(P " Data);
P o= PT_Next
END
END T Linkedlist ¥,

If vou enter the numbers: 1 2 2 & 5 6 7, vou see displayed: 7 &6 5 4 %3 2 1,
Other yseful sxamples would involve inserting elements inte & List and
deleting elements from a Llist by updating the List pointers.

NOTE: aiphaPascal contains the procedures MARK and RELEASE which you use in
combination with NEW to make wuse of & stack-tike structure caiLeé the
heap."” (See Chapter 11 for information on MARK and RELEASE.,} MARK and
RELEASE allow you to perform very powerful operaticong with dynamic
variables. However, they can be dangercous if used unwisely; vou should be
an experienced Pascal programmer before using MARK and RELEASE.

Changed 30 April 198712

CHAPTER 8

EXPRESSIONS

fn expression i3 any combination of operators, constants, function calls,
and variables. For example:

(PRR.6 * Invoice + SGRT(TaxBili}) /345

This chapter discusses the legal AlphaPascal operators, and gives the rules
ot operator precedence. We also talk about some special expression handling
ahitities of AlphaPascal.

B.1 OPERATORS

An operator is a symbol that directs Pascal to perform an action on the
elements of an expression. For example, the addition operator, +, in the
expression 34+123 tells Pascal to add the numbers 34 and 123. The operator
types in Pascal are: arithmetic, Boolean, relational, Logical, and set.

Ancther special operator, the assignment operator, is used to assign values
ta variables.

8.1.1 CGCperator Precedence

When Pascal sees the various operators in an expression, it evaluates the
elements in the expression in response to those operators. When more than
one type of operator appears in one expression, Pascal fotlows & set of
rules called ‘'operator precedence” in determining which operators to act
upon first., If the precedence of all operators in the expression 1s the

same, FPascal evaluates the expression from left to right. For example,
Pascal evaluates the expression:

312 + 34 ~ 20
as:

(B12 + B4 - 20

FERPRESSIONS Fage 8~2

evaluating the value 312+34 first, and then subtracting 20 from it. If the
precedence of the operators differs, Pascal evaluates the elements connected
by the operator of highest precedence first, and then evaluates the elements
connected by the operator of the next highest precedence, and so on. For

example, multiplication has a higher precedence than addition, so tne
expression:

PE o 54+ 2

talls Pascal to multiply 76 by 54, and then add 2 to that value, The
expression evaluates to (V& * 54) + 2, or &106,

You can change the order in which Pascal orocesses operators by using
parentheses, Pascal always evaluates ‘elements in the innermost set of
parentheses first, and then works outward. For example, if you want Pascal
+to act upon the addition operator first in the previous example, you must
use parentheses to tell Pascal to apply that operator first:

e ox (54 + D2

This expression tells Pascal to add 54 and #, and then multiply that vakue
by 76. The expression thus evaluates 1o L2586,

NOTE: The aperator precedence used by aiphaPascal differs slightly from that
used by standard Pascal. We have changed the precedence to be compatible
with that of other Llanguage processors on the Alpha Micro system.
Sspecifically, in AlphaPascal the Aoolean operators are of lower precedence
thar the relational operators. The onty time you will need to worry about
this dis if vou use expressions that compare unparenthesized Boolean
expressions with relational operators (e.g., NOT A = B,

If your programs must be written to be compatible with standard Pascal (for
instance, if you want to be able to fransfer vour programs to another
computer system that uses standard Pascal) use parenthese to make sure that
your expressions are evaluated in accord with standard Pascal's rules of
operator precedence. For example, the sxpression:

NOT A = B
is evalusted by AlphaPascal as: NOT (A& = BJ.

if vyou want the expression to work for either standard fascal or
AlphaPascal, you should sither write 1T as:

(NOT A2 = 8
ar:
NOT (A = B2
to indicate how you wish the expression fo be svaluated.

The table helow gives the rules of operator precedence for AlphaPascal:

EXPRESSIONS Page 8-3

Highest Frecedence

Parenthesized
expressions

Sign inversion: - {ynary’
Multiplying operatorss: * ¢ pERY MOD
Adding operators: + -
Relational operators: = <> < > <= »E IN
Zoolean operators: NOT
AND
OR

Lowest Frecedence

%.1.2 Assignment Uperator

The assignment operater, :=, assigns the wvalue of ab expraession to a
variable. (See Section 9.1, “Assignment Statement,” for information on is
use in & program statement.)

Pascal evaluates the expression on the right side of the assignment operator

symbol, 15, The variable on the left side of the assignment operator then
sssumas the value of that expression. MNote that atl wvariables to which
values are assigned must have been previocusly declared. For example:

CardValue % 9.56

assigns the value 9.56 to the variable CardvValue. The expression above must
have been preceded in the program by a statement such as:

Eﬁﬁlﬁa?dVaLue . REAL

which declares that the wvariable CardvValue may only assume real number
values.

Most tanguages (including standard Pascal) only allow the wvalue of 2
variahle to be changed by an assignment statement. Alphapascal allows the
value of a variable to be changed within an expression. For example:

200 + Sum/Total := 365
Pascal reads the expression above as:

(200 + (Bum/(Total = 365))

That is, Pascal assigns the value 365 to the variable Total, and then
divides the value Sum by Total (which is now 3%65), and adds 200 to ftt.

EXPRESSIONS ‘ Page 8-4

Remember that the assignment operator has the highest precedence, and that
Pascal evaluates expressions from left fto right when operator precedence 1S
egual. The Assignment operator has extremely high "left precedence,’” and
very Low "right precedence.’” That means that it "binds! itself strongly to
the nearest element on the left, but loosely to the remaining elements on
the right. To make this idea clearer, consider the following expression:

Result = 10 + Score - Cards := 32 + Pairs - singles

The second assignment operator binds strongly to the variable Cards, but
“auallows wp' all of the expression to the right of itself. This means that
LiphaPascal evaluates the expression above as:

Result 1= (10 + Score - (Cards := (32 + Pairs) - Singles))

That is, Cards is set to (32 + Pairs) minus the value of Singles. Then, the

value of Cards i3 subtracted from 10 + Score. That value is assigned to the
variable Result.

As another example of the use of the assignment operator 1n an axpression,
consider a situation where you wWant 1O initiatize a group of variables by

setting their values to zero. Pascal does not have a multiple assignment
statement. However, the expression:

Averages 1= Total % Sum % Median := 0

causes Pascal to perform a multiple assignment as 2 side effect of
avaluating the expression.

8.1.7.17 Modifying Assignment Operators - AlphaPascal contains a sat of
special operators called "modifying assignment operators.’’ These oparators
allow vou to assign values fo variables by modifying the value of the

variable instead of replacing that wvalue. For sxample, the assignment
axpression:

BecordCount = 120

tells Pascal to replace the value of RecordCount with the number 120. A
modifying assignment expression of the form:

RecordCount += 120

tells Pascal to take the value of RecordCount and modify 1t by adding 120 to
it. Pascal then assigns this new value to RecordCount. We thus moadify,

rather than replace, the value of Recordfount. In effect, the expression
above i3 eguivalent to:

RecordCount := RecordCount + 120

EXPRESSIONS

The modifying assignment operators dre:

+m

* =

/

Adding modifying assignment operator
subtracting modifying assignment operator
Multiplying modifying assignment operator
Dividing modifying assignment operator

fs another example, the statements:

=

Number ﬁ}
FOR I = 1 T0 5 B0

Number *= 2 {Same

compute two to the fifth power.
and %2.

£.17.% Arithmetic Operators

The arithmetic operators are:

+ {unary? Identity

= {unary} Sign
inversion

+ Addition

- Subtraction

* Multi-
nlication

DIV Integer
divigion

i Real division

MoD Modulus

NOTE:

number in parentheses if ancther
the expression 3 * -5 is illegal

3 ox (=32

is valid, and evaluates to =15.

as 'Number := Number * 277

So, Number takes on the vatues 2, 4, &, 16

Takes INTEGER or REAL operands;
same type as operands.

result is

Takes INTEGER or REAL opsrands; is

zame type as operands.

result

Takes INTEGER or REAL operands;
same type as operands.

result 1s

Takes INTEGER or REAL operands;
same tvpe as operands.

result is

Takes INTEGER or REAL operands;
same type as operands.

result is

Takes INTEGER operands; result is INTEGER.

Takes INTEGER or REAL operands;
INGEGER or REAL.

result is

Takes INTEGER operands; result is INTEGER.

If you wish to use the sign inversion symbol, —, you must enclose the

operator precedes the number. For example,

, but the expression:

EXPRESSIONS Page 86

2.1.4 Relational Operators
= Equality Scalar, STRING, SET, or pointer operands.
BOOLEAN result.

< Inequality Scalar, STRING, SET, or pointer operands;
BOOLEAN result,

< Less than scalar or STRING operands; BOOLEAN result.
> Greater than Scalar or STRING operands; BOOLEAN result.
o= L.ess than or Sealar or STRING operands; BOOLTAN result.
equial
{or set SET operands; BOOLEAN result.
inclusion
{subset?’
> Greater than Scalar or STRING operands; BOOLEAN result.
ar equal
{or set SET operands; BOOLEAN result.

inclusion
{(superset))

IN Set First operand is any scalar, second is its
membership SET tvpe. BOOLEAN result.

8.1.% tLogical Operators
NOT Negation BOOLEAN operands; BOOLEAN resuit.
AND fonjunction BOOLEAN operands; BOOLEAN result.

Or Disjunction BOOLEAN operands; BOOLEAN result.

EXPRESSIONS | | Page 8-7

2. 1.4 Set Operators

% Union Given sets of type X, result is of
type X.

- set difference Given sets of type X, result is of
‘ tyope X. '

* Intersection Given sets of type X, result is of
type X.

8.2 CONSTANTS

A constant iz a value that doesn't change. For example, the number 34.5 13
a constant, because it can assume no cther value. Certain gonstants have
beern pre-defined by Pascal for your use. They are:

MAXINT the maximum integer AlphaPascal can represent.
FARLSE Boolean false

TRUE Boolean true
You can use these constants as you would any others. Far example:

{ Fing the minimum of a List of numbers. Initialize CurrentMin o
{argest possible number. }

CurrentMin = MAXINT;
REPEAT

READ(DataFile, NewNumber?;

1F NewNumber < CurrentMin THEN CurrentMin := NewNumber;
UNTIL EOF { Continue till end of file is reached J;
WRITELN('Smallest number is: ',CurrentMind;

Fascal allows you to assign & name to a constant sS¢ that you can identify it
by name within a program, rather than including the constant fitself. For
example, 1t would be rather cumbersome if you had to include the numeric
constant 3.14159 throughout a program. Once you use a constant definition

statement to assign 3.14159 a name (such as Pi), vou can rafer to that
constant by name. For example:

WRITELN('The Circumference = ',Pi * 234);

You may also assign a name to a string constant. For information on naming
constants, see Section 6.3, "Constant befinitions.” For information on the
form string and numeric constants may take, see Section 5.6, THNotation.”
NOTE: Of course, constants are not variables; that is, you may not assign a
constant & new vatlue within the program block.

EXPRESSTONS Page 8~8&

2.3 VARIABLES

A variable ié 2 named symbol that represents a value. For @xampi$; the
variable named Studentid wmight assume a range of student identification
numbers. Variables allow a program to operate on & variety of data.

£ach variable in a program may assume only one type of valtue {e.g., integer
values, real values, Boolean values, etC.ld. Pascal reguires that you
declare the data type of each variable before that variable is used. {(Ses
Section 6.5, "Variable Declarations,” and Chapter 7, "Data Types.” for

information on data types and declaring variables.?

Far information on choosing a valid name for a variable, see Section Db,
Legal Identifiers.” n variable identifer may be 1in the form at an
expression. Far example, consider the case where we want to refepr to an
element in an array:

Newhrrayl2, 41 = 99;

8.4 IF-THEN-ELSE EXPRESSIONS

Wherever an expression is Legal, AlphaPascal allows Yyou To include am
TF~THEN-ELSE expression. This allows you to conditionatlly evaluate one of
two alternative expressions. The construct takes the form:

IF condition THEN eXpression g&gﬁ_@XQFESSiOﬂ

Note that vyou must include the ELSE clause if vou use the IF~THEN
construct in this way. For example:

IF Credit > (IF BillAmt > 1000 THEN 2000 ELsE O)
THEN WRITELN('OK, charge it.t)
ELSE WRITELN('Sorry, send it C.0.D.%);

The statement above contains this expression: IF BillAmt - 1000 THEN 2000
ELSE O, This evaluates either to 2000 or to 0, depending on whether or
neT the variable BiliAmt has a value greater than 1000. Tharefore the
statement above either evaluates to:

IF Credit > 2000
THEN WRITELN('QK, charge it.')
ELSE WRITELN('Sorry, send it C.0.D.%0;

Qrz

IF Credit > 0
THEN WRITELNC'OK, charge it.
ELSE WRITELN (*Sorry, send it C.G.D."2;

EXPRESSIONS : Page 89

Remember that expregsions can alse -cantain string constants or variables.
Considar the fotlowing small program that conditionally assigns a value 1o
ErrorReport:

PROGR%ﬁ_Recovery;

WAR ErrorFlag @ BOOLEAN:
ErrorReport : STRING;

BEGIN { Recovery 1
TTTErrarFlag o= FALSE;
ErrorReport := (IF ErrorFlag
THEN ‘An error occurred!® ELSE 'No error.'l;
WRITELN(ErrorReport)
END £ Recovery .

NOTE: including an IF-THEN=-ELSE construct in an expression is not a feature
of standard Pascal. Note that IF-THEN-ELSE may not be uged in a vartable
expression. For example:

(1F X THEN Y ELSE Z) := 1

is illegal.

8.5 CASE EXPRESSIONS

Wherever an expression may appear, AlphaPascal allows you to include a CASE
expression. This allows vou to conditionally evaluate one of several

alternative expressions. (NOTE: This is not a feature of standard Pascal.?
The expression must taks the form: '

CASE wvalue OF
valuel : expression;
value?Z : expression;

=

=

ELSE expression

For example:

WRITE(CASE Errorlode OF
1 1 'lllegal input’;
2 : 'Number too large’;
3 : 'NMumber too smabl’;
ELSE tundefined error’l;

EXPRESSIONG Page 8-10

The statement above chooses one string to write, depending on the wvalue of

the variasble Errorfode. For example, if ErrorCode contains a value of 3,
the statement above evaluates to:

WRITF ('Number too small');

1¥ ErrorCode contains a value that

iz not 1, 2, or 3, the statement
evaluates to:

WRITE ("Undefined error');

CHAPTER 9

STATEMENTS

9.1 ASSIGNMENY STATEMENT

The assignment statement assigns a value t0 a varianle. 1t takes this form:
variable :% expression

pascal evaluates the expression on the right side of the assignment operator
symbol, =, The variable on the left side of the assignment operator thenr
assumes the value of that expression. WNote that all wvariables to which
values are assigned must have been previously declared.

Far examples, given that your program previously contained the statement:
VAR AccountNum 3 INTEGER;

the statement:
AccountNum 1= 1026+1

sssigns the integer value 1025 to the variable AccountNum. For more
information on the assignment operator, see Section 8.2, TAssignment
Operator.” That section also discusses the use of the assignment operator
in expressions, discusses the precedence of the assignment operator, and
describes the AlphaPascal modifying assignment operators.

9.2 PROCEDURE CALLS

Procedurs invocations may appear as program statements. {For information on
procedure parameters, see Section 6.6.71, “"Formal Parameters.”) Liberal use
of procedure calls 1n your Dprograms illustrates one of the Jimportant
features ot Pascal— modularity. Given the appropriate procedure
definitions, a main program can be exiremely easy to reacd. For example:

Manufacty [Input filespecs 1or dataz from Recelving,
i files.¥
i

ReadData (Receivng Manufact)
FindbLowl{lLowF1 g

]

PriptRanort(Date, LowFile 2F parts we need more ofh

END { Main Inventory b

s
)

) 3y The
iures Opentiles, ihat :) & t de the zctual work.

just by looking 2 croximats Ly T orogram J0

mont

ror or from a procesdure
takes one argument-- the
~ fupction vou want to exit

e
L
i

EXITIPROGRAMY ;

{You may not supply EXTT with the oprogram identifier; use the PROGRAM
keyword to exit a am.

where Tlabed
The Label may na
sxampie:

sraviously been defir

ation statement.
-ion plock. For

out of the current

STATEMENTS _ | Page 93

{36+

VAR tost, Percent, Tip = REAL ;
Query @ CHAR;

LLABEL 100;

BEGIN, {Program Tipy

WETTELN("Let'’'s caloulate the waiter''s tip');

WRITE(*Was it good service (Y or N37: "Y;

READLN (Query);

IF Query = 'N' THEN GOTO 100,

TTWRITE ('How much did you pay for dinner? ')
READLM(Costd;
WRITE('What percentage do you wWant 1o tip? ",
READLN(Percanti;
percent *= 0.01;
Tip 3= Percgent * fest;
WRITELN(*The tip is: *",Tipl;

100: END {Program Tiplk.

NOTE: The AlphaPascal compiler s initially set so that 1t does not
recognize GOTQ statements; that s, it gives the error message ''Illegal
symbol™ if it encounters a GOTO statement in yvour program. fo tell the
compiler that you want to use GOTO statements in a particular program, the
compiler option $G6+ must appear at the front of that program. (For

information on the $6 compiler opfion, see Section L.3%.2.1, "The GOTO
Options ($G+ and $G-2.")

7.5 Null. STATEMENT

One of the featyres that make Pascal programs especially flexible is the
fact that you may include a null statement Wwithin your programsg. & nuil
statement allows you te include extra semicolons within compound statements,

and to omit statements in certain program constructs. For example, consider
the CASE sxpression below:

CASE expression OF
s statementt;
statement?;

.

{ Null statemesnt

£l

= F
: atatement3;
ELSE statementé

8y dncluding just a semicolon after value 3, we tell the CASE expression to
perform no statement 1f the expression evaluates to 3.

STATEMENTS Page Y-&

As anather example:

IF A = B THEN
IF € = D THEN Flag := TRUE

T ELSE { Null statement after ELSE ¥
ELSE NewFlag := True;

The use of the null statement above allows us To attach the second ELSE to
the firet 1F~THEN construct. (Otherwise, the second else would be performed
whern C <> D, rather than when A& <> B.)

9.6 COMPOUND STATEMENT

The body of a Pascal program 1% 2 compound statement; that is, it is marked
Wwith the BEGIN and END keywords, and contains one or more statements between
those keywords (even if the enclosed statement(s) 1s 2 nuil statement-- sge@
the paragraph above, Section 9.5, "The Null Statement).

Fach individual statement may also consist of a compound statement. The use
of compound statements 1s what gives a Fascal program its nested, block

structure. Many sample programs in this beock contain several BEGIN-END
hlocks.

{See Section 6.2, ‘lLabel Declarations,” for information on Labeling
BEGIN-END keyword pairs. Labeling these keywords tells the compiter to

report back to you with an error message 1f the BEGIN-~END keywords are not
matched as vour labels have indicated they should be.?

9.7 CONDITIONAL STATEMENTS

Conditional statements allow You to execute certain ssctions of code onily if
specific conditions are satisfied. This section discusses the I1F~THEN,
IF-THEN-ELSE, CASE=OF, and CASE-OF-ELSE statements.

9.7, IF-THEN
The TF-THEN statement takes the form:

Eﬁ‘%eaiean expression THEN statement;

where statement may, of course, consist of z compound statement. A Boglean
expression is one which evaluates to a Boolean value. For exampte: 1»5 1is

avaluated as FALSE, since 1 is not greater than 5. For example:

1F TestScore > 90 THEN WRITELN('Congratulationsi An AT

STATEMENTS Page 95

The statement(s) following the THEN clause are carried out if the BO?Leén
sxpression evaluates. 10 TRUE; if 1t evaluates 1o FALSE, controb 13
transferred to the next statement after the IF~THEN statement.

Note that the statement following the THEN keyword may itself be an IF-THEN
statement. For example:

li\SiﬁgLe THEN
;ﬁ_witheﬁdihg > .56 Eﬂg§'aependents 2= 1

(Which is the same as: 1F Single AND (Witholding > .36y THEN...) If
Single evaluates to TRUE, everything after the first THE%‘keyword 15
executed: otherwise, control passes 1o the next program statement.

NOTE: You may include the keywords IF-THEN in an expression to conditionally

evaluate one of two alternative expressions. See Section 8.4, TIF-THEN-ELSE
Expressions.’

G 7.1.% IF-THEN-ELSE - The addition of an FLSE clause to an I1F-THEN

statement gives wus a way to select one of two statements as a result of
evaluating an expression. The IF-THEN-ELSE statement takes the form:

IF Boolean expression THEN statement—1 ELSE statement—Z;

1% the Boolean expression is TRUE, the first statement s executed;
atherwise, the second statement is executed. As in the case of the simple
IF-THEN statement above, a compound statement may appear in ptace of =&

single statement. Ome of the two statements will always be executed. For
example:

1F Margin > LineWidth THEN Error = PGWDTH ELSE LineWidth —= Margin;

The Line above is from a program that formats documents. If the wvalue for
Margin is greater than the current LineWidth, then we set an error code into

the Error flag; otherwise, we reset the LineWidth to the old valus minus the
Margin.

What happens +f an I[F-THEN-ELSE statement contains miltiple IF-THEN
statemerts? To which IF-THEN statement does the ELSE apply? For example:

1F A = 8 THEN IF B = C THEN Flag :#= D ELSE Flag := 1;

bDaes Flag get set to 1T if A»B or 1f B>Q? AlphaPascal nests ELSEs. That

means thatw in the case above, the FELSE applies to the Llast TF-THEN
statement: if 8= is FALSE, Flag is set to 1. As another examples

STATEMENTS Page 9-6

FROGRAM DoubleElse;
VAR ALBLCLD REAL ;

BEGIN { boubleEise ¥
WRITE ("Enter A, B, C, Dz 'J;
READLNC(A,B,C,0Y { Enter values for ALBLCLD F;

IF A =B
THEN IF € = D
THEN WRITELNC'Ng Else')
£1 8% WRITELN('Else1™)

ELSE WRITELN('Else2")
END { DoubleElse .

As we said, ELSEs are nested. That means +hat the second ELSE 1g applied it
the first IF clause (A=B} is false; the first ELSE is applied if the second

15 ctause {(C=Dh) 1is false. So, the output from the program above is as
follows:

A=B =D Qutput

True True No Else

False True Elsed

True False Cigel

False False Else?

F.7.2 CASE-QF

The CASE statement allows you to select one out of a group of statements for
execution. The CASF statement takes this form:

CASE expression OF
Case~label...,Case~label : statementl;
CasemtabeL*,E,CasemLabeL : statementé;

£

"

Case~label...,Case-Label : statementN
END

The expression (called the “selector') is evaluated, and its value must be
the same as one of the case~labels. A selector must not be of Type REAL,
and it must be of the same type as the case-labels. You may have as many
case~labels as you Like, but each case-label may appear only once in any one
CASE sztatement. When a matching case-label is found, the siatement
following that case-label is executed. For example:

STATEMENTS | = Page 9-7

apgIN { MainMenu ¥

WRITE (*Enter your choice from the meny above 1737
READLN (MenuChoice);

CASE MenuChoice OF

VAT ComputeTax;
'r?! : UpdateAccounty
e ;. PrintReport;

pto: DoBilling
END { End-of CASE ¥;
END { MainMenu T.

The program block above performs the proper procedure based on the USser
selection from the main menu.

NOTE: What happens if none of the cace~iabels match the selector? Standard
Pascal savs that such an event is undefined. AlphaPascal simply says that
if none of the case-labels are matched, then control passes 10 the next
program statement. tSee the next paragraph for informaetion on using an ELSE
clause to catch a situation where no match OCouUrs.)

9.7.2.1 CASE-OF~ELSE = AlphaPascal allows a unigue variant to the CASE
statement: the CASE-OF~ELSE statement. This statement takes the form:

CASE expression 0OF

fase~label...,Case~label : statement?;
rase-label...,Case~tabel : statement?;

a

Case~label...,Case~label : statementN
FILSF statement;

For example:

SEGIN { MainMenu }
TTWRITEC'Enter your choice: T3
READLN {MenuChoice);
CASE MenuChoice OF
A - ComputeVax;
tpi . UodateAccount;
"' : PrintReport;
Yo DoRilting
E&EE_NRITELN(‘NO valid choice®) { Didn't enter A.B.C, or B b
END { MainMenu T.

Motice

that the ELSE clause takes the place of the final CASE statement END
keyword.

NOTE: See Section 8.5, "CASE Expressions,” for information on using the CASE

canstruct to conditionaliy evaluate one of several alternative expressions.

STATEMENTS Page 9~8

9,8 REPETITIVE STATEMENTS

Tt iz often the case that one section of a program must be performed
repetitively, based on a certain condition, AlphaPascal provides a number
of repetitive statements: WHILE=~DO, REPEAT-UNTIL, and FOR-DOC. It is
important that vou decide which of these statements ig exactly correct for

your application, since each differs somewhat in the way that 1t handles
final values.

F.8,1T WHILE~DD
The WHILE-DO statement takes the form:

WHILE Boolean expression DO statement

where the Boolean expression evaluates to a TRUE or FALSE, and the statement
may consist of a compound statement. For example:

PROGRAM:
VAR Counter, Mumber, Average, Sum : REAL;

BEGIN { Main Program I
Number 1= 1 {
Average :¥ Counter := 0;
WHILE Number > O DO

BEGIN o
WRITELN("Average: ,Average’l;
Counter += 19;
WRITEC('Enter number: 'J;
READLN (Number? ;
Sum += Number;
Average 1= Sum/founter;
END;

END £ Main Program F.

initialize Number to » 0. }

In effect, vou tell Pascal, "while the following condition is TRUE, execute
the following statements.” As soon as the condition becomes FALSE, the
crogram finishes executing the entire WHILE loop, and then goes on to the
next program statement. It is possible that a WHILE Loop will never be
executed if the initial condition is not true and never becomes true.

G.8.2 REPEAT-UNTIL
The REPEAT-UNTIL statement takss this form:

REPEAT statement—Llist UNTIL Boolean expression

STATEMENTS Page 9-9

where statement-list may be series of statements separated by semicolons,
and expression evaluates 1o TRUE or FALSE. For exampies

PROGRAM
VAR Number @ INTEGER;
grror @ BOOLEAN;

REGIN € Main program 7
Frror 1= FALSE;
REPEAT
) TWRITE('Enter an integer divisibie by 33 *2;
READLN (Mumber) ;
1F (Number MOD 33 = 0 THEN

WRITELN{ 'Correct, Try another.') ELSE Lrror @ TRUE
UNTIL Error
TRTTELN('Incorrect. End of exercise.”)
END L Main Program. . '

Because the REPEAT-UNTIL keywords appear at vhe beginning and end of the
toop (making 1t clear where the beginning and end of the Loop are), we do
not have to include the BEGIN-END keywords after the REPEAT keyword

(however, you may do so 11 you wish). A REPEAT Loop will always be executed
at least once.

%.8.3 FOR-DO

The FOR-DO statement allows you to execute a given statement or group ot
statements a specific number of times. A FOR-DO loop is executed for eavery
value of the "control variable” from some starting value up to and including

soma terminal value. & controb variable must not be of type REAL. The
FOR-DO statement takes this form:

EOR Variable-identifier := expression T0 expression DO statement

For example:
PROGRAM

VAR Counter : INTEGER:

REGIN { Main Frogram ¥

WRITELN('The square roots of the integers 1 to 10 are ');

WRITELN;

FOR Counter := 1 70 10 DO WRITELN('Square root: ',SQRT{(Counter))
END { Main Program EN o

Fach time the statement after the DO keyword is executed, CLounter is

incremented by one. The program above prints the sqguare roots of the
integers from 1 to 10.

STATEMENTS Page 9-10

4 variant of the FOR=DO loop exists that allows you to decrement the
control vartable. 1t takes the form:

FQR_Varéabiem%deﬁtﬁfier »= expression DOWNTO expression DO statement

Fach time +the statement after the DO keyword is executed, the contrat
variable is decremented by one. Note that it is possible that a FOR-DO loop
may not be executed at all, if the initial and terminal values of the
contral wvariable are not in the proper range. {For example, the statement

FoR 1 := 5 TO 1... will not be executed, but FOR 1 =5 DOWNTO 1... will be
axecuted.)

$.9 WITH-DO

The WITH-DO statement allows you To access fields of 3 record as 1% they
were simple variables. The WITH-DO statement takes the form:

WITH Variable—-identifieri...,Variable~identifierN DO statement

The WITH-DO statement simply gives you a shorthand way of accessing record
fields without specifying the name of the record structure for ¢ach access.
(See Section F.2.7, "RECORDS,™ for information on records.} For example,
suppose you have a record made up of the following fields:

Carinfo.Model
Carinfo.Year
CarInfo.Color
CarInfo.SerialNumber

You have 100 cars on your car lLot, and you want to know how many of them are
red. The records may be set up this way:

TYPE Carlnfo = RECORD
TModel : STRINGE3I;
Yeagr @ INTEGER;
Color @ STRINGLE]D;
SerialNumber : INTEGER;
EEEM{ recard

VAR Counter,CarNumber ; INTEGER;
carl.ot : ARRAY [1..1001 OF CarlInfo;

Now you can process them, Without using a WITH-DO statement, you would have
to do something like this:

STATEMENTS ' Page 9-11

Counter = 0 .
FOR CarNumber := 1 T0 100 BC
BEGIN
If (CarlotlCarNumber}.Model="X20"}
AN (tarLotlCarNumberl.Color="red")
THEN Counter *+= 1;

WRITELN "Number of red X20s is: ?.Counter?
EMD;

A more convenient waylés to use the WITH-DO statement:

Counter = {;
FOR CarNumber := 1 TO 100 PO
BEGIN
WITH CarlotlCarNumberl DO

TE (Model='X20') AND (Color='red') THEN Counter += 1;

WRITELN (*Number of red XeOs is: ', Counter)
END

By specifying more than one variabte-identifier, you can use the WETH-DO
statement to access fields that occur within record fields. For example, to

sccess Gats in the record carbot.Make.Model, you could write something Like
this:

WITH Carlot,.Make DO
Model == ‘HatchBack';

This 1% squivalent to:

WITH Carlot DO
WITH Make DG
Miodel <= ‘HatchBack’;

CHAPTER 10

INPUT/QUTRUT FUNCTIONS AND PROCEDURES

The functions and procedures discussed in this chapter are used to transfer
data between your programs and the users of those programs, and between
programs and files. The routines we describe in the first part of the
chapter, "Basic Functions and Procedures,"” =zre routines that users of
standard Pascal will probably be familiar with. The Last part of the
chapter, “Special Functions and Procedures for File /0,7 containsg

descriptions of functions and procedures that are particularly for use with
the AMDS file structure.

NOTE: You will notice that we use the term "file-identifier" when discussing
a file variable, rather than the simple term "file” (sometimes used by other
FPascal books). This is to help avoid confusing the file-identifier with the
"file specification,™ which is the specification of +the actual AMOS disk
file that is associated with the file variable. Using an AMOS fils requires
that you first declare the file-identifier and then associate it with the
file specification of an AMOS disk file. See Section 10.72, YSpecial
Functions and Procedures for File 1/0,7 for more information on using AMOS
disk files, especially Section 10.2.%2, "OPEN.'™

10.1 BASIC FUNCTIONS AND PROCEDURES

These are the Inpui/output functions and procedures that users of siandard
Pascal will be most familiar with. Later sections in this chapter discuss
spacial dnput/output functions and procedures that allow your programs to
access the AMOS file structure.

You will often use the procedures GET, PUT, READ, READLN, WRITE, and WRITELN
for transterring data between vour program and the users of your program.
These procedurss are also used to transfer dats between vyour program and
special storage areas called '"files.” The other procedures discussed in
this section, PAGE, RESET, and REWRITE, are used only with files. Remember
that when we talk about "files,” we are referring to the special data type
FILE that in AlphaPascal can be associated with AMOS disk files.

INFUT/OUTPUT FUNCTTONS AND PROCEDURES Fage 10~7

Three special pre-declared file-tdentifiers exist that you should bhe aware
of:

INPUT Specifying INPUT tells AlphaPascal that you want to use the
terminal as an input file. For example, when vou wuse READLN to
get data from the terminal kevboard:

READLN (EmployeeNumber ,Dept) ;
¥ou have implicitiy said:

READLN (INPUT, EmployeeNumher ,Dept) »

{In other words, if you omit a file-identifier from the arguments
given to the READLN procedure, READLN assumes yau want to usge
INFUT.LY INPUT s a TEXT file.

OUTPUT specifying OUTPUT tells AlphaPascal to use the terminal as an
output file. For example, when you write data to the terminal
display via the WRITELN procedure:

WRITELNC'Enter your Employee Number: *):

you have implicitly said:

WRITELN(QUTPUT, 'Enter your Employee Number: '):

QUTPUT is a TEXT file.

KEYBOARD The KEYROARD file-identifier acts much the same as TNPUT, except
that if the terminal is in Charmode, the characters typed by the

user of vyour program will not echo on the terminal display. For
example:

CHARMODE ;
WRITELN{'Enter password:)
READ (KEYBOARD ,Password)

Asks the user of your program for a password, but does not dizsplay
the characters of the password as they are entered. When vyour
terminal is not in Charmode and you are using INPUT, the monitor
processes and filters your input. {(For example, it appends a
Line-feed to the end of a carriage return.) KEYBOARD and Charmode
gIve you a way to examine the input exactly as 1t is enteraed; the
moritor does no processing of the characters. That means that for
the example above to work, after typing the password, the user
must type a carriage return AND & line-feed. KEYBOARD is a TEXT
file, (for information on Charmode, see Section 1Ma.2.1,
“{harmode, ™

INPUT, QUTPUT, and KEYBOARD are associated with the special AMOS file
specifications TT¥:, TTY:, and KBD:. See Section 10.2.1 for information on
these special devices,

INPUT/QUTRUT FUNCTIONS AND PROCEPURES Page 10-5

If you are wusing READ to input data, remember that vou will have to do a
READLN after end-of-line has been reached to make it read past the Line-feed
at the end of the carriage return in order to reset EOLN to FALSE, For
gxample:

PROGRAM TestEOLN { Count how many characters are in input };

VAR Source * CHAR { Input. X}
Counter : INTEGER;

BEGIN { TestEOLN 3}
WRITE('Enter a line of characters: ');
READ(Source);
Counter 1= {;
WHILE NOT EOLN DO
BEGIN '
WRITE (Source);
Counter += 1;

READ (Source?
END
WRITELN;
WRITELNC'=— number of characters = ', Counter};

READLN { Restore EOLN }
END { TestEOLN 1.

The program above keeps reading characters until the user enters a RETURN
(that is, until ECLN is TRUE). Then it prints the number of characters in

the 1input string. For example, a sample run of the program might look Llike
this: o '

Enter 2 Line of characters: MNOW 135 THE TIME
NOW I8 THE TIME
== rumher of characters = 15

18.7.4 GEY and Puv

GET and PUT are the two basic file I/0 procedures. You may use GET and PUT
on files of any type, not just TEXT files.

M1 .4.1 GET - GET advances the buffer wvariable fto the next file

component. In deoing so, it assigns the value of that file component to the
buffer variable. The invocation takes the form:

GET(file~identifier);

INPUT/QUTPUT FUNCTIONS AND PROCEDURES Page 10-6

where file-identifier 4ds a file variable. 1f deing a GET moves the buffer
variable past the end of the file, then the EOF function returns TRUE, and
the contents of the buffer variable is undefined. So, save the contents of

the buffer variable into another variable before doing a GET, if vou need to
access the very Last item in the file.

10.1.4.2 BUT - PUT writes the wvalue of the buffer variable into the

component at the current file position. The procedure invocation takes the
form:

PUT (file-identifier);

where file-identifier is a file variable. The EOF function remains TRUE.

W.1.4.% Sample Program Using GET and PUT - SBelow 1% a very simple
program using GET and PUT. Notice that we use the OPEN statement (described
in Section 10.2.12) to assot¢iate the file-identifier Datafile with an AMOS
disk file, NUMBER.DAT. The RESET procedure closes the file and re-opens it
for input.

PROGRAM FilefAccess;

VAR DataFile 1 FILE OF CHAR;
Entry @ CHAR;
Counter : INTEGER;

BEGIN { FileAccess 7 .
OFEN(Datarile, "NUMBER.DAT' ,OUTPUT); { Open NUMBER.DAT for output
FOR Counter := 1 TC 5 DO ‘

BEGIN
WRITEC Enter datar ') { Get data Trom termimal ¥
READILN(Entryd;
DatarFile” 1= Entry; { Assign data to buffer var ¥
PUT{DataFile) { Write to file ¥
END;
RESET (DataFile); { Close file and re-open for input

WHILE NOT EOF(DataFile) DO
{ Get data till file is empty ¥
BEGIN
Entry := DataFile";
WRITELN(Entry);
bt {(batafFile} { Get data from file ¥
END
EﬂE €W§5LeAccess Y.

NGTE: If vyou wuse OPEN to open a file for input, or if you use RESET, the
first file component is placed into the buffer variable for vou.

INPUT/QUTPUT FUNCTIONS AND PROCEDURES Page 10~7

10.1.5 READ, READLN, WRITE, and WRITELN

The READ and READLN procedures are elaborations of the GET procedure
{discussed abovel. You should use them only for TEXT files and terminal
input. WRITE and WRITELN are elaborations of the PUT procedure {also
discussed abovel); they are for use only with TEXT files and terminal cutput.

Ait%ough we say that these procedures are for use with TEXT files, vou will
notice throughout this. book that we have made wide wuse of them far

trangferrimg data between programs and the terminal, Remember that vour
terminal s a TEXT file. Two TEXT files have been pre-declared for wuse

with the terminal: INPUT and OUTPUT. 1f you omit the file-identifier from
the List of arguments given to READ and READLN, the procedures assume that
you want o use the file INPUT. No fils-identifier in the list of arguments

given to WRITE and WRITELN indicates that vou want to use the file OUTPUT,

Ore Last note on these procedures-- they convert REAL or INTEGER data to
type CHAR. For example, when you say:

WRITE(Resulty;

where Result is an INTEGER variable containing the number 12, WRITE displays
the characters 12" on your terminatl., This is what vyou want to do when
You sen data to a terminal, but be careful in using READS and WRITEs on

actual disk files. Consider performing file operations on a lLarge file of
IMTEGER data. 1t would be very inefficient to handle that data in character
form, gsince every time vou manipulated it, vou would have to re-convert it.
It would be far better to use GETs and PUTs rather than READs and WRITEs to
handle the numeric data, since GETs and PUTs do no conversion.

10.1.5.1 READ -~ The READ procedure fdnputs a Llist of variables from the
terminal or a file. You should only use READ for TEXT files. MOTE: READ
does not read an entire Lline of data up to a carriage return/line-feed.

Given the file variable Data, the procedure READ{(Data,Character) performs
these actions:

1. Scans aover and igneres Line-feed characters;

"

2. Character := Data’;

;
5. GET(Data);
The procedure invocation takes the form:
READ(file—identifier,list~of~variables);
If vou omit the file~identifier:

READCList=of~variahles);

INPUT/0UTPUT FUNCTIONS AND PROCEDURES Fage 10-8

BﬁAD assumes that you want to use the file INPUT (that is, that you want to
nput from. the terminal keyboard).

The READ arguments must be separated by commas. For example:

REAE€QataF%te,ﬁustomevlbrCustemerName);

where DataFile 1is a file variable, and Customerld and CustomerName are
variable identifiers. Or:

READ(Linesize,Pagesize,PageNumber);

where Linesize, Pagesize, and PageMumber are variables tao be itnput from the
terminal,

NOTE: If you input more than one variable via the READ or READLN pro§edure;
those values should not be input separated by commas. For examplie, given:

READ(A,B,C):
The response:
123
5 legal, but the response:
1,2.3
is net valid, If you respond with an {ilegal number (for example, vou input
an “A" for a variable of type INTEGER), AlphaPascal assigns a zero to that

variable, 1instead of generating an error. It is the responsibility of vour
program to check the walidity of data input by the READ procedure.

10.1.5.2 READLN ~ READLN inputs a List of variables from a file or the

terminal kevboard. You should only wuse REABLN on TEXT files. It dﬁffer&
from READ in that it reads an entire line of data up to a carriage
return/ Line~feed pair. Given REARLM(Data,linel, where Data i3 a fils

vartable, READLN performs the following actions:

Line &= Data”;

WHILE NOT EGLN(Data)‘QQ
GET(Datal;

GET(Pata)

in other words, until we reach the end of the Péne {a “ car?€§ge
return/line~feed pair), read data into the variable Line. The invocation
takes the form:

READLNCfile-~identifier,list~of-variahles);

INPUT/QUTPUT FUNCTIONS AND PROCEDURES Fage 10-9

where file-identifier is a file variable associated with the file vou want
to read from. If you-omit the file-identifier:

READIN(Ligst—of~variables);

READLN reads from the pre-declared file INPUT; that s, it reads from the
terminal.,

Separate READLN arguments with commas.

10.1.5.3 WRITE - The WRITE procedure writes a List of expressions to a
file or a terminal display. To print a string, enclose it within single
quotation marks. You must only use WRITE for TEXT files. WRITE does not
write an end~of-Line marker (carriage return/line~feed pair) after writing

the specified data. To begin 2 new Lline, use the WRITELN procedure. The
invocation takes the form:

WRITE(file~identifier, expression~Listl;

where file-identifier 1is a file variable associated with the AMOS file you
want t1o write the data to, and expression—Llist 1s the data to be wrﬁtteng
The expression 1ist may contain string literals, constants, variables of

type INTEGER, REAL, CHAR, FACKED ARRAYL1..nl OF C(HAR, and STRING. Far
example:

WRITE{NewFile,'Two INTEGERs followed by STRING: "L INT, 12, IsasString’);
It you omit the file—-identifier:
WRITE (expression~Llist);

WRITE assumes you want to write to the pre-declared file QUTPUT (the
terminal displayl.

10.7.5.4 WRITELN = WRITELN outputs a list of expressions to a file or
terminal. Te print a string Lliterel, enclase it within single quotation
marks. You must only use WRITELN with TEXT fTiles. WRITELN differs fTrom
WRITE in that it writes an end—-cf-Line marker {carriage return/line-feed

paird after writing the specified data. The invocation takes the form:

WRITEIN{fite~identifier,expression-{ist);

where tile-identifier i3 a file variable, and expression-list is a2 Llist of
expressions to be written. Separate the WRITELN arguments with commas. If
vou omit the file=identifier:

WRITELN (expression-List);

INPUT/0UTPUT FUNCTIONS AND PROCEDURES Page 10-10

WRITELN assumes that you want to write to QUTPUT (the terminal dispilay),
You may write just a carriage return/{ine-feed toc a file ar terminal by

omitting the expression~list:
WRITELN(file-identifier);

or:

WRITELN;

10.1.5.5 Formatting Output - AlphaPascal wuses certain conventions for
outputting data. STRING data and data of fype CHAR are displaved with no
leading spaces. Numbers are written differently, depending on whether they
are REAL or INTEGER.

AltphaPascal will atways print REAL and INTEGER numbers in decimal notation
it the number is less than 12 digits. (If the number is ltarger than 12
digits, the number will be printed 4n scientific notation.? If the
fractional part of a REAL number is greater than 11 digits, that number will
oe printed in scientific notation.

INTEGER numbers are printed as a sequence of digits, possibly preceded by a
minus sign. INTEGER numbers are not printed with a leading space. REAL
numbers are printed with a leading space, unless the number s negative, 1in
which case the minus sign takes up that space. REAL numbers are accurate to
nearly 12 digits. They are always rounded to 11 digits before bheing
displayed te aveid annoying outputd such as 4.9999... instead of 5.

Both WRITE and WRITELN allow you to dinclude optional arguments that give
additional formatting instructions to AiphaPascal. The form of fhese
arguments s (for both WRITE and WRITELN):

WRITE (expressionl @ X @ Y,expressionZ @ X ¢ Y,.e..)}
where X specifies a minimum field width, and Y specifies the number of
digits to write after the decimal point. X and Y must both be of type
INTEGER, and may be constants or variables. If you are not printing a REAL
number, you may not specify the Y argument.

The minimum field width specifies the minimum number of spaces in which the
number is to be printed. For example, 1f you want AMohaPascal to print the
number right-justified in 2 field of ten spaces, use the value 10 for X,
this gives the minimum field in which *o print the number; +4f the number
iz larger than the specified field (for example, 3t s 11 digits),

AlphaPascal will not truncate the number, but will use the necessary numbep
of spaces,

It the number 1is a REAL number, you may also specify Y, the number of digits
te be printed to the right of the decimal point. (for example, for dollar
values, you would probably want to specify 2.) AlphaPascal rounds the REAL
number to the specified number of places; it does not truncate it.

INPUT/QUTPUT FUNCTIONS AND PROCEDURES Page 10-11

Although vyou will probably find the opticnal formatting arguments to be of

most use in printing numbers, vou may also print data of tvpe CHAR or STRING
specifying a minimum field width. By combining formatting of numbers and

strings, vou can construct tables and charts in which titles and numbers are

neatiy Lined up. See the output of the sample program below for a simple
example,

Here are some sample outputs (the "B" symbol indicates a blankl:
WRITE(T, -1, 1.0, ;éna);
T-181-1
WRITEC(D.O, 1.6, 100.010, 0.0012, 1€12, 1.1612, -~1.28E-123;

POBIBTIO0. 0B, 0012B1E1 281 . TE12-1. 23612
WRETEC(D.O:6:2, 1.0:6:2, 100.010:6:2, D.0012:6:2, ~1.238-12:6:20;

BAC . Q0BE1 . 0B100., 01k, 000,00

Helow we give a sample program that demonstrates both formatted ocutput and
the use of files:

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10~-12

PROGRAM ?Qrma%ﬁutput;

VAR Report : FILE OF REAL;
Year,Profit : REAL;
I @ INTEGER;

BEGIN { FormatOutput }
0PEN<Reportf*YTDNQAT*,OUYPUT); { Put data in file.)
FOR T := 1705 po

BEGIN { Loop ¥
WRITE('Enter Year: FISREADLN(Year);
Report i=Year;
PUT (Report)};
WRITEC Enter Profit: *);READLN(Profit);
Report " :=Profif;
PUT (Report)

END { Loop ;

RESET(Report); { Open file again-— for input }
WRITELNC Year': 6 ,'Profit' : 18) { Frint header ¥

WRITELN (o rmom o o e o);

WRITELN;

WHILE NOT EOF (Report) DO { Print contents until End of file}

T BEGIN £ While-loop ¥
Year := Report”:
GET(Report);
Profit := Report™;

GET(Reporty;
WRITELN(Year : 6,Profit ¢ 20 @ 2); { Format output ¥
END { while-Loop };
END { FormatOutput 7.

The program above prints a neat table of the form:

Year Profit

1971 &50000.56
1973 1205600,34
1975 1865030.,89
1977 100450677 .34

1979 82380000, 90

INPUT/QUTPUT FUNCTIONS AND PROCEDURES ' Page 10-13

10.1.6 PAGE

The Page procedure writes a form~feed to the specified file. The invocation
takes this form:

?Aﬁﬁifiiamidentifie?)

where file-identifier 413 a file variable,

T0.1.7 RESET

The RESET procedure "rewinds™ vyour file to the beginning. In effect, it
performs a CLOSE and then OPENs the file for input. The invocation takes
the form:

RESET{(file~identifier);

whaere file-identifier 1ds a file variable that is associated with the file
you want to reset. As does OPEN, RESET inputs the first file component into
the buffer variable for you.

10.17.8 REWRITE

The REWRITE procedure opens a file for output. In effect, 1t performs a
CLOSE followed Dy an ERASE; then it opens the file for output. The
invocation takes the form:

REWRITE (file-identifiery;
where fite~identifier is a file variable that is associated with the file
you want to rewrite. REWRITE has the ability to generate file names if no
fites zpecification iz associated with the specified file=identifier. These
file names begin with TEMPAA.TMF, and go on to TEMPAB,TMP, TEMPAC.TMP, ...
TEMPZZ.TMP. For example, the program:

PROGRAM TestRewrite;

VAR MewFile : FILE OF CHAR;

BEGIN 4 TestRewrite ¥

REWRITE (MewFile) { No file specification associated with
NewFile };
PFILE(NewFile) { Print - filespec now associated with Mewfile ¥

END { TestRewrite .
nrints:

TEMPAA. TMP

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-14

1.2 SPECIAL FUNCTIONS AND PROCEDURES FOR FILE 1/0

Standard Pascal gives you several functions and procedures that allow you to
read and write data from a file (e.g9., GET, PUT, READ, etc.). We talled
about these routines in the sections above. Although vou will often use
most of the functions and procedures discussed in those earlier sections to
transfer data between the terminal and your programs, AlphaPascal also

provides a number of additional functions and procedures that allow vyou to
work with AMOS disk fites.

&Si?g the functions and procedures we discuss below, vou can search for,
define, oven and close sequential and random AMOS files. The functions and

procedures we discuss in the following sections are:

LOGKUP Searches for specified file; returns Boolean value.

OPEN Opens file in input, output, or random mode.

OPENT Opens fite in irnput mode.

OPEND Opens file in output mods.

OFPENR Opens file in random mode.

CLOSE Closes file associated with specified file—identifier.

FSPEC Returns number of characters in filespec; associates
filespec with file~identifier.

EXTENS ION Farces specified extension into file specification,

GETFILE Reads information in file specification.

SETFILE Places information into file specification.

CREATE Allocates random file blocks

SEEK Fositions random file to specified file record.

ERASE Erases specified file from disk.

FILESIZIF Returns number of disk blocks used by fite.

JORDEY Returns device user is logged into.

JOBUSER Returns account yser is lLogged into.

PFILE Prints name of file associated with specified channel

RADS(G Converts three-character string to RADSD format.

REMAME Renames specified file.

10.2.7 Information on AMOS Files

The AMOS file system recognizes ftwo major types of files: random and
sequential, C(reating, opening, and performing I/0 for the two types of

files differs somewhat, so it is important to understand the differences
between them.

Before we discuss AMOS disk files, we would Like to mention again that the
pre~declared file~identifiers INPUT, OQUTPUT, and KEYBOARD have asscciated
with them special AMOS file specifications: TTY:, TTY:, and KBD:.

TTY: specifies your terminal, (FEor example, if vou give TTY: as the file
specification to the compiler Listing option, %L, the compiler sends the
Listing to your terminal display.) The KBD: specification is equivalent to

the TTY: specification except that it orevents input from being echoed to

INPUT/QUTRUT FUNCTIONS AND PROCEDURES Page 1U-15

the terminal display if the terminal is in Charmode. (See Section 11.2.1,
"Charmode,"” for information on charmode.)

NAOTE: The normal end-of-line separator is a carriage return. Normally, the
monitor appends a tine~-feed character onto the end of a carriage return. If
you are in Charmode and are using the KBD: device, the monitor does not
automatically append a line-feed onto the end of a carriage return.
Therefore, if you are using KBD: in Charmode vou should use GETs and PUTs to
retrieve data, since. READ has a one-character lLookahesad buffer which witl
cause 1t to wait on the Lline—feed when it encounters a carriage return.

10.2.1.1 Random Files ~ Random file blocks are allocated contiguously on
the disk, and access to such a file 9s randomz that is, by computing an
offset, the system can access any one record in that file without accessing

any other record. Random file blocks are 512 bytes. To create a random
file, vou will use the CREATE orocedure,

Une advantage 1in using a random file is that access to that file is very
efficisnt; using the SEEK precedure, vou may randomly position to any record
i that file without stepping through prior records. In addition, & random
file 13 the only file which you may read from and write to without closing
and opening 1t again.

Do not use READ and WRITE to get data from a random file; use GETs and PUTs.
You should be aware that the order in which you do GET and PUT procedures
makes a difference. If you do a GET and then a PUT to update information in
a random Tile, the Last record retrieved via & BET will ke updated; 1{f vyou
do a PUT, and then do a GET, you will get the record after the one you just
updated. A series of GETs will retrieve successive records in a random file
just as it wilt & seguential fFile. A series of PUTs will write to
successive records,

The EOF function does not return TRUE after the end of a random file has
been reached; instead, an error is generated. This erreor will also be

generated 11 vou SEEX & record beyond the end of the file and then attempt a
GEY or PUT.

1.2.1.2 Sequential ¥Files - Sequential file blocks are allocated in a
Linked List on the surface of the disk, with one word at the front of each
block containing the disk address of the next blogk in the file, Access to
such & file is seguential, since the system has to read each block in order
to find out where & specific block is on the disk. Seguential file blocks
are 310 bytes. The EOF function returns TRUE after the end of & seguential
file has been reached.

INPUT/ZOUTPUT FUNCTIONS AND PROCEDURES Page 10-164

10.2.1.3 Logical Records - Within each disk block of 2 file, vou can have
cne or more “logical records.” The size of a3 logical record is determined by
your programs. For example, if a grouping of data in vour data file is
CustomerName, 30 bytes; CustomerAddress, 50 bytes; and, SocialSecurity, ¢
bytes, your file lLogical records might be 89 bytes, {For information ohn

blocking logical records into disk blocks, see Section 12.2.%, "CREATE.™)

Aﬂrr&ndmm file record may not be targer than 512 bytes, and maximum random
f?t@rgﬁz@ i 65535 records., A seguential file Logical record can cross
block boundaries, and so may bhe Larger than 5312 bytes.

10.2.1.4 oOpening and setting Up Files = The usual sequence of events for
opening and using a f1le goes this way:

1. Declare a file variable. Far examples
VAR DataFile : FILE OF CHAR;

This variable establishes the file “channel'; the communication
Line over which your program will transfer data in and out of the
file associated with that channel. In our discussions below, the
term '"file-identifier™ refers to the file variable associated with
the actual AMOS file.

2. Before you can wuse an AMOS file, vyou have to associate the
specification of that file with the file-identifier y0oit have
dectared, and you must open the file. This tells AMOS what AMOS
file you will be accessing via the file-identifier.

An AMOS file specification consists of:

Pevice Unit Filename Extension Project-number Programmer=number
For example:

DSKO:CUSTIDLDATELION,3]

where DSK is the Device, 0 is the Unit, CUSTID is the Filename, DAY
is the Extension, 100 4ds the Project-number, and % 4s the
Programmer-number. You can use several procedures to associate the
fite specification with the file~identifier {e.g., FSPEC, SETFILE,
EXTENSIOND . You can then use OPENI, OPENO, CPENR, RESET, or
REWRITE to open the file. Or, you can combine these two steps by

using OPEN, which takes the form:
OPEN(file~identifier, filespec, mode);

where Tile-identifier 1s a file variable; filespec is the file
specification in string literal or variable form, and mode {INPUT,
OQUTPUT, or RANDOM) tells AlphaPascal whether the file ig gaoing to
be used for input, output, or {in the case of random Tiles?, random

THPUT/CGUTPUT FUNCTIONS AND PROCEDURES Page 10-17

update. With INPUT and RANDGM modes, besides associating the
file-identifier with a file specification, OPEN also inputs the
first record of the file for yvou.

3, Once you have set a file up to start doing 170, vou can use GETs

and PUTs or READ: and WRITEs to transfer data between your program
and the file.

4. The fimal stage in using an AMOS file is to close it, wusing the
CLOSE procedure. Closing the file makes sure that the last record
updated in the file gets written out to the file, and makes the
fite available for being opened again. (You can't open an open
file.? Tt alsc makes the file~identifier available for asscciation
with a possibly different AMOS fite. Filegs are automatically
closed when you leave the procedure in which they were declared.

A& simple case of opening and reading a file might lock something lLike this:

VAR CustID : FILE OF STRING { Declare file-identifier 7
UserFite : STRING;

@
£

BEGIN { Testfiils }

WRITE(*Please enter name of vour data file: *J;
READLN (UserFiled;

OPEN{CustID, UserFile, INPUT} { Open the file; get the data ¥;
WRITE (CustiD™) { bisplay data in buffer ¥;
CLOSE(CustiD? { Chtoge the filte ¥

END 4 TestFile .

The small program above asks the user fTor a file specification and opens
that file. The actual process of using the CGPEN procedure inputs the first

record of that file into the buffer variable auteomatically assigned to the
tile—identifier, Custid”.

10.2.2 CLOSE

You witl use the CLOSE procedure to close a sequential file that is open for

autput. {losing the file ensures that the last recard will get written to
the file; it also enters the file into the disk directory.

You may not OPEN a file that is already open, 3o iT vou have been using a
sequential file for output, and vou want to use 1t for input, vou must first
close it and then re-oppen it for input. The invocation takes the form:

CLosE(file-1dentifierd;

where file—identifier is the file variable associated with the AMOS file you
want to close. For example, given:

INPUT/OUTPUT FUNCTIONS AND PROCEDURES | Page 10-15&

VAR TaxRecs : FILE OF CHAR;

onte we have opened and used the AMOS file associated with TaxRecs, we must
cloge it:

CLOSE(TaxRecs);

As your program leaves each procedure ar function, any files declared in
those routines are sutomatically closed for you. However, using the CLOSE
procedure ensures that if you are forced to do a hasty and untidy exit from
your program (for example, if & system error occurs), the Last record of the
file will bhe written when the CLOSE procedure is executed. L{losing a file
alsc makes its file-identifier available for use with amother file.,

H.2.3 CREATE

ALL random files must be pre-allocated on the disk before you can use them.
{(That means that their maximum size must be established before vou usse them.
You can copy random files to seguential files and vice versa, so if you are
in doubt about the ultimate size of a file that ¥ou are building, it 15 a
good idea teo write the data to 2 sequential file first, then copy the file
to a random file after you know how many records have to be copied.d

The CREATE procedure allocates a random file. The 1invecatton takes the
forms

CREATE(file~identifier,size):

where file-identifier 1is a file variable associated with the AMOS file Yol
want to create, and size is a variable of type INTEGER that designates the
number of disk blocks you want the file to contain.

NOTE: You must associate an AMOS file specification with the file-identifier
before wusing CREATE. (You may use FSPEC, SETFILE, or OPEN (with the RANDOM
mode} te do so.) For example:

PROGRAM RandomfFile;

VAR RanFile @ FILE OF STRING;
founter : INTEGER;

BEGIN { RandomFile
Counter := FSPEC(RanFile, 'NEWFIL', 'DAT');
CREATE(RanFiie,20)

END { RandomFile 2.

The program above creates the 20-~block random f4le NEWFIL.DAT. The FSPEC
function assigns the filespec NEWFIL.DAT to the file variable FILE Ranfile.

NOTE: (REATE causes an error if the file you are creating already esxists or
it there are naot enough contiguous blocks available for it to be allocated

INPUT/O0UTPUT FUNCTIONS AND PROCEDURES Page 10-19

-on the disk.

If you wish to create a random file capable of holding X records of type T,
then the number of blocks it will reguire is:

T+ X DIV (512 DIV SIZEOF(TY)

10.2.4 ERASE

The ERASE procedure erases a file from the disk. The invocation takes the
form:

ERASE (file~identifier);

where file—identifier is the file varjable associated with the AMOS file vou
want to erase.

ERASE does net return an error i1 the specified file is not there. This
makes it very useful for ensuring that the creation of new files will be
successfully carried out. For example, since C(REATE (see above) and OPEND
return an error it the file vou want to create already exists, you can use
ERASE Dbefore using OFENO or CREATE o make sure that the file you want to
open does not already exist. If the file doesn®t exist, ERASE can't erase
it, but no error is generated and no harm is done. If the file does exist,
ERASE erases 1t, and leaves the way clear for OPENG and GREATE,

We've rewritien the small program in Section 10.2.3, "CREATE,” to include
the ERASE procedure:

PROGRAM TestErase;

VAR RanFile : FILE OF CHAR;

Counter : INTEGER;

BEGIN { TestErase ¥
Counter 1= FSPEC(RanFile, 'NEWFIL®,"DAT) ;
ERASECRanFiled; { Make sure file doesn't already exist }
CREATE(RanFile, 207

END { TestErase T.

T0.2.5 EXTENSION

The EXTENSION procedure forces the specified extemsion in the specification

of the AMOS file asscociated with the specified file wvariabte. The
invocation takes the form:

FATENSION(file~identifier, ext);

INPUT/QUTPUT FUNCTIONS AND PROCEDURES Page 10-20

where f?temidentifier iz the file variable associated with the AMOS tile,
and ext is a string literal or variable that designates the extension you
want to force to the file specification. For example:

PROGRAM TestExtension;

VAR TheFile : FILE OF CHAR:
Counter : INTEGER;

BEGIN { VTestExtension ¥
founter := FSPEC(TheFile, "NEWFIL', "DAT');
EXTENSION(TheFile, "L8T");
PFILE(Thefilel

END 4 TestExtenstion .

The program above associates the AMOS file NEWFIL.DAT with the
file~identifier TheFile. Then it uses the EXTENSION procedure to change the
extension from DAT to LST. (Notice the use of the PFILE procedure to print
the AMOS file specification.) NOTE: EXTENSION does not change the
extension of the file on the disk, it only changes the extension of the
file specification associated with the file-identifier,

10.2.6 FILESIZE

The FILESIZE function returns the number of disk biocks taken up by the AMOS
file assaciated with thae specitied file variable. You must have previously
used the OPEN or LOOKUP procedure on the AMOS. file. The invocation takes
the form:

FILESIZE(file~identifier);
where file-identifier is a file variable. For axample:
PROGRAM TestfileSize;

VAR TheFile : FILE OF CHAR;
Counter : INTEGER;

BEGIN { TestFileSize

~Counter := FSPEC(TheFile, BIGFIL','DAT');
CREATE(TheFile,50);
WRITELN('The number of disk blocks js: *,FILESIZE(TheFile))

END { TestFiieSize 7.

First the program above creates the random file BIGFIL.DAY, then it prints:

The number of disk blocks {ia: 50

INPUT/QUTPUT FUNCTIONS AND PROCEDURES Page 10-21

1.2.7 FSPEC

The FSPEC function performs two main functions: it associates the specified
file variable with the specified AMOS file, and 1t returns the number of
characters in the gpecified variable or string literal that make up the file
specification part. The 1invocation takes the form:

FEPEC(Tile~identifier, filename, default-extension’;

where file—identifier 1is & fite variable with which vou want to associate
the AMOS filespec, filenams gives the name of the AMOS file, and
defauli-extension gives the extension you want to use 17 no extension 1s
supplied. For example:

PROGRAM Testfspec;

VAR DataFile : FILE OF CHAR;
UserFile : STRING:

Counter : INTEGER;

BEGIN { TestFspec ¥

 WRITE('Please enter file specificaten: *);
READIN (ljserFile);
Counter := FSPEC(DataFile, Userfile, 'DAT");
WRITELN"Number of characters: ',Counter);
WRITE('File spec is:)3
PFILE(DataFilel

END { TestFspec J.

You can use FSPEC to input an entire command Line, not just a file
specification., If the user of the program enters:

MEW,OLD
the program prints:

Mumber of characters: 3
File spec dg: NEW.DAT

Then we can use the DELETE procedure:
DELETE (UserfFite, 1, lounter)
to ieave the remainder of the user dnput ('0LD') in UserFile.

{Note that we used PFILE to print the name of the file associated with the

fite variable DataFile, and that the FSPEC function added the default
extension of DAT.D

INPUT /GUTPUT FUNCTIONS AND PROCEDQR&S Page 10-27

10.2.8 GETFILE

The GETFILE procedure allows you to find out exactly what file specification

is associated with a specific file-identifier. The invocation takes the
torm:

GETFILE(?%iemident%fier, bev, Unit, Filel, File2, E£xt, Proi, Prog);

The arguments are declared INTEGER variables. The data 15 returned as
integers, because file specifications are stored internally by AMOS in a
special numeric form called "RADSO.' RADSO format compresses three bytes of
ASCII data dinto two bytes of numeric data. €In other words, GETFILE returns
the file specification in RADSC form.) Fitel and FileZ are the first three
and second three RADSO charatters of the filename.

Altthough GETFILE may not sound too useful by 1tself, by doing GETFILEs on
more than one file you can compare elements of the specifications for those
files, and by using SETFILE (described in Sectien 10.2.20, below), vou can
actually change those elements. For example, consider the program below,
It asks for the specifications of two data files peeded for input; if those
two files do not exist on the same device and unit, the program moves the
tiles to the System Device, 08K0:, so that they are on the same disk
device and unit.

INPUT/DUTPUT FUNCTIONS AND PROCEDURES Page 10-23

PROGRAM;
TYPE DataFile = FILE OF CHAR;

YAR Dev, Unit, FilehA, FileB, Ext, Proi, Prog : INTEGER;
Devi, Unitl, FileAl, FiteB1, Extl, Prejl, Progl : INTEGER;
Maitibabel, Addresses ¢ DataFile

BEGIN { Main Program ¥
WRITELNC Enter the specifications of vour twe data fileg'):
WRITELN

WRITECFile #1: "3;READLM(UserSpec);
WRITEC File #2: ') ;READLN(UserSpect);

OPEN{(Maiilabel , UserSpec,0UTPUT); { Open the user =gpecified files }
OPEN(Addresses UserSpect ,OUTPUTY ;

GETFILE (Maillabel , Dev, Unit, FileA,FileR Ext . Proj,Progl;

GETFILE (Addresses,Devi, Unitt, FileAT, FileB1,Ext1,Projt,Progtl;

{ Sege if files are on the same disk ¥
1F (Pev <> Devl) OR Wnit <> Unit1) THEN.

BEGIN

WRITE('You have asked for files: "); PFILE(UserSpec);
WRITEC' and '); PFILE(UserSpect); WRITELN; WRITELN;

WRITELNC'Both of your data files must be on the same');
WRITELN‘device and unit; we are moving them bhoth teo DSKO:.');

SETFILE (Maillabel ,RADS0C'DSK') ,RADSQC'O7) ,Filed,FileB Ext, Pro],Progl;
SETFILE(Addresses,RADSTOCTDSK >, RADSOCPO! Y, FileAl FileBi,
Extt,.Froit,Progl}
END;
WRITEC Your files are: "J);PFILE(UserSpecy;
WRITECY and ') ;PFILE{UserSpecTd;
END { Main Program }.

Hi.2.9 JOBDEV

The JOBDEV function takes two INTEGER variable argumenits. The invocation
takes the form:

JOBDEV (Dev, Unit);

JOBDEY returns in Dev the device vou are currently Logged inte (in RADSD

form), and refurns in Unit the device unit you are currently Logged into (in
INTEGER form).,

INPUT/QUTPUT FUNCTIONS AND PROCEDURES Page 1024

10.2.10 JOBUSER

The JOBUSER function takes two INTEGER variable arguments. The invocation
takes the form:

JOBUSER (Project,Programmer) ;

It returns in Project the project number (in decimal) you are Llogged into,

and returns in Frogrammer the programmer number (in decimal) vou are Logged
into, o

10.2.11 Lookup

The LOOKUF function returns a TRUE or & FALSE depending on whether the
specified file exists. The invocation takes the form:

LOOKUP (file-i1dentifierd;

where file~identifier is the file variable associated with the AMOS file vou
are locking for. S5ince several file procedures generate an srror if the
file specified to them already exists (e.g., OPENO, CREATE), while other
praocedures generate an error if the file doesn’t exist, doing a LOOKUP
before one of these procedures is a good idea. For example:

PROGRAM LookForlt;

VAR FilelD : FILE OF CHAR;
Target : STRING:
Query 1 CHAR;:

X : INTEGER;

BEGIN { LookForIt ¥
WRITE('Enter the file you want to write to: '); READLN(Target};
X o= FSPEC(FilelIDl, Target, 'DAT");
IF LOOKUP{(FiielD)
" THEN
BEGIN
WRITE('That file already exists. Destroy it? (Y aor N): "};
READLN (Query);
IF Query = "N' THEN EXIT(PROGRAM};
ERASE(FilelDd);
WRITELN('File erased.’)
END;
OPENO(Filelly;
WRITELNC'File ',Target,’ opened for output.')
END { LookForlt 2.

The program above checks to see 1f the file specified by the wuser already
2X15T8. 17 the file exists, the user is asked to decide whether or not to
save the file, or get rid of it and start 2 new one of that name.

INPUT/QUTPUT FUNCTIONS AND PROCEDURES Page 1025

10.2.12 OPEN

The OPEN procedure opens a seqguential file for input or output, ar opens a
random file for both dnput and output. The invocation takes the form:

OPEN (file~identifier, filespec, mode);

where file-identifier is a file variable, and filespec is a valid AMO3 file
specification. Mode may be INPUT, OUTPUT, or RANDOM, and specifies whether
the file 143 to be a sequential file used for input or output, er (in the
case of RANDOM) , whether 1t i3 to be a random file used for input and ocutput
both. If yvou are using OPEN in OUTPUT mode, it deletes the specified file
it it aiready exists. Default extension is .DAT. Ffor example:

OPEN (INP, 'TEST', RANDOM):

associates the AMOS file TEST.DAT with the file~identifier INP, and opens
the random file for input and output. Mest of the sampie programs 1in this
chapter use the OPEN procedure.

NOTE: OPEN in INPUT or RANDOM mode inputs the first record into the buffer
variable.

10.2.13 OPENT

OPENT 43 a variation of the OPEN procedure; 1t opens a sequential file for
input. The invocation takes the form:

OPENI (file-identifier);

whare ftile-identifier s a file variable associated with the AMOS file you
want to open. If the filte does not exist or if the file-identifier has not
beers associated with an AMOS file {(via an FSPEC or SETFILEY OPENMI generates
an errur. OPENI inputs the first record of the file dnto the buffer
variable.

M.2.14 OPENO

ORPENO 15 a wvariation of the OPEN procedure; it opens a seguential file for
output. The invocation takes the form:

OPENG (file-identifier);

where file=identifier 1s the file variable assceciated with the AMOS file vou

want to open. If the file already exists or if the file—identifier has not
been asscciated with an AMOS file (via FSPEC or SETFILE}, OPENQ generates an
error.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Fage 10-26

10.2.15 OPENR

OPENR 135 a variation of the OPEM procedure; it opens a random file for input

§md output. The file pmust exist, and may not already be spen. The
nvocation takes the form:

QPENR(féLewﬁdentffiaP);

where file-identifier 15 the file variable associated with the AMOS file YO
wani to apen. .

NOTE: QPENR inputs the first record of the file into the buffer variable.

10.2.16 PFILE

The PFILE procedure displays on vour terminal the AMOS file specgification
assoctated with the specified file~identifier. The invocation takes the
form:

PEILE(file~identifier);

where file-identifier is a file variable associated with the AMOS file whose
specification vou want 1o see. (Several of the sample programs in this
chapter use PFILE.)

10.2.17 RADSO

The AMOS system stores much of the information used by the file system in a
special form, called "RADS0." RADSO compresses three bytes of ASCIT data
inte twoe bytes of numeric data. The RADS0 procedure converts a string into
RABEQ form. This 4s necessary if you are going to use the SETFILE
procedure, since SETFILE expects several of 1ts arguments in RADSD farm.
For example, if vaou are planning to use SETFILE to change the filename of an
AMOS file specification, you will do a GETFILE to get that specification:

ﬁE?FIL&(TheFiLe,ﬁev,Unﬁt,FiLnam?;FiinamZ,Ext,Proj,?rog};

The elements Dev, Filnaml, FilenamZ, and Ext are returned in RADBSO form.
Mow, vou will do a SETFILE to change the Filename:

SETFILE(TheFiL@,Dev,UnitJRADSO(‘NEWE),RABSO{’NAM’ﬁfExt,PfajFQFOQD;

leaving the rest of the slements as they were.

INPUT /QUTPUT FUNCTIOMS AND PROCEDURES Page 10-27

10.2.18 RENAME

The REMAME - procedure allows you to rename an AMOS file. The invocation
taikes the form:

RENAME(f1ile-identifier,newnamel;
where file-identifier is a file variable associated with the AMOS file vou

want to rename, and newname 1s a string variable or a string lLiteral. For

example, 1f the AMOS file CURRNT.DAT is associated with the file-identifier
AccountsFile:

RENAME (AccountsFile, "BACKUR,LET®) ;
renames the AMOS file CURRNT.DAT to BACKUP.LST. By varying the fields you

supply fTo RENAME, you can rename just the extension, just the filename, or

hoth. For example, 1f the AMOS file OLDDAT.DAT is associated with the
tile—-identitier MailBox:

RENAME (MailBox, ' .BAK');
renames OLDDAT.DAT to OLDRAT.BAK, and
RENAME (MailBox, "ARCHIV®);

renames OLDDAT.DAT to ARCHIV.DAT.

10.2.19 SEEK

The SEEK procedure allows you to position a file pointer to a specific
record in a random file for file $/0. The invocation takes the form:

SEEK(file~identifier,recordnum);
where file-identifier i3 a file variable associated with the random file we
want te access, and recordnum is an integer wvariable or constant that

specifies the number of the record to access. (The first record is record
3

REMEMBER : SFEK does not input a record into the buffer variable; 1t just
positions the file pointer.

10.2.20 SETFILE

SETFILE takes the same arguments as GETFILE, but 3t puts information 1into
the file specification. It also associates the specified file-identifier
with the specified AMOS file. The invocation takes the form:

SETFILE(file~identifier, Dev, Unit, Filel, FileZ, Ext, Proj, Progl;

INPUT/OUTPUT FUNCTIONS AND FROCEDURES Page 10-28

For example:
SETFILE (NewFile,0,0,F1,F2,RA050('LST),0,0);

The sample above is changing the extension of the AMOS file associated with
Newfile to .LST. NOTE: specifying a zero for both the project AND the
programmer number tells AMOS to use the current default project-programmer
number (the account vou are Logged into). Specifying a zero for hoth the
device AND the wunit number forces AMOS to use the default device
specification (the device and ynit you are logged intod). If you specify a
device (e.qg., RADDOC'DSK' D), you can tell AMOS to use the default unit, by

specifying a negative 1 for the unit. For a more lengthy example of the use
of SETFILE, see Section 10.2.8, "GETFILE.™

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-29

10.3 SAMPLE PROGRAM TG DEMONSTRATE FILE HANDLING

The program below is an example of a programming solution to a wvery common
business problem: the need for an efficient way of reading in, organizing,
and maintaining employee infarmation. Cur sample program below uses random
file techniques to wmaintain the following information for a user-defined
number of emplovees: name, age, and sex. The emplovee records are
maintained 1in alphabetical order by name of emplovee. You may add, delete,
change, List, or display employee records.

10.3.1 Sampie Bun

A sample run locks bLike this (We will underline the 1information that the
user of the program types ind:

PRUN DEMO

< The screen clears >

AlphaPascal Random Fite Demonstration

Do vou wish o (re~lcreate emplovee féLe?
How many records to you wish to use? g{_}

< The screen ¢lears »

Enter option [A)dd, Cdhange, Dlelete, Dinquire, LYist, Quitl:s A (FED
Last Name = 7ZUCKER ‘

First Name = SUE ELLEN
Middie Initial = R {RET)
How old s SuUE ELLEN? 23 (EED
I's SUE ELLEN male? Y

Enter option [A)dd, Cdhange, Ddelete, Idnguire, L)ist, @uitl:s A GEJ
Last Name =
First Name = LRET)
Middle Initial = ¢ (RET)
How old s JACK? §1
Is JACK male? Y (RED)

Enter option [A)dd, Crhange, Dlelete, Idnquire, L)ist, Q)uitd: A (ED
Last Name = ALLEN (FET)

First Name = EDNA [(FET)

Middle Initial = N @ED

How old is EDNA? 35 (HET)

s EDNA male? N (BED)

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page T0-30

Enter option CAddd, Crhange, Dlelete, Idnquire, L¥ist, @yuitl: L

ALLEN, EDNA N: 35 yéérs old, sex: female
ARROWSMITH, JACK ¢: 51 years old, sex: male
LUCKER, SUE ELLEN R: 23 years old, sex: male

Total of 3 employee(s)

Enter optien [A)dd, Cihange, Dlelete, Idnquire, Liist, Qiuitd: € (RED)
Last Name = ZUCKER (BT

First Mame = SUE ELLEN (ET)

Middle Initial = R

How old s SUE ELLEN? 23 (RET)

Is SUE ELLEN male? N Fen)

Enter option [A)dd, C)hange, Ddetete, Idnquire, L)ist, @ouitd: L (EED

ALLEN, EDNA N: 35 years old, sex: female
ARROWSMITH, JACK C: 51 years old, sex: male
ZUCKER, SUE ELLEN R: 23 years old, sex; female

Enter option LA)dd, Clhange, Dielete, Idnguire, L)ist, @luitl: g

£ The screen clears >

Leaving AlphaPascal Random File Demonstration

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-31

18.3.2 The Program

PROGRAM EmployeeMaintenance;

TYPE
MameRecord = RECORD
Firste STRIMGIT1]:
Middle: CHAR:
Last: STRINGLIS]:
END {NameRecord} :

EmpRecType = {(Control , Data,Unused);
EmpRecord = RECORD
CASE EmpRecTyne OF
Data: (
Name: NameRecord;
Age: INTEGER;
Sex: {(Male, Femaled;
NextDataRecord: INTEGER);
Controls ¢
FirgtDataRecord: ARRAY ['A°..'Z°] OF INTEGER;
FirstUnusedRecord: INTEGER):
Unused: (
NextUnusedRecord: INTEGER):
END {EmpRecord}

EmpFilefype = FILE OF EmpRecard;

{Global Variables?

VAR EmpFiler EmpFileType;
Rachum, PreviousRecNum: TNTEGER;
ControlRecords EmpRecord:

FUNCTION SameNames (Mamel Name?: MameRecordl: BOOLEAN;
{Returns TRUF i Namel = Namedl}
BEGIN
SameNames 1% {(Namel.First = NameZ.First)
AND (Namel.Middle = NameZ.Middle)
AND (Namel.lLast = NameZ.last)
END {SameNames)

{Changed 30 April 1981

INPUT/OUTPUT FUNCTIONS AND PROCEDURES = Page 10-32

FUNCTION Find{Name- NameRecord): BOOLEAN;
{Searches for specified record in FmpFile,

Returns true if found, leaving file positioned at desired record.t
BEGIN ‘

RecNum := ContrQLReaord,§irst&ataRecordiNameELasttﬁ33;
PreviousRecNum 1= (;
WHILE RecNum <> O po
BEGIMN SEEK(EMPFile,RecNum) »
GET(EmpFile):
IF SameNames (Name ,EmpFile”.Name)
THEN BEGIN Find:=TRUE: EXIT(Find) END 2
PreviousRecNum := RecNum;
Rechum % EmpFile” .NextDataRecord:
END o
Find == FALSEr
ENE {Find}

FUNCTION Remove{Name: NameRecord): BOOLEAN
{beletes specified record in EmpFile.
Returns false 1f not found.?
WAR MextRecMum: INTEGER:
HBEGIN
Remove 1= TRUE;
IF Find{MName) THEN
REGTN
NextRecNum := EmpFile” .NextbataRecord;
EmpFile”.NextlUnusedRecord 1= ControlRecord.FirstUnusedRecord:
ControlRecord.FirstUnusedRacord := RecNum;
PUT (EmpFile) s
iF PreviousRechNum = 0
THEN ControlRecord.FirstDataRkecordiName.last{11]
1= NextRechNum

ELSE
BEGIN
SEEK{EmpFile,PrevicusRecium);
GET(EmpFilel;
EmpFile” .NextDataRecord := NextRechMum;
PUT(EmpFile);
END
SEEK(EmpFile, 0);
EmpFile” :=lontrolRecord;
PUTEmpFiled
END
ELSE {Name not found} Remove := False:
END {Removel} :

(Lhanged 302 April 19812

INPUT/QUTRUT FUNCTIONS AND PROCEDURES Fage 10-33

FUNCTION MamePrecedesName (Namel,Name2: NameRecord): BOOLEAN;
{Returns TRUE if Mamel <= MNamell}

BEGIN
MameFrecedesName 1=
1F Namel.lLast <= NameZ.Last
THEN TRUE

ELSE IF Namel.last = NameZ.last
THEN IF Namel.First <= NameZ.First
THEM TRUE
FLSE [F Namel.First = Named.First
THEN Namel.Middle <= NameZ.Middie-
ELSE FALSE
EL.SE FALSE;
END {NamePrecedesNameX ;

FUNCTION Add{Empilovee: EmpRecord): BOOLEAN;
{Adds specified emplovee record to EmpfFile.
Returns false if no room remaing to add record.’?

VAR InsertionPointfFound: BOOLEAN; NewRecMNum: INTEGER;
BEGIN
Add = TRUE;
RecNum = ControlRecord.FirstDataRecordlEmployee.Name. Lasti113;
FreviousRecNum = {I; :
IngsertionPointFound := (RecNum = {J;

WHILE NOT InsertionPointFound DO
BEGIN SEEK(EmpFile,.RecNuml;
GET(EmpFiled;
IF NamePrecedesName(Employee.Name, EmpFile” .Name?
THEN InsertionPointFound = TRUE
ELSE BEGIN PreviousRecNum := RecNum;
RecNum = EmpFile” .NextDataRecord;
InsertionPointFound := (Rechum = {J;

END ;
END {Search for insertion pointt ;
IF RecNum <> [THEN
IF SameNames (Emplovee.Name,Empfile”.Name) THEN

BEGIN Employee.NextPataRecord := EmpFile .NMextDataRecord;
FrpFile” 1= Emplovee;
PUT (EmpFilel;
EXIT A ;

END;

IF 0 = {NewRechNum := ControlRecord.FirstUnusedRecard} THEN
BEGIN Add := False {EmpFile 15 fulll;
EXIT(Add)

END
SEEK(EmpFile NewRecNum? ;
GET{(EmpFile);

{ontrolRecord.FirstUnusedRecord := EmpFile” .NextUnusedRecord;
EmpFile” s=EmployeeRecord;

EmpFile” NextDataRecord := RecNumg
PUT(EmpFile);

INPUT/QUTPUT FUNCTIONS AND PROCEDURES Page 10-34

IF PreviousRecNum = O THEN
BEGIN SEEK(EmpFile,0);
Coatroiﬁecord Flrstaa*aRecordEEmptayee Name.lLast[1]1]
% NewRecNum;
EmpFile” s= ControlRecord;
PUT(EmpFile);

END
£1.5E
BEGIN SEEK(EmpFite, PreviousRechum)
GET(EmpFile):
EmpFile” ,NextDataR&cord :# NewRecNum;
PUTCEmpFited;
END
END {add}

PROCEDURE (reateEmployeeFile(Size: INTEGER) ;

{Create/Recreate Emplovee File with spee1f1ad number of employee records)
VAR X.87zelnBlocks: INTEGER; [H: CHAR

BEGIN
SizeInBlocks 1= 1 + (Size+1) DIV (512 pIv SIZEQF (EmpRecordl);
X o= FSPEC(EmDFELe,EEMPFlL“ POAT)
CLOSE(EmpFile); {Close file if it is openl}
ERASE(EmpFiled: {Erase file if it already existsl}
CREATE (EmpFile,SizeInBlocks):
OPENR(Emp¥File);
LontrolRecord.FirstUnusedRecord := 1;
FOR CH = "AY 10 '1' DO ControlRecord.FirstDataRecordlCHI := 0
EmpFile” = CenfroLRechd
PUT(EmpFilel;
FOR X o= 1 TQ Size~1 DO
BEGIN EmpFile”.NextUnusedRecord = X+1;
PUT(EmpFiled;

X

END 2
EapFile” .NextUnusedRecord := 0
PUT(EMRFY Led
CLOSE(EmpFilel;
END {{reateEmployeeFile}

PROGCEDURE OpenEmpFile;

BEGTN GPEMCEmpFile, "EMPFIL' ,RANDOM) ;
ControlRecord := EmpFile™;
END;

FUNCTION Yes(Message: STRING): BOOLEAN;
VAR Answer: STRING;
BEGIN
WRITE(Message,' '); READLN(Answer): LCS (Answer) ;
IF Answer = 'y' OR Answer = 'yes' THEN Yes := TRUE
ELSE IF Answer = "n' OR Answer = 'no' THEN Yes := FALSE
ELSE Yes :# Yes(*?Please answer yes or no: 'l
END {Yes} ;

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

PROCEDURE Intreoductiong

VAR Quantity: INTEGER;
BEGIN
CRT(-1,02; {ClLear Screenlt
WRITELNC® AiphaPascal Random File Demonstration');
WRITELN:
WRITELN;

IF Yes{'Do vou wish to (re-)create emplovee file?') THEN
BEGIN WRITE('How many records to you wish to use? *);
READLN (Quantity);
WHILE Quantity < 1 OR Guantity > 100 b0
BEGIN WRITE('7Please enter a number between 1 and 100:
READLN(Quantity);

END
CreateEmoloyeeFile(Quantity;
END;
OpentmpFile;
CRT(=1,0%; Clear screent

END {Introductionl}

PROCEDURE GetName (VAR Name: NameRecord);
{Note: UCS only works on strings, and Middle is of type CHARD}
VAR S3STRINGLT];
BEGIN
WITH Name DO
BEGIN WRITE('bLast Name = '}; READLN(Last); UCS{last);
WRITE{*Firgt Name = '); READIN{(First); UCS{(First);
WRITE (*Middle Initial = "3; READLN(S); UCE(5);
Middle := IF 8='!' THEN ' ' ELSE S{11;
EMD 2
EMD

PROCEDURE GetEmployveeInfo(VAR Emplovee: EmpRecord);
BEGIN
WITH Employvee RO
BEGIN
WRITE("How old is f , Name.Fipst,'? ");
READLN (Age);
WRITE('ls ', Name.First);
Sex := IF Yes(' male?'}
THEN Male ELSE Female;
END .
END {GetEmployeelnfol} ;

Page 10-35

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

Page 10-36
PROCEDURE Showﬁmpiayeelnfe(Emptoy@e; EmpRecord);
BEGIN
WITH Employee,Name DO
BEGIN
WRITE (lLast,", "LFirst, ! ToMiddie, s Yi:
WRITE(Age,' vears old, *3;
WRITELN('sex: ',CASE Sex OF
Male: "male’;
Female: "female';
ELSE T'i;
END 2
END
PROCEDURE ProcessRequests;
VAR Option: CHAR;
PROCEDURE ListEmployees;
YAR CH: CHAR; Count: INTEGER;
BEGIN
Count := (g
WRITELN;
FOR CH = AT TO 7' DO
BEGIN Rechum := ControlRecord.FirstDataRecordiCHI:

WHILE RecNum <> 0 b0
BEGIN SEEK(EmpFile,RecNum);
GET(EmpFilel;
ShmempieyeeInfc(EmpFiLe”};
RecNum == EmpFile” .Nextbatakecord;
Count += 1;

END .
END
WRITELN; WRITELN("Total of TeCount,® employee(s)');:
END {ListEmployees) ;

PROCEDURE AddEmplovee;
VAR Employee: EmpRecord;
BEGIN

GetName (Employee . .Name) ;

IF Find(Employee.Name) THEN

BEGIN WRITELN('?Employee already on file'l;

EXIT{AddEmployee);

END;

SetEmpLoyeeEnfo{EmpLoy@e);

IF NOT Add(Employee) THEN WRITELN('?Not enough room to add');
END {AddEmployee} ;

INPUT/CQUTRUT FUNCTIONS AND PROCEDURES Page 10«37

PROCEDURE ChangeEmplovee;
VAR Name: NameRecordg
BEGIN

GetName (Name) ;

TF Find{Mame} THEN

BEGIN ShowEmployeeinfolEmpFile),
GetEmploveelnfolEmpFile ™}
PUT (EmpFile);

END

ELSE WRITELN('?Not found®):

END {ChangeEmployeel} ;

PROCEDURE DeleteEmplovee:
VAR Mame: NameRecord;
REGIN
GetName (Name) ;
TF NOT Remove(Mame) THEN WRITELN('?ot found');
END {Deletefmployee} ;

PROCEDURE Inaquire;
VAR Name: NameRecord;
BEGIN
GetName{(Name) ;
1f Find(Name) THEN ShowEmployeelnfo(EmpFile™)
FLSE WRITELN('%Not found');
END {Inquirel ;

BEGIN {ProcessRequests)
REPEAT
WRITE(
‘enter ootion [Addd, C)hange, Dielete, Iinguire, L}ist, @®uitd: 'I;
READENCOptiony ;
CASE Option OF
fal ,tA": AddEmplovee;
FetLi0te ChangeEmployee;
At tDt': DeleteEmployee;
'R Inquire;
1YLt ListEmployees;
't R EXIT(ProcessRequests);
FLSE WRITELN{'?Tinvalid cption®l;
WRITELN;
UNTIL FALSE {i.e., until EXIT}
END {ProcessReguestst

(Chamnged 30 April 198&1)

INPUT/QUTPUT FUNCTTONS AND FROCEDURES Fage 10-3%8

PROCEDURE Termination;
BEGIN
CRT(-1,03; {Clear screen}
WRITELN('Leaving AlphaPascal Randam File Demonstration’):
END {Termination}
BEGIN {Frogram}
Introduction;
?rocessﬁequests;
Termination;
EMD {Program} .

10.3.3 Program organization

We would just like to point out that the program above could have been
broken up into modules and Llinked as separate files, 1In fact, it would have
been & good didea to do so. If we were going to break it up, we might
consider taking the first twn global type declarations and putting them into
include files (see below). (For information on include files, see Section
4.3.2.2, "The Include Option ($7).") Then we might have made the SIND
function a module, FIND,PAS,

10.3.3.1 The aMOS file NAMREC . INC -
TYPE NameRecord = RELORD
First: STRINGL11]:
Middle: CHAR;
Last: STRINGC15]:
END { NameRecord J:

T0.3.3.2 The AMOS fiie EMPREL . TNC —
TYRE EmpRecType = (Control, Data, Unused);
EmpRecord = RECORD
LASE FmpRecType OF
Datas ¢
Name: NameRecord;
Age: TNTEGER:
Sex: (Male, Femalel:
NextDataRecord: INTEGER):
Contralz (
FirstDataRecord: ARRAY ['A°,.*7'] OF INTEGER:
FirstUnusedRecord: INTEGER):
Unused: {
NextiUnusedRecord: INTEGER);
EMD {EmpRecord} -

EmpFileType = FILE OF EmpRecord:

{Changed 30 april 1981

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10-39

10.3.3.% The AMOS file FIND,PAS -

MODULE FIND;
{51 NAMREC,INCY
{$I EMPREC.INCY

EXTERNAL FUNCTION SameMames
(Namel, NameZ: NameRecord): SOOLEAN:

EXTERNAL VAR
EmpFile : EmpfFileType;
RecNum, PreviousRecNum: INTEGER:

FUNCTION Find(Names: NameRecord): BOOLEAN;
{3earches for specified record in EmpFile.
Returns true if found, Leaving fite positioned at desired record.l}
BEGIN
RecNum = fontrolRecord.FirsthatakecordiName.Last{11];
PreviousRecMum :% 0
WHILE RecNum <> [DO
BEGIN SEEK(EmpFile,Rechuml;
GET(EmpFile);
IF SameNames(Mame EmpFile” .Name)
THEN REGIMN Find:=TRUE; EXIT(Find) END;
FreviousRecNum := RecNum;
RecNum = EmpFile”.NextDataRecord;

END 2
Find 1= FALSE:
END {Find} ;

@

CHAPTER 11

MISCELLAMEOUS FUNCTIONS AND PROCEDURES

The functions and procedures described in this chapter perform a variety of
functions such as allowing your programs to position the cursor on the
terminal screen and manipulating dynamic wvariables. The functions and
procedures discussed in this chapter are:

CHR Convert ASCII value to its character representation

ORD Returns ordinal number of element in scalar type

PRED Returns predecessor {i.e., previous item} of scalar type

sUCe Returns sucessor {(i.e., next item) of scalar type

KILCMD Abort command file execution

NEW Creates new dynamic variable

MARK Marks element on the heap

RELEASE Releases element on the heap

CRY Position screen cursor, and enabte certain terminal
display options

CHARMODE Sets terminal into Charmode: suppresses echoing

LINEMODE Returns terminal from Charmode to line mode

INCHARMODE Returns Boolean value telling vou whether vou are

in Charmode or not

1.1 BASIC FUNCTIONS AND PROCEDURES

11.17.1 CHR

ALl characters displayed by the computer are members of the ASCII character
set, and have a number (called the ASCII value) associated with them. The
CHR function returns the ASCII character associated with a specified ASCII

value. It accepts a positive, decimal INTEGER argument and returns a CHAR
result, The function invocation takes this form:

MISCELLANEQUS FUNCTIONS AND PROCEDURES Page 11-2

CHR (number);
For example:
WRITELN(CHRCéS});

prints the character A, (65 4s the decimal ASCII wvalue of the ASCIT
character A"}

T1.1.2 KILCMD

It is often convenient fo set up command files that automatically invoke a
series of system commands amd Pascal proOgrams. (Remember that a command
fite 15 a text file; each Lline contains data or a wvalid AMOS fite

Specificatﬁon, To execute the entire set of commarid and program invocations
contained in the command file, supply just the name of the command +ile at
AMOE command level.,)

The KILCMD procedure tells PRUN to abort any command file execution. Yo
probably will use KILCMD if an error occurs that would make continuing the
exacution of the commmand file awkward. The invocatios takes this form:

KILCMD -

As an example of the wuse of KILCMD, consider the command file BCL that
accompanies this release of AlphaPascal. The PCL command file compiles and
Links a Pascal source file. Suppose you supply to PCL the name of a source
file that does not exist. If the compiler can't compile vour program, then
PLINK can't {ink it. So, CMPILR itself contains a KILCMD procedure call
that 1s executed if a compilation fails: the zystem stops any command file
being executed and returns you to AMOS command Level.

For information on error handling and writing vour own errortrap routine,
see Chapter 14, "Systems Functions and Procedures,”

t1.1.3 MARK

MARK is used in combiration with RELEASE to store and release dynamic
variables allocated via NEW (see below) in a stack-lLike structure called the
"heap." The 1dnvocation of MARK takes this form:

MARIK (variable-identifier);
where variable-identifier specifies a pointer variable that peints to any

type (typically, INTEGER). MARK returns the current state of the heap.
That is, it returns the current address of the top of the hean.

MISCELLANEOUS FUNCTIONS AND PROCEDURES FPage 11-3

A Theap" or "stack" can be considered as a seaquential List in which items
@ay only be inserted or deleted from one end of the List, Items are deleted
in the reverse of the arder in which they were entered on the stack.

The NEW procedure allocates dynamic variables on the heap. for examplie, if
you o use MARK, then perform a NEW, then yse MARK again, MARK will return two

different values, since the top of the heap changes whern vou allocate the
dynamic variable,

By doing a MARK followed by a NEW, you have a value that tells vou where on
the heap the variable allocated by MEW is located. The way to free up
heap-space used by the dynamic variables allocated via NEW 18 to use RELEASE
(see Section 11.1.7, below).

NOTE: Be wvery careful when using MARK and RELEASE: unwise use of these
procedures can leave yvou pointing to areas of memory that are ngt part of
the heap, thus causing unpleasant and unpredictable results,

T1.1.4 NEW

The MHNEW procedure allocates a dynamic variable, The invocation takes the
form:

NEW{variable-identifier);

where variable-identifier is the pointer to the variable allocated by NEW.
Tc access the variable allocated wvia MNEW, use the pointer variable
variable-identifier”., (For more information on NEW and dymamic wvariables,
see Section 7.2.8, "Pointer Type.'") The sections on MARK and RELEASE im this
chapter give information on wusing MARK, NEW, and RELEASE to allocate and
de-allocate dynamic variables on the "heap.”

TM.1.% OrRD

The ORDIXY function returns the ordinal number of the argument in the scalar
data tvpe of which X 18 3 member. Acoepts arguments of type C(HAR orp
user-defined scalar types, Returns an INTEGER resuit. The function
invocation takes this form:

ORD(variable~identifier or comstants):
For examole, each character displaved by the computer has a numeric value
associated with it (catled the ASCII value), which specifies its position in
the set of ASCII characters. 1f vyou use the ORD function on an ASCII
character, ORD will return to you the ASCII value of that c¢haracter {(that
is, 1ts ordinal number in the ASCII character set), for examples

WRITELNCORDC AT D),

{(Changed 30 April 1%81)

MISCELLANEGUS FUNCTIONS AND PROCEDURES ‘ Page 11-4

returns the decimal number 65, the ASCII value of the character 'A%, You
may atso include an identifier for a user~defined scalar type. For example:

EﬁgﬁRAM Testdrd:
TYPE DAYSOFTHEWEEK = (MON,TUE ,WED,THUR ,FRT) ;

BEGIN { TeztOrd ¥
WRITELNC'Ordinal number of THUR is: '.ORD(THUR));
WRITELNC'Grdinal number of D dis: "L,0RDC'DT))
END { TestOrd 2.

The program above prints the ordinal number of the character "D in the
ASCEI character set, and the ordinal number of “"THUR™ in the user—defined
scalar type DAYSOFTHEWEEK, (NOTE: The ordinal numbers for the elements of
DAYSOFTHEWEEK are: MON = O, TUE = 1, WED = 2, THUR = 3, FRI = 4.3

T1.1.6 PRED

The PRED function returns the predecessor of the specified scalar argument .
The invocation of the PRED function takes this forms

PRERCelement) 2

For example, let's say that we defined the scalar type Cardinal to comtain
the elements: First, Second, and Third:

TYPE Cardinal = (First, Second, Third):

Since the =elements of a scalar dota type are ordered, we can find out what
element is previous to the specified item by using the PRED fumction. For
@Xampie:

IF PRED(Second) = First THEN WRITELN('Correct!‘'):

The wvalue returned by PRED is not a variable or an expression; therefore,
trying to use WRITE or WRITELN to display that value causes an error. (That
78, you may not say: WRITELN(PRED(Second)).)

PROGRAM TaestPred;

TYPE Daysoftheweek = (Mon,Tue,Wed,Thu,Fri};
VAR Day @ Davsoftheweek;

BEGIN { TestPred *
Day := Tue:
LF PRED(Day) = Mon THEN WRITELN('Today is Tuesday');
Day := PRED{(Day);
IF Day = Mon THEN WRITELN('It"'s Blue Monday!')
END £ TestPred Y.

(Changed 30 aprii 19871

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11-5

When you run the program above, it prints:

Today 15 Tuesday
It's Blue Monday!

11.1.7 RELEASE

The RELEASE Qroaedurq_is used with MARK and NEW to wuse dynamic variables
With a stack=like structure called the "heap.” (See Section T1.1.3, "TMARK,"
for information on the heap.) It de-allocates the dynamic variable at the
specified heap location. The RELEASE invocation takes the form:

RELEASE (vartable~identifiery;

where varjable-identifier is the same argument as that supplied to MARK.
For example, if you use MARK to get the current state of the heap, use NEW
to aliocate a dynamic variable (which advances the top of the heap past the
value returned by the previous MARK), and then use RELEASE with the value
returned by the previous MARK, RELEASE de-allocates the dynamic variable
from the heap. A picture might help to clarify:

Procedure The Heap
NEW (V{2 v
MARK {(LocationVi}) = —eeeee
NEW{VTD Vi
MARK{LocationV¥d) = ~wewe-
NEWIVZ) ye

Ther:
Use RELEASE(LocationV2)
Use RELEASE(Locationvi)

RELEASE (LocationV2) de~allocates V2; RELEASE(LocationVl) de~allocates 1.
Vil is Left on the stack in the example above., You cannot RELEASE a dynamic
variable in the middle of the heap; vou may only release variables from the
bottom of the List.

MOTE: Be very careful when using MARK and RELFASE: unwise use of these

procedures can lLeave you pointing to areas of memory that are not part of
the heap, which can cause severe problems.

M.1.8 suce

The SULC procedure allews you to determine the successor element to the
sepcified scatar constant. The invocation takes the form:

SUCC(element

MISCELLANEQUS FUNCTIONS AND PROCEDURES Page 11-4

where element s a variable~identifier or constant of a scalar type. Foar
example:

PROGRAM:

VAR Int : INTEGER;
Dat : (YES, NO, Y, N):

BEGIN
WRITE('Enter integer: "); READLN(Int):
WRITELN(SUCC(INnt));
Dat = YES;
EijSUﬂC(Dat} = NO THEN WRITELN('YES")
END .

It you enter the number 11 to the program above, it prints:

12
YES

(See also Section 11.6, "PRED,” for more information on manipulating scalar
tvpes.}

11.2 SPECIAL TERMINAL DISPLAY PROCEDURES

11.2.7 CHARMODE

The CHARMODE procedure allows you to set the terminal of the user of vour
program inte character mode. When a terminal is in character mode, vour
program i3 able to read keyboard input a character at a time, even before a
terminating carriage return is typed. (Assembly lLanguage programmers on the
AMGE system may recognize this input mode as "image mode.’™) The invocation
of this procedure takes this form:

CHARMODE ;

Character mode is useful for checking special input such as passwords, since
the characters are not echoed at the time they are input, but when read (via

a GET or READ). To inhibit echoing, use the pre-declared KEYBQARD file
1dentifier.,

NOTE: Character editing (such as RUBS or Controi-Us) doesn't work when the
terminal s in character mode. To return a terminal to the normal mode, use
the LINEMODE procedure (discussed in Section 11.2.3, below). When vour
program exits to monitor level, AMOS automatically puts the terminal back
inta LINEMODE.

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 171-7

11.2.2 CRT

The CRT function allows you to position the cursor on the terminal screen.
In addition, vyou can also select certain terminal-handling options (such as
clear screen, delete character, etg.).

The function invocation takes this form:
ﬁﬂT(Argi,Aﬁqz};

where Argl and Arg2 are integers. If Argt is positive, the CRT function
assumes that vou want to position the cursor on the screen; 1f Argd s

negative, CRT assumes that vou want to use one of the extended
screen—handling options.

11.2.2.1 Cursor Positioning = If the first argument you supply to CRT is
positive, then the CRT function reads bhoth arguments as the X,¥Y row/column
coordinates specifying the screen position where vyou want the cursor
positioned, (The top Lleft-hand corner of the screen is specified by the
coordinates 1,1.3 For example, the function:

CRT(12,.38);
positions the cursor at the 12th row and 35th column of the screen,

NOTE: IT you supply row and column coordinates that are out of range for
your terminal, unpredictable results could occcur.

11.2.2.2 Extended Screen Display Options - If the first argument supplied
to CRY is negative, the {RT function assumes that you want to use the
extended terminal-handling options specified by the second argument. For
example, the function:

CRT(-1,.03;

tetls CRT to select option #0, the clear-screen option.

MISCELLANEQUS FUNCTIONS AND PROCEDURES Page 11-8

The screen-handling options provided are:

Code Function
i Clear screen
1 Cursor home {(upper Left corner)
2 Cursor return (column 0 without Line-feed)
3 Cursor up one row
4 Cursor down one row
5 Cursor left one solumn
& Cursor right one column
7 Lock keyboard
8 Unlock kevboard
g Erase to end of Line
10 Erase to end of screen
11 Protect field {reduced intensity’
12 Unprotect field {normal intensity)
13 Enable protected fields
14 Disable protected fields
15 pelete Line
14 Insert line
17 Delete character
18 Insert character
19 Read cursor address
20 Read character at current cursor address
21 Start blinking field
22 End blinking field
23 Start Line drawing mode (enable alternate
character set)
24 End Line drawing mode (disable alternate
character set)
25 Set horizontal position
26 Set vertical position
27 Set terminal attributes

NOTE: You should be aware that these options can be selected only 1Ff your
particular terminal and terminal driver program are capable of carrying them
oyt . {For example, not all terminals can perform an erase~to-end-of-screen
function.?) Note that most terminals do not support all of the options listed
above: unsupported options will be ignored by vour terminal driver.

T1.2.3 INCHARMODE

The INCHARMODE function returns a Boolean result. If it rerurns & TRUE,
then you are in charmode; a FALSE indicates that vou are in Linemode. {See
the paragraph below.)

MISCELLANEOUS FUNCTIONS AND PROCEDURES : Page 11-9

1.2.4 LINEMODE

The LINEMODE procedure returns a terminal to the normal input mode after St
has been set into character mode via the CHARMODE procedure (discussed in
Section 11.2.1, above). The invocation takes this form:

LINEMODE ;

White in {ine mode, all input is ended by a carriage return, and character
editing is enabled. Character echoing occurs as you type the characters,
not when they are read.

CHAPTER 12

MATHEMATICAL FUNCTIONS

The following functions accept one or more numeric arguments. For
information on invoking functions and on writing your own functions, see
Section 6.6, "Function and Procedure Declarations.”

1.7 TRIGONOMETRIC FUNCTIONS

12.1.1 cosO0)

Cosine trigonometric function. Accepts a REAL or INTEGER argument and
refurns a REAL result. Argument must be in radians.

12,1.2 SINOD

Sine trigonometric function. Accepts a REAL or INTEGER argument and returns
a REAL result,

12.1.3 TANOO

Tangent trigonometric function., Accepts a REAL or INTEGER argument and
returns a REAL result,

{Changed 30 April 19812

MATHEMATICAL FUNCTIONS Page 12-2

12.1.4 ARCCOS (M)
Arc cosine trigonometric fupction. Computes the inverse cosine fumction.

fSee COS above,) Accepts a REAL or INTEGER argument and returns & REAL
result, X must be greater than or equal to ~1, and less than or equal to 1.

12.1.5 ARCSINGY

Arc sine function. Computes the inverse sine function. (See SIN abave.)
Accepts a REAL or INTEGER argument and returns a REAL result. X must he
greater than or squal to -1, and less than or egual to 1.

12.1.6 ARCTANCX)

Arc tangent trigonometric function. Computes the inverse tangent fumction.
(See TAN sbove.} hRccepts a REAL or INTEGER argument and returns a REAL
result.,

122 HYPERBOLIC TRIGONOMETRIC FUNCTIONS

T2.2.1 COSH(XY

Hyperbolic cosine trigonometric function. Accepts a REAL or INTEGER
argument and returns a REAL result. Argument must be in radians.

T2.d.2 SINMH{X)

Hyperbolic sine trigonometric function., Accepts a REAL or INTEGER argument
and returns a REAL result,

12.2.3 TANH(XD

Hyperbolic tangent trigonometric function, Accepts a REAL or INTEGER
argument and returns a REAL result.

(Changed 30 April 1981

MATHEMATICAL FUNCTIONS ‘ Page 12-3

12.2.4 ARCCOSH(X)

Hyperbolic arec gogine triganometric function. Accepts a REAL or INTEGER
argument and returns a REAL result. (See ARCLOS above.? X must be greater
then or equal to 1,

12.2.5 ARCSINHOO

Hyperbolic arc sine Jtrigomometric function. Agcepts a REAL or INTEGER
argument and returns a RFAL result. (See ARCSIN above.}

12.2.6 ARCTANH O
Hyperbolic arc tangent trigonometric function. Accepts a REAL or INTEGER

argument and returns a REAL result. <{(See ARCTAM above.) The absolute wvalue
of ¥ must be Less than 1.

12.% MISCELLANEOUS MATHEMATICAL FUNCTIONS

12.3.1 aBs(

Computes the absoclute wvalue of the argument. Accepts ome INTEGER or REAL
argument , and returns an INTEGER or REAL result. For example:

WRITELMNC(ABS(-32,123));
displays the answer:

F2.123

12.3.2 EXPON)
Exponential function. Computes e to the X power, where e 1is the base of

natural logarithms. Accepts a REAL or INTEGER argument; returns REAL
result.

(Changed 30 April 1%81)

MATHEMATICAL FUNCTIONS Page 12-4

12.3.3 EXPONENT (X

Computes K such that X = J * 27K, where J is greater than or egual to .5,
and less than 1, Accepts a REAL argument .

12.3.4 FACTORIAL(X)

Computes the factorial of X. Accepts a REAL argument; returns a REAL
resylt, For example:

FACTORIAL(S.O)

returns 720, (720 = 6#5#4%x3%2%1 3

12.3.% LNOO
Lomputes the natural (Napierian) lLogarithm. Accepts a REAL or INTEGER

argument ; returns a REAL result. Computes Logarithm to the base e, (e =
2.T1828. ..

12.3.6 LOGOO

Computes the log base ten of the argument. Accepts a REAL or INTEGER
argument; returns a REAL result,

12.%.7 oob GO

Tests for odd value. Accepts INTEGER argument; returns a BOOLEAN result.
If X is odd, 0BD returms TRUE: if X is even, 0ODD returns FALSE.

12.3.8 POWER{X,Y)

Computes X to the Y power. Accepts two REAL numbers; returns a REAL result.
Far example:

POWER(Z.0,3.0

returng 8. You can also use POWER to compute the Nth root of 3 number—-
POWEROK ,T.0/N) .

For example, to find the cube root (third root) of 2564,12:

POMER(Z256,12,1.,0/3,0)

(Changed 30 April 1981

MATHEMATICAL FUNCTIONS ’ : Page 12~5

12.3.9 PWRCFTEN(X)

R?tuFﬂS the wvalue 0of ten raised to the power of X. Accepts an INTEGER or
REAL value; returns a REAL value. Accepts fractions and negative numbers.
For example:

PWROFTENCES

returns 10 fo the third, or 1000,

12.3.1 PWROFTWO(X)

Returns the value of two raised to the power of X. Accepts an INTEGER value
and returns a REAL value. Number must be greater than zero. For example:

PWROFTWO (3

returns 2 to the third power, or 8.

12.3.11 RANDOMIZE

Randomizes the starting seed of the RND function (sSee belowl. It takes no
arguments. For example:

RANDOMIZE ;

12.%.12 RND

Returns a random REAL number between 0 and *. It takes no arguments. For
example:

PROGRAM TestRND;
{ Generate 20 random integers between 1 and 10
VAR I @ INTEGER;
BEGIN
TTTTRANDOMIZE ;
WRITELN('Random numbers between 1 and 10:%);
FOR T = 1 170 20 no
TTsEeIN T -
WRITELN(TRUNCC(RND=T{(D+1))
END

END .

({hanged 30 April 1981)

MATHEMATICAL FUNCTIONS FPage 12-6

12.3.13 pOUND(X)

Rounds—off X, Accepts & REAL argument; returns an INTEGER result. For
example, RQQND(EB.?S) returns 24; ROUND(23.45) returns 2%,

12.%5.1 SHEFTIX,Y)

Performs binary multiplication by shifting left the binary representation of
the number sperified by the first argument the number of places specified by
the second argument. For example:

SHIFT(7,2);

returns the answer 28. (The binary number 111 (7 decimal) shifted lLeft two
places 13 the binary number 11100 (28 decimald.) X and Y must be of type
INTEGER.

12.3.15 sar{x}

Computes the square of X. for example, SAR{(]) returns &4. Accepts REAL or
INTEGER argument and returns an INTEGER or REAL result,

12.3.16 SarT OO

fomputes non-negative square root of argument. Argument may bhe INTEGER ar
REAL; result is REAL., X must be greater than or egual to zero. Aocepts a
REAL or INTEGER argument: returns a REAL result,

12.3.17 STROX) and STR(X,a,b)

Converts numeric values to STRING. Accepts a REAL or INTEGER number, and
returns a STRING.

You may optionally supply STR with two INTEGER arguments that tell STR how
to format a converted number:

STR{Number X ,.Y);
o
STRONumber X3

where ¥ specifies a minimum field width and Y specifies the number of digits
to write after the decimal point. If the number s lLarger than the field
specified by X, PASCAL does not trumcate the number, but prints the number
using the necessary number of digit positions,

(Changed 30 April 19871

MATHEMATICAL FUNCTIONS Page 12-7

CEf “Number' is INTEGER, you may not specify Y.} These two variations of
STR perform formatting in exactly the same way as WRITE and WRITELN, except
that they do not generate a Leading space for positive numbers. For
example, given the REAL data 125.44:

WRITELN(STR(123,44,10,4));

#

retuyrns the string:
123 .4400

wﬁere the number s right-justified in a Field of ten blanks, and four
digits are written to the right of the decimal point.

12.3.18 TRUNC(XD

Truncates X. Accepts REAL argument: returns INTEGER result. <{(For sxample,
TRUNC{24&_.3) returns the integer 24.)

12,4 SAMPLE PROGRAM TO PAD A NUMBER WITH LEADING ZEROS

Below 13 a useful procedure to pad a number with leading zeros aleong with a
samole program that makes use of it

PROGRAM Format;

VAR 8 1 STRING;

o { The procedure call Format(String,Left,Right Number) formats
the rumber with Left zero-filled digits before the decimal
point and Right zero-filled digits after the decimal point.
& trailing space or minus sign is added to indicate the sign
ot the number. Illegal arguments generate an errcr to
ERRORTRAP, ¥

PROCEDURE Format (VAR X : STRING; Left,Right : INTEGER; Num : REAL);

VAR Pow @ REAL:

BEGIN { Pracedure Format
TTIF Left > 11 OR Left <= O THEN ERROR(1):
Pow 1= PWROFTEN(Left);
IF ABS(Numd >= Pow THEN ERROR(1) { Value range error ¥;
¥ := STR(Pow + ABS(Num) ,0,Right);
{ Force leading zeros by adding power of ten and converting
to STRING.
DELETEL 1.1 ; £ Remove leading 1
X o= EE’Num < 0 THEN CONCAT{X,.'~') ELSE CONCAT(X,.' "
END { Format ¥;
BEGIN { Main program ¥
Format(s,5,2,~12.7); { Return answer in § 7
WRITELNC ' Format(5,2,.-12.7) = " ,8):
WRITELNC ' Result should be 00012.70~-%)
END { Main program).

{(Changed 30 April 1981

CHAPTER 13

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES

This chapter contains descriptions of the standard functions and pracedures
You can use on data that have been declared as type STRING or packed
These functions and procedures have been pre-declared for vou
For a full list of all functions and procedures, refer to

of type CHAR.

by AlphaPascal,

Appendix A, "Quick Reference to AlphaPascal,”

These are the functions and procedures described in this chapter:

For data of type STRING:

CONCAT
COPY

DELETE
INSERT

LENGTH
L.LS
POS
STRIP
uLs
VAL

Concatenates specified strings

Copies specified string (or partial string) into
another string

beletes specified number of characters from string
Inserts specified string {or partial string) into
another string

Returns number of characters in string

Converts ubper caSe string to lower case

rReturns position of specified character in string
Removes trailing spaces from string

Converts lower case string to upper case

Converts a strimg to a REAL number.

For dats of type PACKED ARRAY OF CHAR:

FILLCHAR
MOVELEFT

MOVERIGHY

SCAN

Fitls specified string with specified character
{opies specified number of characters beginning
with left of array over to specified array
Copies specified number of characters beginning
with right of array over to specified array
Returns position of specified character in array

{(Changed 30 April 1981

Brrays

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13=2

13.1 STRING INTRINSICS

Below are the functions and procedures that you can wuse on data aof type
STRING,

13,10 CONCAT

The CONCAT function returns a string that contains the contents of all of
the specified string(s). The function invocation takes this form:

CONCAT(Stringt,String2,...,5tringN};
where you may specify ome or more strings to be concatenated,
For example:

PROGRAM TestConcat;

VAR Destination, Sourcel, Source?, Source3 : STRING;

BEGIN { Testfoncat ¥
Source? "Mevermore! "' :
Sourced := 'the Raven, ':
Source® = 'Quoth ':
Destination := CONCAT(Source?,Source?,Sourcel);
WRITELN(Destinat fon)
END { Testloncat).

H]

The program above prints:

Guath the Raven, "Nevermore!®

13.1.2 copy

The COPY function creates a new string of the specified number of characters
whose contents are taken from the specified source string, starting at the
specified index. The function invocation takes this form:

COPY (Source-string,Tndex,$ize~of~returned=string);

For example:

(Changed 30 April 1981)

STRING AND CHARACTER ARRAY FUNCTIONS AND PRdCEQURES FPage 13-3

PROGRAM TestCopy:

VAR Sou?se, Target
Fosition

STRING;
INTEGER;

aa aw

BEGIN {TestCopylt
source := "Jonathan R. Smithf;

Position := POS('S",Source) € Find position of Last name by
Target := COPY(Source,Position,5);

WRITELN(®The customer Last name is: ',Target);
WRITELNC'Last-name position in source string is: *,Position);
END {End TestCopyl.
The program above prints:

The customer last name is: Smith

and:

Last-name position in source string ig: 13

(Notice that we used the 20% function, discussed bhelow in Section 13.1.7, to
determine the position in the source string of the character '§'.3

13.1.3 DELETE

The DELETE orocedure removes the specified number of characters from the

source string, starting at the specified position. The procedure invocation
takes this form:

DELETE {(Source-string, Index, Number~of-characters);
where Saurce—string must be a string variable.
For example:

PROGRAM TestDelete;

VAR Source : STRING;
Position, Size : INTEGER;

BEGIN { Testhelete)
Source := ‘Now is the time for all good meni';
Position = POS('all’,Source);
DELETE (Source, Position + 3, 9);
WRITELN (Source)
END { TestDelete 2,

The program above prints the string:

Now 1s the time for all!l

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-4

T3.17.4 INSERY

The INSERT procedure inserts the specified string 1intoe a specified
dastaaatTOn string. It begins the insertion at the specified position in
the destination string. The 4invocation of this procedure takes the form:
INSERT (Insert~string,Pestination-string,Index);
where Destination-string must be a string variable. for example:
PROGRAM Testlnsert;

VAR Insertion,Destination : STRING;

BEGIN { TestInsert }

Destination ;= "Customer name is: .';
insertion := 'Rohert Allen®;
INSERT(Insertion,destination,19);

WRITELN(Destination?
END 4 Testinsert .
The program above prints:

Customer name 1s: Robert Allen.

13.7.% LS

The LCS procedure converts upper c¢ase characters to lower case, The
procedure invocation takss this form:

L{S{SourceStringl;
where Sourceltring is the string te be converted. For example:

PROGRAM TestLCS;

VAR Customerid 1 STRINGLZ2Z];

BEGIN { Testi(S
CustomerID := 'Alfred J. Prufrock Jr,';
LCS(CustomeriDl;
WRITELNC ' Converted name ig: ', Customeril)

END { Testi(Ss),

The program above prints:

Lonverted name is: alfred i. prufrock jr.

STRING AND CHARACTER ARRAY FUNCTIONS . AND PROCEDURES Page 13-5

12.1.6 LENGTH

The LENGTH functiOﬂ. returng the number of
string. The function invocation takes this forms.

characters in the specified
LENGTH (Source-string);
For example:

PROGRAM TestlLength;

VAR State : STRING

BEGIN { TestlLength)
State := 'California’;

WRITELN('Mumber of characters in state: PLLENGTH(Statel))
WRITELNC'Number of characters in zipcode: TLLENGTHO 9024733 ;2
END { TestLength 2.

The program above prints:

Number of characters in state: 10

and:

Mumber of characters in zipcode: §

13.1.7 POS

The POS function returns the position of the first occurrence of the
specified characters in the specified source string. If POS can't find the

specified characters, it returns a zero. The invocation of this function
takes the form:

POS(Pattern,Source~string);

For example:
PROGRAM TestPos;

YAR Source : STRING;

BEGIN { TestPos ¥

source := 'The requested account number is HAAZ34-567~23228% ;
WRITELN('The account number begins at character position # °
POSCYHAAY ,Source))
END { TestPos .

£

The praogram above prints the message:

The zccount number begins at character position # 33

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-4

13.1.8 STRIP

The STRiP prosedure strips trailing blanks from the specified string. (That

is, STRIP removes any blanks that are at. the end of the strirng.) The
invocation takes the form:

STRIF(SourceString);

where SourceString must be a string variable. For example:
PROGRAM TestStrip;
VAR Source : STRING;

BEGIN { TestStrip 2}

Source := '25 characters !

WRITELN('Before stripping:[’® Source,‘]’)

STRIF(Source);

WQITELN(‘After stripping:z[? , Source, 1)
END { TestStrip .

The program above prints:

Before stripping:[25% charagters 1
After stripping:[025 characters]

12.1.9 Urs

The UCS procedure converts Lower case characters in a specified string to
upper case. The procedure invocation takes the form:

UCS(SourceString);
where SourceString must be a string variable. For example:

PROGRAM TestU(S;

VAR Title @ STRINGE3DI:

BEGIN € TestUCS$ }
Title := "fAmOus comPUters i HAve knOWn.'
UCS(Titlel;
WRITELN('Converted title isz *",Title)

END { TestlCS 3.

The program above prints:

Converted title is: FAMOUS COMPUTERS 1 HAVE KNOWN.

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13~6a

12,110 vaL

Tge VAL procedure converts a string to a REAL number. The invocation takes
the form:

VAL (SourceString);

where SourceString is a string variable that vyou want to convert to a
number., For example:

PROGRAM TestVAL;

VAR Price 3 STRING;
Total 1 REAL;

BEGIN { TestVAL
WRITE('Enter price of object: ')
READLN(Price);

IF POSC'. ", Price) = 0 THEN WRITELN('The price 1s in whole dollars. s

Total := VAL(Price);
WRITELNC'With 6% tax, the price is:!,Total * 1.06:8:2)
gﬁ‘_{ { TestVAaL +.

The program above uses a string furnction, POS, on the string Price; it then
converts Price to a REAL number (Total) so that it can perform a nuneric
operation on the value. (Motice the use of the optional parameters (":8:2')
in the last WRITELN invocation to format the numeric answer in a field eight
characters wide with two digits to the right of the decimal point.)

A sample run of the program looks Like this:
Enter price of object: 5480

The price is in whole dollars.
With 6% tex, the price is: 593,60

{Changed 30 Aprit 1981

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13~7

15.2 CHARACTER ARRAY INSTRINSICS

The procedures and strings listed below are for use on packed arrays of type

CHAR. You must make sure that any string Literal you assign to the array is
the correct number of characters. For example, asssigning a string lLiteral
to an array of 24 elements will cause an error i that string Literal has
Less than or more than 24 characters.

13.2.7 FILLCHMAR

The FILLCHAR procedure modifies a character array by filling it with the
specitied character, The invocation for the praocedure takes this form:

FILLCHAR (Destination,Length,Fill~character):
where Destination must be a variable. For example:
PROGRAM TestFillChar;

VAR Pestination ¢ PACKED ARRAY [1..10] OF CHAR;
o Length : TNTEGER;
Character CHAR
I : INTEGER;

as 38

BEGIN { TestFitlChar ¥
Length = 10;
Character 1= 'A';
FILLCHAR (Destination,Length,Character);
FOR T = 1 70 10 boO
TTWRITE (DestinationLI1)
END € TestFiliChar 2.

The program above fills the character array Destination with tem A's.

15.2.4 MOVELEFT and MOVERIGHT

The MOVELEFT and MOVERIGHT procedures move blocks of bytes in memory. They
can be dangerous if not used correctly. (For example, 1f vou tell one of
these procedures that you want to move 20 bytes, but the destination array
only contains 10 bytes, where do the extra 10 bytes go? Somewhare in
memogry?

You will probably use MOVELEFT and MOVERIGHT most often to shift characters
within a single array. You can also use them to move characters from one
array of type CHAR to another.

MOVELEFT starts at the Left of the specified source array, and moves bytes
to the specified position in the destination array (also beginning at the
Leftl). MOVERIGHT moves bytes beginning with the right of the source array,

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13-8

and beginning with the right of the specified locations in the destination
array. You specify the source array, the destination array, and the number
af bytes to wmove. {(In the case of an array of type CHAR, one byte i3 one
character.) By including subscripts, you may Spec&fy the Llocations in the
source and destination arrays at which to start.

0f course, MOVELEFT and MOVERIGHT do not physically "move” the byte$,
instead, they make a copy of the specified bytes from the saurce array into
the specified Llocations of the destination Brray. The invocations of
MOVELEFT and MOVERIGHT take this form:

MOVELEFT (Source~array,Destination—array Number-of<bytes};

and:

MOVERIGHT (Source~array,Pestination~array, Number~of-bytes);

where Destination must be a variable.

Given the same arrays and same subscripts, the results of MOVERIGHT and
MOVELEFT will look exactly the same. For example, if Source is the packed

array of CHAR "12345678907, and Destanatwmn s the packed array of (HAR
”#**ﬁk#*k*%“

MOVELEFT{Scurcelél, Destinationlsl , 50 ;

MOVERIGHT (Sourceld] Destinationlald,s);

Wwill produce the same packed array: **xxx478%90. The MOVELEFT procedure
above moves the characters in this order: 6, 7, &, ¢, and 0. The MOVERIGHT
procedure above moves the characters in this order: 0, 9, 8, 7, and 6. The
only time this will become important is when vou are moving characters
within the same array.

For example:
fﬁOGRAM TestMove;

VAR Source : PACKED ARRAY [1..233 OF CHAR;

BEGIN { TestMove ¥

" Source := 'Days are never too long';
MOVELEFT (Sourceldl, Sourcel13,10);
WRITELN(Source);
Source :® 'Days are never too long®;
MOVERIGHT (Sourcelél, Sourcel11,10);
WRITELN(Sourcel

END { TestMove }.
The program above prints:

are naver ever too long

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Fage 13~9

and:
ever eyer ever too lLong

MOVERIGHT and MOVELEFT can produce radically different results, depending on
the data you give them. You must be careful to choose the correct MOVE
function far your particular application.

13.2.% SCAN

The SCAN function returns the number of characters in the array from the
beginning of the array until the specified character. (If the specified
characters are not found, SCAN returns the number of characters 1in the
entire array.) The function invocation takes this form:

SCAN (Length,Partial-expression,Source~array):

where Length gives the length of the arrav, Source-array specified the
packed array of type (HAR that is to bhe searched, and Partial—expression
takes the form:

<* ctharacter-expression

= charactgrmexpression
For example:

PROGRAM TestScan;

VAR Source : PACKED ARRAY [1..25] OF CHAR;

BEGIN { TestScan

Source 1= "Error:30240 type RETURN '

WRITELNC'Error code starts after char #: ',SCAN(25,=':",Scurce))
END { TestScan I.

If the searched for character~expression 4is the first character of the
array, SCAN returns a zero.

By specifying a negative length, vou can tell SCAN to scan the array
backward, from right to Lleft., 1If the specified character appears in the
array, SCAN then returns a negative number specifying the number of
characters scanned from the right of the array before the specified
character was reached. If vou supply a negative length, be sure to also

specify the position in the array at which you wish the search to start.
For example:

WRITELN{'It staris after character ', SCANC~25,=":" Sourcel251));

PART TII

ADVANCED PROGRAMMING ON THE ALPHA PASCAL SYSTEM

CHAPTER 14

SYSTEMS FUNCTIONS AND PROCEDURES

The following functions and procedures will be of special use to the
experienced AlphaPascal programmer, They allow you to determine the

location and size of data objects im memory, to determine the amount of free
memory lLeft, and to handle zystem and fiie errors.

Other functions and procedures allow you to access system functions such as

accessing the Line printer spooler, mounting. disks, reading the system
clock, and reading, setting, and releasing multi-user file locks.

t4.1 LOCATION

The LOCATION function returns an integer that corresponds to the absolute
memory address of the specified variable. The invocation takes the form:

LOCATION (variable~identifier);

where variable-identifier specifies the variable whose memory address vyou
wish to know. LOCATION accepts a wvariable of any type as an argument.
LOCATION may not be used on packed fields.

14.2 SIZEOF

The SIZEOF function returns the size (in decimal bytes) of the specified
item. The 1invocation takes this form:

SIZeafF(variable~or~type~identifier);

For example:

SYSTEMS FUNCYIONS AND PROCEDURES Page 14-2

PROGRAM TestSize0f;

TYPE SampleRecord = RECORD
: character: CHAR;

next: "SampleRecord:
END s

BEGIN (TestSizeOf *

WRITELN{'Size of SampleRecord (in bytes) is:!,SIZEOF(SampleRecord))

END { TestSizeOf .
The program above prints:

S1ze of SampleRecord (in bytes) is: 4

14,3 MEMAVAIL

MEMAVAIL returns an integer corresponding to 3/4 the number of unused words
remaining in the user partition. This number can be used to estimate how
many 1tems can be allocated by NEW before memory capacity is exceeded. You

can use SIZEQGF to determine how many bytes any particular obiect will
reguire,

T4 4 MAINPROG

MAINPFROG 18 & boolean function that returns no arguments. It returns TRUE
if the .PCF fite is being used as a program, or FALSE if it is being used as
a Library.

MAINPROG can be used for debugging purposes. It can be used to write a
program which can also be used as the lLibrary of a checkout program that
makes sure that the functions and procedures defined in the original program
{now a library to the checkout program) are implemented correcily. To do
this, the program would have the form:

PROGRAM
«=.declarations...

BEGIN
s..dnitialization. ..

TF MAINPROG THEN

T OBEGIN
{statementsk
END;

END .

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-3

The statements are only executed if the program is being used as a program
and not asfa Library.

The checkout program testing the functions and procedures 1in the above

program would then declare them as EXTERNAL functions and procedures in
order to call them with test arguments. B

14.5 SPOOL

SPO0L. 1s an assembly language routine that vou can call from Pascal teo spool
a disk fite to the lUine printer(s). (Tp "spocl” a file 48 to insert it into
the printer queue, after which vou can continue to do other things while
your file waits in the gueue for its turn to be prinmted.) SPOOL allows you
te specify on which printer the file is t¢ bhe printed, the number of copies

to be printed, the form on which it is to be printed, whether The file 15 to
be deleted after it is printed, etc.

The current version of SPOQL (AMOS version 4.4/AlphaPascal version 2.0, and
Later) is fully compatible with the c¢urrent BASIC SPOOL subroutine. In
other words, the only information you must supply to SPOOL s the
specification of the file you want to printy; all other parameters are
optional. However, any unspecified arguments must he replaced by & null
value (STRING null or INTEGER 0, based on the type of the argument). This

is bhecause Pascal functions and procédures require a fTixed number of
arguments.

The following definitions of switches and error codes are provided in the
include file SPOOL.INC. To use, insert {81 SPOOLY intce the appropriate
place 1n your program.

14.5.17 Switches

To make Life easier, switch values are available as constants. For a
description of SWITCHES, see below. The constants would be:

BANNER = 1;
NOBANNER = 2
DELETE = 42
NODELETE = &
HEADER = 16;
NOHEADER = 32
FF = 643
MOFE = 128;
WAIT = 256;

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-4

14.5.2 Error Codes

?h@« error codes returned by SPOOL are provided in a TYPE declaration at the
beginning of a program. The TYPE command has the form:

TYPE SPOOLERROR = (SPOOLED, NOSPOOLERALLOCATED, BADPRINTERNAME,
QUTOFQUELEBLOCKS, FILENOTFOUND);

14.5.3% Function Definition

Finatlly, the external function linkage definition is made as follows:

EXTERNAL FUNCTION SPOOL(F,.P: STRING:
SW,CP: INTEGER;
FRM: STRING:

L.Wi INTEGER): SPOQOLERROR;

14.5.4 The SPOOL Subroutine

Call SPOOL via:

SPOOLCODE : =8 POOL (FILENAME (PRINTER SWITCHES ,COPIES , FORMS ,LPP WIDTH;

where:

SPOOLCODE A variable of type SPOOLERROR which gets the completion code
shown in the above TYPE declaration. If SPOOLCODE s not set
to SPOOLED after the call is made, then an error of some kind
cccurred and the file was not printed.

FILEMAME & string variable or expression that gives the specification of
the file you want to print.

PRINTER A string variable or expression that gives the name of the
printer to which you want to send the file. If PRINTER 13 =&
null string, SPOOL uses the default printer.

SWITCHES An integer variable or expression that specifies wvarious
control switches and flags that affect the printing of the
file. The control switches that SPO0L uses are exacily the
same as the switches used by the monitor PRINT command. {See
the "AMOS System Commands Reference Sheets” 1in the User's

information section of the AM-100 documentation packet for
information on PRINT.)

Each switch you can use has a numeric code associated with it
{see belowl. For example, the RBANNER switch code s 1; the
DELETE switch code is 4. Set control switches by putting the
sum of the apprepriate switeh codes into the SWITCHES variable.

SYSTEMS FUNCTIONS AND PROCEDURES Page T4~%

For example, 1 you want to use the BANNER and DELETE switches
(to tetl the Line printer spooler program to print a banner
page and delete the file after printing it), load SWITCHES with
5 (BANNER code + DELETE code). If you set SWITCHES to 0 (or do
not specify one value of a switch pair), SPOOL uses the default
switches for the selected printer. '

Switch codes:

BANNER 1
NMOBANNER 2
RELETE 4
NODELETE 3
HEADER 16
NOHEADER YA
FF b
NOFF 128
WATT 256
COPLIES An integer variable or expression that specifies the number of

copies to be printed. If COPIES is (b, the Line printer spooler
program prints one copy.

FORMS A string wvariable or expression that specifies the form on
which the file is to be printed. If FORMS i3 & nuill string,
the Line printer spooler uses the NORMAL form.

LPP An integer variabie or expression that specifies the number of
Lines per page. SPO0L only uses this wvalue 1f vyou have
specified the HEABER switch in the SWITCHES variable. If you
omit LPP, the spooler program uses the default wvalue for the
specified printer. '

WEDTH An integer variable or expression that specifies the width (in
characters) of the print ling (for header printing). I{ WIDTH
is 0, the spooler program uses the default value for the
specified printer,

Th,&6 XLOCK AND GETLOCKS

KLOCK and GETLOCKS are two assembly language subroutines that allow setting,
clearing, and listing of multi-user file locks, like the eguivalent BASIC
subroutine XLOCK., in fact, the Locks set by the Pascal XLOCK are the same
as those set by the BASIC XLOCK. This means that Pascal and BASILC programs
can be used to lock each other out.

For a tengthier discussion of the concept of "file locks,” refer to FLOCK -
BASIC 3ubroutine to Coordinate Multi-user File Access, {(DWM-00100-14), and
KLOCK = BASTU Subroutine for Multi-User Locks, (DWM-D0100~-113, in the
BASIC Programmer’s Information section of the AM=-100 documentation packet.
Briefly, however, a file lock 1s merely a convenience that allows a program

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-6

to check to see if & current file is in use. The reason for file Locks A<
that multiple users will destroy the contents of a file 4f they access it at
the szame time. A file lock helps programs keep track of whether or not a
file is currently being accessed. The program accessing the file ''sets™ a
tock on the file to let other programs know that they must wait. Then, when
the program Lleaves the file, it 'clears" the lock, making the file
accessible to other programs. It is important to stress that a file lock i
not a security device. Multiple programs can access the same file whether
ar not file locks are set on that file; however, by checking file lLocks, a
program can prevent a file from being damaged by refraining from accessing
1t while another program is using it.

It 1s not necessary to load the Pascal XLOCK routine snto memory. However,
the routine does require one word of data in system memory ta Link to the
system aueue list, which contains the locks set by XL0OCK

This Link is contained in the file DSKO:XLOCK.SYS{1,41. This file should be
toaded inte system memory so that XLOCK may work.

If XLOCK.SYS s not Loaded into system memory, then the ALphaﬂA§IC
subroutine XLOCK.SBR must be. This is because the AlphaBasic XLOCK will
contain within dtself a Link to the system queue blocks which contain the

Locks set by both XLOCK routines. fFor more information, see the XLOCK
documentation,

There is no problem if both XLOCK.SBR and XLOCK.SYS are in system memory at
the same time. The Pascal XLOCK will wuse XLOCK.SBR, so that BRASIC and
Pascal are using the same list of locgks.

The Llock values defined below (LOCKT and LOCK2) are required for each lock.
LOCKT s called the "MAJOR LOCK" and LOCKZ is called the “MINOR LOCK.Y If a
value of 0 1s set in either lock, then that Lock becomes a wildcard and
matches all values in that position. For instance, a LOCKT of % and a LOCK?
of 0 locks out all locks with a LOCKT of 3. Any other user that tries to
use a LoCKT of 3 will be locked out, If LOCKT is set to 0, then all Llocks
will bhe set. For more information, see a description of the BASI{ XLOCK
subroutine.

Th,6.% The XLOCK Subroutine

$LOCK is an external function. Therefore, it must be specified as such in
the Pascal program that uses 4t

EXTERNAL FUNCTION XLOCK(MD: XLOCKMODE;
LOCKT,LOCKZ: INTEGER):INTEGER;

The tvpe YWOCKMODE s defimed as follows:

TYPE XLOCKMODE = (SETLOCK, SETLOCKWAIT, CLEARLOCKD

SYSTEMS FUNCTIONS AND PROCEDURES Page 14=7

{(These two declarations can be included in a program by using {3$1 XLOoCK3.D

The resultof the XLOCK call will be returned in the integer variable
RETCODE: i

RETCODE:= XLOCK{MODE , LOCKT,LOCKZ) ;

Where MODE s one of the modes specified in XLOCKMODE, and LOCK' and LOCK2
are integers containing the locks to be set,

If RETCODE is ever set to -1, this means that a bad wmode was passed to
KLOCK. This can happen if there was an error in setting up XLOCKMODE.

14.6.2 Setting a Lock

& lock s set using XLOCK mode SETLOCK. For instance, if the user had
opened a file on chanhel 3 and was updating record 47, he might enter the
following code into his Pascal file:

LOCKT:=3; {iocking file 33}
LOCKZ2:=47; {locking record 473
RETCODE ;=XLOCK(SETLOCK,LOCKT LOCKZ) ;

It the Llock was successful, then RETCODE is set to 0. If not, the job
number of the job that has that Lock s réeturned in RETCODE.

14.6.3 Setting a Lock (and Waiting Until it is Available?

1t is sometimes necessary to walt for a Lock to become clear. To do this,
mode SETLOCKWAIT is used instead of SETLOCK. This mode, ‘sssuming the asbove
example, is used as follows:

RETCODE : =XLOCK (SETLOCKWAIT,LOCKY,LOCKZ) ;

if the tock 1s held by another user, the program will be put to steep wuntil
it becomes availabie. When ¥LOCK returns to the user program, RETCODE will
contain a 0 1f the lock was allocated, or the user's job hHumber 1f the lock
already was allocated to him,

T4.6.4 Clearing a Lock

After a lock is no longer needed (i.e. 1in the above example, moving to
another record) it must be cleared so that other users have access to that

fock. To clear a lock, the CLEARLOCK mode is used. Again, using the above
example:

RETCODE : =XLOCK(CLEARLOCK ,LOCKT ,LOCKZ)

SYSTEMS FUNCTIONS AND PROCEDURES Page 148

RETCORE will contain the number of locks that were cleared, If RETCODE = 0
atter the c¢all, then no locks were cleared, 1f RETCODE = 1, then one lock
was cleared, If RETCODE > 1, then & wildcard was specified in LOCKT or
LOCKZ and mucho locks were cleared.

14,.6.5 The GETLOCKS Subroutine

GETLOCKS is an external procedure. Therefore, it must be specified as such
in the Pascal program that uses it:

EXTERNAL PROCEDURE GETLOCKS (VAR LOCKATY,.JOBNUM: INTEGER;
VAR LOCKARRAY: LARRAY):

Type LARRAY i3 an array of type LOCK. LOCK is set up as follows:

TYPE LOCK = RECORD JOB,LOCKT,L0CK2 : INTEGER END;

IfT ¥ is a variable of type LOCK, then X.J0B is the job number that holds the

lock. X.LOCKT and X.LOCK? are the lock valued of the lock. LARRAY is
defined as follows:

TYPE LARRAY = ARRAY(1..2%] OF LOCK;

The variable LOCKARRAY may then be allocated for GETLOCKS to return the List
of locks in:

VAR LOCKARRAY : LARRAY;

Be sure to set up type LARRAY as an array large enough to held the maximum
number of possible locks on your system. S3ince there is no range <checking
in external procedures or functions, LARRAY must be large enough to receive
the maximum number of anticipated locks. Therefore, it is a good idea to
set LARRAY o the number of gueue blocks allocated in vour system.

If there is a possibility that more than 25 locks may be set at a time when
GETLOCKS {(see below) 1s called, then it 1s necessary that the size of LARRAY

be increased, The file DSKO:XLOCK.INCE?7,51, which contains the definition
of LARRAY, may be modified.

To get a List of locks, enter into your program:
GETLOCKS (1.OCKAQTY, JOBNUM , LOCKARRAY) ;
Where LOCKATY is an integer that receives the number of set Locks, JOBNUM is

an integer that receives your job number, and LOCKARRAY is the array that
receives the list of locks.

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-9

One thing you might do with this List of lLocks is List it. To go this:

FOR LOCKLIST:=1 TO LOCKQTY DO
WITH LOCKARRAYTLOCKLISTI DO
BEGIN {LIST LOCKSY -
TTWRTTELNCTJOB = ', 0B) :
WRITELN(FLOCKY " LLOCKT)
WRITELN('LOCKZ = ',LOCKZ):
END; {LIST LOCKSD

]

16,7 XMOUNT

XMOUNT 15 an assembly language routine that allows you to mount a disk from
within a Pascal program without leaving Pascal. You should call it whenever
you change a disk and your Pascal program s going to use that disk. You
must always mount @ disk after you have changed it and before you write fto

it dtherwise, the system will think that the old disk is still in the
drive, and use the old disk's bitmap to find unused disk blocks.

14.7.17 Error Codes

The error codes returned by XMOUNT are specified in a TYPE declaration at
the beginning of & program, having provided the form:

TYPE MOUNTERROR = (MOUNTED, UNMOUNTED, DEVNOTFOUND, BADHASH, NOVOLIDR):

Next, some wvariables will have 1o be defined. XMOUNT reguires a string
variable to contain the device specification and another string variable

that will contain the volume ID of the newly mounted disk. XMOUNT will
return an error code in a2 variable that should be of typd MOUNTERROR:

VAR DEV,VOLID: STRING[L10];
RETCODE: MOUNTERROR;

Next, the function (XMOUNT) must be defined as follows:

EXTERNAL FUNCTION XMOUNTID: STRING:
VAR V: STRING): MOUNTERROR;

T8I XMOUNTY will include the required TYPE and EXTERNAL FUNCTION definitions
required by XMOUNT,

XMOUNT 15 then calied via:

RETCODE : =XMOUNT(DEV ,VOLID);

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-10

Where DEV is a string containing the device to be mounted (gagn,

DEV:="DSK3:") and 'WOLID is the string variable used to receive the volume
I, it any.

14.7.2 Unmounting a Disk

A disk may be unmounted by specifying '/U' after the DEV spec (l.e.
RETCODE : =XMOUNT ('DSK23:/U',¥0LIDY;). 1If a disk is to be urmounted, the */U°
must contain an upper case ‘U'. When you unmount a disk, you prevent RASIC
and most system programs from being able to access that device. Note that
YOLID 1s dincluded, even though it is not needed hecause a volume id s not
returned when a disk is unmounted. VOLIDP is reguired at all times.

14.7.3 Error Codes

The error (or return} codes specified above have the following meanings:

14.7.3.% MOUNTED - The device was successfully mounted and the volume 1D
is in YOLID (or whatever the second string was called).

14.7.3.2 UNMOUNTED ~ The device was sucgessfully wunmounted. YOLID s
unchanged.

164.7.5.3 DEVNOTFQUND ~ The specified device was not defined at system
generation, and is not in the system device table. VOLID is unchanged

14.7.3.4 BADHASH -~ The device was mounted, but it was a storage module
device with a BADBLK.SYS. When the new BADBLK.SYS was read, it was found to
contain a bad hash total. VOLID is unchanged.

T4.7.3.5 NOVOLID ~ The disk was successfully mounted, but there was no
volume ID on the disk. Note that MOUNTED and NOVOLID specify successful
mounting of the disk. UNMOUNT specifies a successful UNMOUNT. DEYNOTEOUND
and BADHASH indicate errors occurred while attempting to mount the disk. I
either of these errors occur, you should not try to access that devige!

SYSTEMS FUNCTIONS AND PROCEDHRES Page 14-11

4.8 TIME

The TIME procedure places the contents of the system clock into the two
specified variables. (The system clock contents increment every sixtieth of
a2 second on most systems, and every fiftieth of a second on other systems;
the actual amount is specified by CLKFRG in SYSTEM.INI.) Wordi contains the
most significant part of the returned value. Wordt and Word? must be
declared INTEGER variables. The procedure invocation takes this form:

TIME (Word? Word2:

For example:

PROGRAM TestTime;

VAR First,Second : INTEGER;

BEGIN { TestTime }
TIME(First,.Secondl:

WRITELN{ " The time is: *,.First,',.'.,Second
END € TestTime }.

When the program above was run at 5:30:02 PM, it printed:
The time 13: 56,2086

NGTE: Because the clock contents are stored as a 32-bit unsigned valus,

WordsZ may sometimes be interpreted and displaved by the computer as a
negative number.

14.9 ToD

TOD takes no arguments, and returns & real number corresponding to the
number of seconds since midnight, according to the time of day. Internaily,
the time of day is converted from a two word integer fTo a real number, and
thern divided by the clock freguency defined in SYSTEM. INI. Therefore, the
resolution on &0 cvcle systems is to within .(1M466... seconds, and on 50
cycle systems is to within .02 seconds.

You will probably find TOD to be of most use for timing purposes or for
calculating the time of day.

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-12

14,10 ERROR HANDLING PROCEDURES AND VARIABLES

Whenever an error occurs, the AlphaPascal system prints an appropriate
message (including the location of the error) and aborts to AMOS. Whenever
& user types a (ontrol=C while his program is executing, execution is
suspended and the user is allowed to choose among a series of options such
as resuming his program, exiting to AMOS, or displaying a backtrace of
suspended function and procedure invocations. '

However, it is nct always desirable to let the system perfarm error handl ing
for you. You may wish to allow the user to type a Control=C in order to
exit from some mode of a program, or in order to obtain a status report on
the progress of your program in processing some task. 1t may be that vou
have an applications package 1in which the wusers of vyour package are
unfamilar with AMOS... if an error occurs you may simply wish to print a
message and return to the top level of your applications package. Or it may
be that you enforce security on your system, and have an unattended program
that you wish to LOGOFF automatically if an error occurs.

For these reasons and more, it is desirable for you to be able to write vour
own routine to handle a Control-C and error conditions. AlphaPascal allows

¥ou to do s0, and the remainder of this section will attempt to provide vou
Wwith the necessary information to write such a routine.

14.10.17 Including ERT.INC

In order toc write your own error rewtine, you must include 2 special set of
definitions with {31 ERT}. Boing so includes the following text:

TYPE
TTINFORED = RECORD
XKEQERR: INTEGER:
FILERC: INTEGER:
ERRFIB: "TEXT:
-« LAdditional information for internal use only}
END

EXTERMNAL PROCEDURE XERRORTRAP(VAR INFO: INFORECH;
EXTERNAL PROCEDURE STDERRORTRAR;

14.10.2 ERRORTRAP

To catch errors, you must write a global procedure of no arguments with the
name ERRORTRAP. HMere is a very simple example of such a procedure:

SYSTEMS FUNCTIONS AND PROCEDURES frage 14-13

PROCEDURE ERRORTRAP;
BEGIN

STDERRORTRAP;
END

in thizs example, we simply call the standard system error handler
STRERRORTRAP. In order to determine the nature of the error which has
invoked errortrap, you must use the function ERRGRINFO in conjunction with a
variable declared as type "IMFOREC:

PROCEDURE ERRORTRAP*
VRR INFOP: "INFOREC;

BEGIN
INFOP = ERRORINFQ;
WRITELNC' 7Error ', INFOP™ . XEQERR');
STDERRORTRAP;:

END;

In this example, we also display the error code corresponding to the error
which cocurred before calling the standard error handler. The List of errar
codes is as Tollows:

Error

Code Meanwng

1 value range error

3 Exit from uncalled procedure

& Mamory capacity exceeded

5 integer overftiow

b Divide by zero

7 Bad pointer reference

8 {(Control—-cl

10 (170 error)

11 Unimplemented runtime instruction
12 Floating point error
1% String overflow

14 Programmed HALT

15 Programmed breakpoint

16 ARCSINEX} or ARCCOS{®) where abs{x) > 1

17 LOG{xI or LN(x) where x <=

18 SQRT(x> where x < {

19 TAN(PL/Z + k#PL) i3 undefined for integer k (bad TAN argument)
20 ARCCOSHIX)} where x < 1

21 FACTORIAL(x) where x is a negative 1nteg@r
RE ARCTANH (%) where abs{x) »= 1
23 POWER (x,y? where x < 0 and vy is a fraction

In the case of 1/0 errors, there is some additional information, namely the
type of error and the fite involved, which is availables

SYSTEMS FUNCTIONS AND PROCEDURES Page Ta4—-14

PROCEDURE ERRORTRAP;

VAR INFOP: . INFOREC; BADFILEP: “TEXT:
BEGIN
INFoP := ERRORINFO;

1F INFOP™.XEQERR = 10 {I/0 Error} THEN
TBEGIN BADFILEP 1= INFOP™.ERRFIB;

- WRITEC'?I/0 error ",INFOP".FILERC,' has occurred in '):

PFILE (BADFILEP™) ;
WRITELN;
END » '
STDERRORTRAP;

END;

In the above example, if an 1/0 error has occurred, we display the File
greor code (INFOP™LFILERCS and the rianme of the file dnvolved
(INFOP™ ERRFIB™}, ERRFIB is a pointer to the moest recently processed file,

which s why we first save it in BADFILEP before writing to the terminal,
atherwise our message would read

TL/0 error xxx has occurred dn TTY:
regardiess of the actual file 1in which the error occurred.

Here s a list of the I/0 error codes. They are the standard codes used by
AMOS ;

170
Error
Code Meaning
Fite specification error

insufficient free memory for INIT
File not found

1

Z

3

& File already exists
5 Device not ready

& bevice full

7 Device error

& Pevice in use

& Illegal user code

10 Protection violation
11 Write protected

12 File tvpe mismatch
13 Pevice does not exist
14 Itlegal block number
15 Buffer not INiTed

16 File not open

17 Fite already open

18 Bitmap kaput

1@ Device not mounted
26 invalid filename

In the examples so far, we have always been calling STDERRORTRAFP to handie
our errors. STDERRORTRAP always aborts to AMOS without returning with the

SYSTEMS FUNCTIONS AND PROCEDURES Page 14~-15

exception of a C(lontrol- followed by a command to resume. Thus the
ERRORTRAP procedures themselves have aborted to AMOS in most circumstances.

in addition, STDERRORTRAP resets INFOR".XEQERR to zero before returning #f
execution s to be resumed. This is because errors MUST NOT occur in the
error handler dtself for obvious reasons. AlphaPascal assumes 1% is
executing an error handler whenever XEQERR s nonzero, If an error does
oceur within an error handler, the message

2attempt to call ERRORTRAP while in ERRORTRAP

ig dizplayed, a direct abort to AMOS is made without closing any open files,
Thus, by reseting XEQERR to zero, STDERRDRTRAP signals tc AlphaPascal that
error handling s finished and further errors are agsin acceptable.

Should vyou decide not te call STDERRORTRAP at all, please keep in mind the
foltlowing points:

1. The oniy errors from which vou may safely resume execution are & (a
Control~C) and 10 (I/0 error). An attempt to resume execution Dy
returning from ERRORTRAP with any other errors will probably crash
the system,

2. It s acceptable to use EXIT to abort some function or procedure,
or your program, when any error occurs. Of course you can only
EXIT to leave a function or procedure which is currently active, so
you will probably want to have around some BOOLEAN variables to
keep track of whether or not you are currently within routines

which yvou might wigh to EXIT from ERRORTRAP.

%, HRemember to set XFQERR back to zero before Leaving ERRORTRAP,
atherwise vyour next error will abort to AMOS without calling
ERRORTRAP,

Th,.10.3 XERRORTRAP

When STDERRORTRAP is called by entering a Control-C, it is possible to
request a backtrace of suspended functions and procedures. This backtrace
hegins with the caller of the caller of STDERRORTRAP, which is usually the
caller of ERRORTRAP, and hence the routine which was suspended. Thus,
should STDERRORTRAP be calted by a function or nprocedure loecal to your
ERRORTRAP procedure, the backtrace will begin in the wrong place. This can
be corrected by using XFERRORTRAP, which takes a copy of the system [INFOREC
as its argument. It is used as follows:

{changed 30 April 1981

SYSTEMS FUNCTIONS AND PROCEDURES : Page 14-16

PROCEDURE ERRORTRAP;
VAR INFOP: "INFOREC; INFO: INFOREC
PROCEDURE P1;
BEGIN
XERRORTRAP(INFO) ;
END 7
BEGIN
INFOP = ERRORINFO:
INFO == INFOP":
#1; .
INFOP" XEQERR := INFO.XEQERR;
END; "

Using XERRORTRAP, the backtrace will be displaved heginning with the caller
of the routine which invokes ERRORINFO, thus oroducing a correct backirace,
evern when called from an dinner procedure. Begin at the caller of the
procedure which set ¥ to ERRORINFO.

14.10.4 ERROR
The procedure ERROR(x) takes an INTEGER x as$ argument and generates the

corresponding system error. S5See the previous section for the itist of errop
codes.

{changed 30 April 19812

SYSTEMS FUNCTIONS AND PROCEDURES Page 14-15

exception of & Control-¢ foilowed by a command to. resume. Thus the
ERRORTRAP procedures themselves have aborted to AMOS in most circumstances.

In addition, STRERRORTRAP resets INFOP .XEQERR to zero before returning if
execytion 18 to be resumed. This is because errors MUST NOT occur in the
error handler itself for obvious reasons, AlphaPascal assumes 11 is
executing an error handler whenever XEGERR is nonzero. If an occur does
occur within an error handler, the message

hattempt to call ERRORTRAP while in ERRORTRAP

i displaved, a direct abort to AMOS 1s made without clogsing any open files.
Thus, by reseting XEQERR to zero, STDERRORTRAP signals to AlphaPagcal that
error handling s finished and further errors are again acceptable.

Should wvou decide not to call STPERRORTRAP at all, please keep in mind the
following points:

. The oniy errors from which vou may safely resume execution are & (s
Control=0) and 10 {(I/0 errory. An attempt to resume execuiion by
returning from ERRORTRAP with any other errors will probably crash
the gsystem,

2. It is acceptable to use EXIT to abort some function or procedure,
or vour oprogram, when any error accurs. Of course you can only
EXIT to teave a function or procedure which is currently active, 50
you will probably want to have around some BOOLEAN variables to
keep track of whether or not you are currently within routines
which vou might wish to EXIT from ERRORTRAP.

%. Remember to set XEQERR back to zerc before leaving ERRQORTRAP,

otherwise vyour next error will abort to AMOS without calling
ERRORTRAPR,

T4.10.3 XERRORTRAP

When STDERRORYRAF is called by entering a Control-{, 1t is possible to
reguest a backtrace of suspended functions and procedures. This backtrace
peging with the caller of the caller of STDERRORTRAP, which is wsually the
caller of ERRORTRAP, and hence the routine which was suspended. Thus »
should $TDERRORTRAP be called by a function or procedure Lleocal to your
ERRORTRAP procedure, the backitrace will begin in the wrong phtace. This can
be corrected by using XERRORTRAP, which takes a copy of the system INFOREC
as its argument, It is used as follows:

SYSTEMS FUNCTIONS AND PROCEDURES | | Page 14=16

PROCEDURE ERRORTRAP;
VAR~ INFOP: "INFOREC; INFO: INFOREC;
~ PROCEDURE P1;
BEGIN
XERRORTRAP (INFO) ;
END;z
BEGIN
INFOP := ERRORINFO;
INFO 1= INFOP™:
Pl
INFOP" (XEQERR := INFO.XEQERR;
END; :

Using XERRORTRAP, the backtrace will be displaved beginning with the caller
of the routine which invokes ERRORINFO, thus producing a correct backtrace,
event when called from an dnner oprocedure. Begin at the caller of the
procedure which set X to ERRORINFO.

14.10.4 ERROR

The procedure ERROR{x} takes an INTEGER x as argument and generates the
corresponding system error. See the previous section for the List of error
codes.

CHAPTER 15

ASSEMBLY LANGUAGE SUBROUTINES

Assembly language subroutines are assembly lLanguage programs that are
callable by your AlphaPascal programs.

Why would you want to c¢all assembiy languages routines from a Pascal
program? There are at least fwo good reasons. Firstly, not all the
capabilities of the operating system (AMOS) have been directly included in
AlphaPascal. The ability to write assembly language subroutines allows vyou
to enrich AlphaPascal, as need reguires, with additional capabilities.
Secondly, routines written in assembly lLanguage execute significantly faster
than routines written inm Pascal. Thus, you may wish to identify key
functions and procedures which are bottle necks 1in your programs, and
rewrite them in assembly Language.

This chapter describes how to write and use assembly languade subroutines.
It will he assumed 1in this chapter that you are an experienced sssembly
Language programmer on the AMOS system. For more . information on assembly
Language programming, please refer to the AMOS Assembly Language
Frogrammer's Reference Manual (DWM-DO100~-43), the Wh16 Microcomputer
Manual (DWM=-00100-043, and the AMOS Monitor Calls Manual (DWM-O00100-42).

15,1 CALLING ASSEMBLY LANGUAGE SUBROUTINES

In AlphafPascal, there is no distinction hetween calling an assembly |anguage
function or procedure, and calling a Pasgal function or procedure which
octurs in a sepsrately compiled module. (Modules were discussed 1in Section
5.7 Section 4.4.4 describes how to Link an assembly language subroutine
inte a program during the PLINK process. Instead of Linking output files
from the compiler, vyou Link a PRG file with an extension of .PSB which
contains code for a single function or procedure. The name of the PSB Tile
must be the first six letters of the name to be used for calling the
assembly language routine. When specifying the file to PLINK you must, of
course, specify the full name of the procedure or function contained im the

PS8 file, otherwise PLINK would not know the full name vou wish to yse forp
it.

ASSEMELY LANGUAGE SUBRQUTINES Page 15-2

For example, it you code in assembly language a procedure that displays a
menu, the procedure name might be MENUDISP. The disk file containing that
routine must then..be called MENUDI. When you specify the file to PLINK,

though, you use the full eight-character name of the procedure. For
example:

Fite 1 = MENUDISF,PSB/LINK

15.2 ARGUMENT PASSING CONVENTIONS

Your assembly ltanguage routine must work with two stacks. One of these
stacks is the familar 5P stack. The other 13s a data stack used by
AlphaPascal for passing arguments and recieving results. The data stack is
indexed by RS, and so will also be referred to as the RS stack. ALL otner
registers (RO-R4) are available for any purpose to your assembly routine.

Arguments are placed on the R5 stack in reverse order. That iz, the last
argument appears on the top of the RS stack. For example, if we have the
tfollowing program in AiphaPascal:

File TEST1.PAS—~
PROGRAM;

EXTERNAL PROCEDURE demoT (x,y: INTEGER):
BEGIN

demal (10,207 2
EnD .

then, wupon entry to our assembly lLanguage subroutine, 20 will be on the top
af the RS stack (referenced as AR5) and 10 will be under it on the R stack
{reterenced as Z2(RB)).

A procedure to print its two INTEGER arguments in order might then be
DEMOT . MAC:

File DEMOT.MAC-~

CoPY SYS
START: MOV 2(R5) ,R1 : Get first argument
DOVT 0,2 ; Print it in decimal
CRLF
MOV DR5 LR : Get second argument
DCVWT 0.7 s Print 1t in decimal
CRLF
ADDT 4,R5 ; Remove arguments from RS stack
RTH : Return to pascatl

DEMOT would then he assembled with MACRO, and the resulting oprogram file

BEMOT.PRG would be renamed to DEMOT.PSB in order to allow it to be [inked
into a code file by PLINK.

ASSEMBLY LANGUAGE SUBROUTINES Page 15-3

When called as a function rather thaen as a procedure, vyour routine will
receive an additional three words containing zeéros on the top of the &S
stack. These words serve no purpose when writing assembly routines and may
be immediately removed by executing an ADDI 4,R5. Their presence is
required for internal reasons by functions written in Pascal.

Assembly language functions return their result on the top of the RS stack
after all arguments have been removed. Example:

File TESTZ2,PAS~~

FPROGRAM
EXTERNAL FUNCTION Maximum{x,y: INTEGER): INTEGER;
BEGIN
WRITELN (Max imum (2,717 ;
END.

File MAXIMU.MAC~~

START: ADDI & .R5 Throw away unused additional words

MOV [R5+, RZ ; Get 2nd argument
MOV {(RE3+ R y Get Tst argument
CMP R1,RE : 1st > 2nd 7
BHI USETST s Yes, return 1st argument
MOV RZ,~(R%) : No, return 2nd argument
RTN
USETST: Moy R1,~(RS} : Return 1st argument
RTN

After producing MAXIMULPSE, yvou would need to remember to refer to the file
as MAXIMUM.PSB to PLINK, aotherwise it would think the function being
detined had the name "Maximu' instead of "Maximum',

15.2.1 Argument passing
There are two methods of passing arguments in Pascal, typified by:

1. PROCEDURE (x: INTEGER?;
and 2. PROCEDURE (VAR x: INTEGER):

In the first declaration, % is referred to as a value parameter. In the
second declaration, x is referred to as a reference parameter,

In general, value parameters appear directly on the RS stack, while
reference parameters (denoting variables which can be modified) appear as an
address on the RS stack which points to the parameter.

However, there are exceptions: arrays, records, and strings always have
their address passed on the RS stack, even when they appear as value
parameters.

ASSEMBLY LANGUAGE SUBROUTINES ‘ Page 154

15.2.2 ©Data Formats

This section describes the internal format of each data type. ALl data
types are aligned on a word boundary unless contained as a packed field.

15.2.2.17 CHAR - Characters are represented by their ASCII zode im a full
machine word. They are only stored within single bytes of memory when
contained in packed .arrays or records.

15.2.2.2 INTEGER - Integers are represented in a single machine word.

15.2.2.3 BOOLEAN - Booleans are represented by a zero (FALSEY or one
(TRUE? in a full machine ward. They are only stored as single bits when
contained in packed arrays or records.

15.2,2.4 BSubranges and Scalar types ~ These are represented 4n a full
machine word wunless they appear in a packed array or record, in which case
they are stored in a field of as many bits as necessary to hold their
maximum value. User scalar types are numbered starting from zero.

15.2-2.5 REAL - Reals occupy three words of memory and conform with the
format for reals used by the FADD, FSUB, FMUL, FDIY, and FCMP machine
instructions. :

15.2.2.6 STRING - Strings are represented by a Llength byte containing
0-255, followed by a sequence of bytes which are used to hold the actual
characters of the string.

15.2.2.7 Pointers ~ Pointers reqguire a full machine word.

15.2.2.8 Sets - Sets require one or more words depending upon the size of
the set., Sets are represented as a bit pattern, where a one bit denctes the
presence of a set element. The bits are ordered from low order to higher
aorder 1in each word, and from first word to last word. For example, SET OF
32219 requires two words of memory. The first three bits corresponding to o
thru 2 are unused. To test for the presence of the element 18, one would
perform a bit test on the second word of the set with z mask of 4.

ASSEMBLY LANGUAGE SUBROUTINES Page 15-3

15.2.2.% Arrays - Arrays require one or more words. The elements of an
array appear 1n order in memory. In packed arrays, the elements of an array
may each ocoupy on a few hits, otherwise each element will appear en a word

boundary. Fields appear from low order to high order in a word, and may not
cress word boundaries.

15.2.2.10 Records -~ Records require one or more words. The elements of a
record appear in order in memory in a fashion similar to arrays.

15.2.2.11 Files = Files are actually an internal ‘kind of record faormat.
The details of this format are not being made available as they will change
as versions of AlphaPascal change.

15.2.3 Error Exit

Should vou wish to generate an error from your assembly Llanguage subroutine,
it is preferable that you call the Pascal system's ERRORTRAP procedure,
rather than display an error and exit to AMOS divectly, otherwise there is
no guarantee that open files will be closed correctiy.

Te signal an error, you must perform a proper return from your routine, but
in addition, advance your return address by executing IW? 85P, and leave an
execution error code in R1. For additional information on ERRORTRAP and 2
tist of execution error codes, see section 14.10, "Error Handling Procedures
and Variables.”

15.3 CODE RESIDENCY

This segtion discusses the variety of ways in which your routine may appear
i MEmory .

15.3.1 FRoutines PLINKed with /LINK

Routines which have been linked into a code file with the /LINK option must
have a final PSB file which is exactly one block in size. Such routines are
dvnamically paged 1into memory along with Pascal psuedo-code. They are
deleted from memory and reloaded as memory requirements and usage demand.
They place no burden on available memory when not being used.

ASSEMBLY LANGUAGE SUBROUTINES Page 15-6

15.3.2 FRoutines PLINKed without /LINK

Routines which have been linked into a code file without the /LINK option
witl be searched for in memory and on disk each time they are called. What

has been linked into the code file is not the actual roytine, but rather the
name of the PSB file containing that routine f{see section A.b4.4).

If vyour routine has heen lpaded hefore entering AlphaPascal via the LOAD

command, either into system memory or user memory, then that copy of vour
routine will be used.

If your routine is not present in memory, it will be temporarily loaded in
aorder for it to be executed, and then deleted from memory immediately after
execution.

15.4 OBTAINING MEMORY FOR DATA AREAS

When writing an assembiy language routine, you will probably want and need
temporary data areas. There is no reom for allocating memory modules for
this purpose. Instead, vou may either allocate space for data in the SP
stack, or place your dats inline in your routine {(this is unacceptable for
routines which are to be loaded {into system memory, since They must be
sharable), The R5 gtack is ﬁgEAavaiiabLe for allocating data space.,

Another method for obtaining larger data areas, is to have your caller pass
them to yvou as arguments.

5.5 RESTRICTIONS

As mentioned above, there is no room for allocating memory modules. This
alsc means that you may not use INIT to create a file buffer, opr perform
file operations which would reguire loading a device driver into memory.

CHAPTER 16

WRITING AND MODIFYING AN EXTERNAL LIBRARY

When you Llink together your programs using PLINK, yvou are asked to specify a
Library file. Typically, vyou sSpecify STDLIR. The global functions,
procedures, and variables contatned dn this Library are available to you
just as i1 vou wrote them in a module and Linked them into your program.
However, using routines contained in a Llibrary redquires no additional space
in your program's code file hecause the routines are accessed directly from
the Library file at run-time.

There are several advantages to placing commonly used routines in a Library
rather than Linking them directly inte your program. First, you save disk
spate by only having a single copy of your rdutines on disk. Second, the
Linking process is faster if you only need to specify a library rather than
several files contain your modules. Finally, if it becomes necessary to
mocdify a routine, vou need only change it in the Uibrary to update all vyour
programs which use it. '

Another possible use of libraries 1s to generate multiple configurations of
a program. & single program could be linked to a variety of Libraries eacgh
of which define the same set of functions and procedures, but each of which
do so with different definitions. This might be used to configure &
generatized set of applications programs for use in different specific
applications. '

It is not necessary to specify EXTERNAL declarations for most of the
functions and procedures in STPLIB. This is NOT a feature of Libraries.
Rather, the compiler has been written to automaiically include EXTERNAL
declarations for these commonly used routines. '

There s really very little difference hetween a program file and a library
fite., Both are actually AlphaPascal programs. The only difference is that
if Program A uses Program B as a Library, then Program B is executed with
the ourpose of dnitializing the Llibrary (i.e., global wvariables in the
Library), before Program A is executed.

It i3 possible for 2 library to itself have 2 Library. Thus Program A can
use Program B as a Uibrary, and Program 8 can use Program € as a Library, in
which case U, then 8, and finally A are exscuted,

WRITING AND MODIFYING AN EXTERNAL LIBRARY Page Té&=2

To allow programs to be written which can serve gither directly as a
program, or indirectly as a library, a special BOOLEAN function is provided,
called MAINPROG, which takes no arguments and returns true if the program in
which it dis executing is being used as the main program, and false 1f the
program in which it is executing is being wused as a Library to another
program. The idea is to write a program in such a way that if it is being
used as a library, all it does is initialize global variables.

16.1 STOLIRB

STRLIR is a2 special library which itself has ne, Library. It provides a
basic set of mandatory procedure and function definitions. It is
permissable for vou to overide any of these definitions with YOUP Own
external procedures or functions with the exception of RDC, Rbl, RDR,. RDS,

RLN, WLN, WRB, WRC, WRI, WRR, and WRS. Calls to these procedures are
automatically generated whenever vyou use READ and WRITE statements, READ
and WRITE will seriously malfunction if you redefine any of these.

The functions and procedures included in STDLIB are:

ARCCOS Arc cosine function

ARCCOSH Hyperbolic arc cosine function

ARCSIN Arc sine function

ARCSINH Hyperbolic arc sine fumction

ARCTAN Arc tangent function

ARCTANH Hyperbolic arc tangent furnction

CONCAT Function to cemcatenate strings

Lopy Function to copy characters in string

COs Cosine function

COSH Hyperbolic cosine function

DELETE Procedure to delete characters in string
FRRORTRAP Default error handler

EXp Function to compute e to the specified power,
FACTORIAL Factorial function (X!}

GETFILE Procedure to get information in filespec
GETLOCKS Procedure to read file locks.

INCHARMODE Returns true if terminal is in Charmode.
INSERT Procedure to insert characters into a string
KILCMD Frocedure to abort command file

LS Function to convert upper case characters to Lower case
LN Function to compute natural (Napierian) Llog
LOG Function to compute log base ten of argument
OPEN Procedure to open an AMOS file

POS Function to compute positicon of character in string
POWER POWER(x,y) computes x to the v'th power
PROGRAM STHLIR initialization

PWROFTWO Function to compute powers of two

RBT Routine used by READ

RiY Routine used by READ

RDR Routine wsed by READ

RDS Routine used by READ

WRITING AND MQDEF?ING AN EXTERNAL LIBRARY : Fage 16~3

RESET Procedure to close a file, and then cpen for input
REWRITE Procedure to close, erase, and then open a file for gutput
BRLN Routine used by READ

SETFILE Procedure to place file information in filespec

SIN gine function

S INH Hyperbolic sine function

SPL Routine used by SPOOL: must not be called directly
SPOOL. Procedure to spool files to Line printer
STDERRORTRAP Standard error handler

STRIP Procedure to strip trailing blanks from string

S&RT Sguare root function

TAN Tangent function

TAHNH Hyperbolic tangent function

TOD Returns time of day im seconds as a real number

LS Procedure to convert upper case characters to lower case
Wi.N Routine used by WRITE

WRE Routine used by WRITE

WRE Routine used by WRITE

WRI Routine wused by WRITE

WRR Routine used by WRITE

WRS Routine used by WRITE

XERRORTRAP Special version of error handler

KLOCK Procedure to set or release file locks

XMNT Routine used by XMOUNT; must not be called directiy
XMOUNT Procedure to mount a disk

16.72 WRITING LIBRARY FILES

It is not Likely that you would want to dispense with the standard Library
file altogether, since the compiler relies on the presence of many of the
procedures and routines in that Library. If you did not wuse S3STDLIB, vou
would have to duplicate for yourself all of the routines listed above that
make up that library.

However, it is possible for one Llibrary to make use of another, For
example, suppose You want to write your own Library which contains a set of
functions that are particularly useful for the oprograms that you write
{e.g., You need a set of routines that construct and display screen menus),
you can wWrite such a library; then, when you link it, vou can specify the
STDLIB external Library as its library file. (The only time you ever Link
a file without specifying & Library, s when you are Linking a root Library,
auich as STDLIB itself-- a very rare occurrence.’) In this case, your library
file (perhaps named NEWLIR) would be Linked with STDLIB. Then, when vou
Link a new program, you might Link it with the NEWLIB Library. Your new
program would thus be Linked with NEWLIB which in turn has its own Library,
STBLIB. There s no limit to Library nesting.

WRITING AND MODIFYING AN EXTERNAL LIBRARY Page 16-4

There are several things you should keep in mind when writing an external
Library: :

T. If an external procedure or function is declared both in a program
and in a Library which it uses, then the definition within the
program is in effect while execution resides in the program, and
the definitions within 1its Libraries are in effect while in its
Libraries.

2. 1f vou change a procedure from pascal to assembly language, or from
assembly tanguage to pascal, it is wise to re-create (re-lLink) that
program and all the programs which use it as a library. Arvy
references to the procedure which are not re-linked wibll fTreat it
as the wrong kind of code.

3. Similarly, 1f while updating a program, you overide a definition in
a Library which was formerly accessible, there is no garauntee that
all references to the definition will be updated unless you re-iink
the program and all the programs which wse it as a library.

. IT a library i3 updated with PLINK, it i3 not necessary fo update
the programs which use that Library. However, it the library must
be completely re-created, all programs which use that Library will
need to be re-created. Thus, it 1is desirasble to avoid the need to
re-create a library. PLINK does not atlow you to enlarge the size
of global variables with anm update, thus it i3 wise to avoid having
global wvariables which you may wish to enlarge, such as records,
strings, or arrays. Instead use a global pointer wvariable which
points the desired object, In this way, if you change the size of
the obiect, no global variable will change size.

16,2 MODIFYING STDLIB

It vou decide to modify S$TDPLIB, you must do so very carefully. Because
PLINK uses STDLIB while it s working, you must not directly modify STRLIB.
If you want to add routines to STDLIB, use the AMOS COPY command to make a
duplicate of STDLIB under another name. Then, add vour routines to the sopy
of STHLIB using PLINK. Finally, rename vour copy to STDLIB (making sure to
kesp a copy of the old STDLIB somewhere in case of emergencies).

However, it 1s far wiser to create a Llibrary which has STDLIB as its
Library, rather than to directly modify STDLIB. Otherwige, when Alpha Micro
releases an update to STDLIB, all your programs will need to be re~linked!

WRITING AND MODIFYING AN EXTERNAL LIBRARY Page 16~5

16,4 VERSION CHECKING

Both PLINK. and PRUN check to 1nsure that a program 1s only given its
originat Library or an update of that file, since. an attempt to use any
ather file as a library results in a system crash.

If you attempt to execute a program with an improper Library, you will
receive the error

TWrong version of xxx for use with yyy

where xxx is the name of vour program and yyy 1s the name of its Library.
If vou get this message, it either means that yvou are running with an out of
date version of tibrary vyy, or that vou are running with a newer version of
Library vyyy which had to be re-created. In the latter case, vou will need
to re-create your program with PLINK.

PART 1V

APPENDICES

APPENDIX A

QUICK REFERENCE TO ALPHA PASCAL

This appendix gives a quick summary of the Pascal language as implemented by
Alpha Micro. For information on 2 particular Pascal statement or element,
Lock in the index to see what pages of this book contain information on that
element . For a complete description of the standard Pascal language, see
Jensen and Wirth, The Pascal User Manual and Report.

For a List of all standard identifiers, see S3Section 5.4.2, "Standard
Identifiers,”™

B.1 PROGRAM STRUCTURE
A program consists of a heading and a block, and it concludes with a period:

Heading
Loci.

The heading takes this form:
PROGRAM program—name;
ar;
PROGRAM;
A block has the form:

Label declaration
constant definitions
tyvpe definitions
variable declarations
external declarations

procedure and function declarations
BEGIN statementl ; statement? ; ... ; statementM END.

If a file is not a main program file, the heading takes the form:

QUICK REFERENCE TO ALPHA PASCAL

MODULE module-name;
or:

MODULE
and the block takes the form:

Label declaration

constant definitions

type definitions

variable declarations

external declarations

procedurs and function declarations

4.2 DECLARATIONS AND DEFINITIONS

Pascal reguires that vou define and declare
constants, data types, procedures, and Ffunctions
program or procedure.

A.2.1 Label Declarations

Page A=

all wvariables, tLabels,
at the front of each

Labels are alwavs unsigned integers. A label declaration takes the form:

LABEL integerd, integer?, integeriN :

A.2.72 Constant pefinitions

CONST identifier! = valuel;
identifier? = value?;
identifierN = valueN;

A.2.3 Type Definitions
TYPE identifiert = typet;

identifier?
identifiers

H

H

valuet..value?Z;

=@ ow @

{identifier3, identifieré, ...};

QUICK REFERENCE TO ALPHA PASCAL Page A-3

A.Z2.4 Variable Declarations

VAR identifier ..., identifier : data~type;
identifier ..., identifier : valuel..value?;:

=B % @

A.2.5 Procedure Declarations

PROCEDURE procedﬁremname;
T otk

[

PROCEDURE procedure-name{formal-parametersT;...formal-parametersi);
Bloci; '

where formal-parameters have the form:
identifiert ..., identifierN : typei
or:

VAR ddentifier? ..., identifierN : typef

A.2.6 Function Declarations

FUNCTION function-name ¢ result—-type;
blogk;

or;
FUNCTION fuﬁﬁtionmﬁame(fu?mame&ramgtersﬁ;
ee-TOrmal-parametersN) : resuli-type;
block;
where formal-parameters have the form:
identifier! ..., identifierN : typel

s

VAR didentifier! ..., identifierN : typel

QUICK REFERENCE TO ALPHA PASCAL ' Page A~4

A.3 DATA TYPES
The data type tells Pascal what range of values the declared variable may

assume and what operations may be carried out on those wvariables. Data
types are simple data types or structured data types.

A-3.1 Simple Data Types

A simple data type is the basic data type of which structured data types are
built, The simple data type is called a "scalar type." Such a type
contains a set of elements, and those elements are ordered.

A.3.7.1 Standard Data Types -~ The standard data types are:

INTEGER - A non-fractional number in the range ~32767 through 32767.

REAL - A floating point number significant te 11 digite (12 for
integer values) with an exponent range of roughly 18~37 to
TERT

BOOLEAN ~ The standard scalar type (FALSE, TRUE).

CHAR - A single ASCII character.

A.3.1.2 User-defined Scalar Types — A scalar data type takes the form:

Cidentifier-elementl, identifier-element2,...identifier—elementh}

or a subrange type {(of another, already defined scalar type) of the form:

first-element .. Last—element

A.%.2 Structured Data Types

Simple data types can be organized 1into Llarger units, called structured
types, A type definition or variable declaration of a structured data type
that includes the keyword PACKED tells the compiler to minimize internatl
storage for that data type {(at the possible expense of execution time). For

example, instead of:

VAR Longline : ARRAY [1..10007 OF CHAR;

you coulad cause Longline to be a packed array by saying:

VAR Longbine : PACKED ARRAY {1..10007 OF CHAR;

QUICK REFERENCE TO ALPHA PASCAL . Page A-5

The structured data types are:

A.3.2.17 STRING - STRING data is a group of characters. You may
optionally specify a maximum length by foliowing the keyword STRING with
square brackets enclosing the number {e.g., STRINGLZ2ZI1).

.3.2.2 Arrays -

ARRAY Lindexl-type, indexZ-~type, ..., indexN-typel OF component-type

A.3.2.% Setg ~

SET OF element-type

AR 2.4 File Type -
FILE gﬁ_eLememtwtype
or:

TEXT

(This is the same as "FILE 0OF (HARY.D

A.B.2.5 BRecord Type -~
RECORD field~-List END
where field Uist is of the farm:

field-identifier .., field-identifierN 1 fieldi~typel;
field-identifier .., field=identifierN : fieldZ-typed;

fisld-identifier .., field~identifierN : fieldN~typeN;

The fTield Llist may also contain & variant-part, which implies that tThe

information in that field may vary as to type. The variant-part takes this
form:

QUICK REFERENCE TO ALPHA PASCAL : Page A-é

CASE field-tvpe OF
case~label .., case-label : (field~list1);
case-label .., case~label : (field-iist?);

case~label .., case-label : (field-ListM)

ars

CASE case-field-identifier : fisld~type OF
case~label .., case-label : (field-List1);
rase-label .., case~label ¢ (field-1ist2);

arm

case-label .., case~label : (field-listh)

A.3.2.6 PFointer Data Types - The pointer enables Pascal to permit dynamic
data structures by giving you a way %o point to an element of such a
structure. It takes the form:

“obiect~tvpe

Pascal provides a standard constant NIL, which points to "nothing.”

A.b4 EXPRESSIONS

Expressions wuse operators to combine variables, constants, and function
calls inte larger units. This section gives information about each of these
componants of an expression.

A.&.1 Operators

Operators have precedence, which you can override by incuding parentheses in
the expression. The wunary operators are performed befere all other
operators; next the multiplying operators are performed, followed by the
adding operators., Then, the relaticnal operators are performed. Lastly,
the Boclean operators are applied. If several operators in an expression
have the same precedence, execution is performed from left to right.

A.4.1.1 Assignment ~

b

QUICK REFERENCE TO ALPHA PASCAL FPage A-7

A.4.1.1.1 The Modifying Assignment Operators -

The modifying assignment operators are:

b= Addition

- Subtraction
Multiplication
Bivision

*
i 08

T
|

bobhot.?2 Arithmetic Operators: -

+ (unary operator) Identity

- Cunary operator) Sign inversion
+ Addition

- Subtraction

* Multiplication

DIV Integer number division

/ Real number division

MoD Moduius

A.4.1.3 Relational Operators -

= Eqguality

< Inequality

< Less than

> Greater than

L Less than or egual {or, set inclusiom

s Greater than or egual (or, set inclusion’
IN Set membership

A.4.T.4 Logical Operators ~

NGT Megation
OR Disjunction
AND Coniunction

A.4.1.5% Set QOperators -

+ Union
-~ Set difference
* Intersection

QUICK REFERENCE TO ALPHA PASCAL Page A-8

A.4.2 Constants

Lonstants may consist of:

Characters and strings of characters (in quotes}

TRUE and FALSE

MAXINT (which evaluates to the Largest integer on the AMOS system, 22767).
Values of user~defined types

Integers

becimal and exponential numbers ~ If a number contains a decimal point, at

least one digit must appear to the lLeft of the decimal peint. The exponent

in an exponential number is identified by the YE" symboti. For example:
"EAE-5 represents “0.000034%,

A.4. % Variables

A variable is a simple ddentifier, an indexed varisble 0f the form:
array-variable [indext—expression,...indexN-expresionl

a referenced variable or file buffer variable of the form:
pointer-variable”

or;:
file~variable”

or a field designator of the form:

record-variable . field-identifier

A.4.h Function Calls
Function calls have the form:
function-identifier
ors

function-identifier (parameter,, parameteri)

QUICK REFERENCE TO ALPHA PASCAL Page A-9

A.4oS IF~THEN-ELSE and CASE-OF Constructs in Expressions
AlphaPascal allows you to use the IF-THEN-ELSE and CASE~QF constructs to

conditionally evaluate one of two {in the case of the IF-THEN-ELSEY or
severazl (in the case of the CASE-0OF) expressions:

iF Boolean expression THEN expression ELSE expression

ands

CASE vaiueﬂﬁi
valuet : expressiong
valueéd : expression;

LIS

valueN 1 expression;
ELSE expression;

A.5 STATEMENTS

itatements are either simple statements or structured statements. A simple

statement consists of only one statement. Structured statements are
caomprised of more than one statement.

You may label statements by writing:
Label: statement

where "label”™ is an unsigrned integer,

A.5.1 Simple Statements

The Pascal simple statements are:

£.5.17.1 As%igﬂmeht Statement - assigns a value to a variable:

variable 1= expression

A.5.1.2 Procedure Call - Procedure calls invoke the specified procedure,
and take the form:

procedure~name

Gy

procedure {(parameterl, parameterZ, ..., parameteri)

QUICK REFERENCE TO ALPHA PASCAL Page A-T0

A.5.1.% GOTO Statement - The GOTO statement transfers program contraol to
the labeled portion of the program. It takes the form:

GOTO Label

A.5.7.4 Null Statement - Another permissible simple statement is the null
statement (that 1s, no statement at all).

A.5.2 Structured Statements

The Fascal structured statements are:

A.5.2.1 Compound Statements - The compound statement 1is bracketed with
the keywords BEGIN and END, and takes the form:

BEGIN statementl; statementZ; ...; statementN END.

A& compound statement may take the place of any single statement in the
exanmples given 1in this appendix.

ALB.2.2 Conditional Statements - A
A conditional statement contains statements whose exscubtion depends on the
result of a conditional test. These statements may take the form:

IF Boolean expression THEN statement;

Gra

1F Boolean expression THEN statement ELSE statement;

Qr:e

CASE expression OF

casel~label: statementt:

casel-label: statement?;

caseN-Label: statementN
ENR .

(Several case-labels, separated by commas, may be written in place of a
single case-~label.)

GUICK REFERENCE TO ALPHA PASCAL

A.5.2.% Repetitive Statements -

HHILE Bootean expression DO statement
ore
REPEAT statement-list UNTIL Boolean expression

Qr:

FOR variable-identifier := expression TQ expression
DO statement

oFr:

FOR wvariable—identifier := expression DOWNTO expression
B0 statement :

B.5.2.4 WITH Statement =~
The WITH~DO statement allows you to access record fields as 3T they
were simple variables:

WITH record-variablel, record-variable2, ..., record-vari
DO statement

{Changed 30 April 19812

Page A-11

abyleN

QUICK REFERENCE TO ALPHA PASCAL

B.& ALPHA PASCAL STANDARD FUNCTIONS AND PROCEDURES

Below 1% an alphabetic list
procedyres . that you may use,

ABS
ARCSINH
CHR

cos
DELETE
ERROR
EXP
FILLCHAR
GETFILE
JOBDEY
LENGTH
LOG
MEMAVATL
aDpnh
OPENR
FOS
PVYIRT
RANDOMIZE
RENAME
ROUND
SHIFT
SPOOL
:TR

TANH

UCs
KEGERR

ARCCOS
ARCTAN
CLOSE
CORH

EQF
ERRORINFO
EXPONENT
FILESIZE
GETLOCKS
JOBUSER
LINEMODE
LOCKUP
MOVELEFT
OPEN

aRD
POWER
PWROFTEN
READ
RESET
SCAN

SIN

SER
STRIP
TIME

VAL
XLOCK

AlphaPascal
To find cut what pages of this bhook discuss a3
particular procedure or function, refer to the Index,

ARCCOSH
ARCT ANH
CONCAT
CREATE
EOLN
ERRORTRAP
EXTENS TON
FSPEC
INCHARMODE
KILCMD

LN

MA INPROG
MOVERIGHT
OPENT
PAGE

PRED
PWROF TWO
READLN
REWRITE
SEEK

SINH

SQRT

SUCC

TOD

WRITE
XMOUNT

standard

Page A~17

ARCSIN
CHARMOCE
CoPY

CRT
ERASE
EXIT
FACTORTIAL
GET
INSERT
LCS
LOCATION
MARK

NEU
OPENG
PFILE
PUT
RADSD
RELEASE
RND
SETFILE
SIZEOF
STDERRORTRAP
TAN
TRUNC
WRITELN

For a List of all standard identifiers and reserved words, see Section

"Legal Identifiers.”

{Changed 30 April 19817

functions

and

5.6,

QUICK REFERENCE TO ALPHA PASCAL : Page A~11

£.5.2.5 Repetitive Statements -

WHILE Boolean expression DO statement

Grs3

ﬁ&P&AE,statementmiigt UNTIL Boolean expression

ara

ﬁgﬁ_variabLé;identifief 1= expression T0 expression
D0 statement

oy

FOR variable~identifier := expression DOWNTOQ. expression
DO statement

A.5.2.6 WITH Statement -

The WITH-DO statement allows you to access record fields as if they
wWwere simple variabless

WITH record=-variablel, record-variable?2, ..., record-variableN
DO starement

QUICK REFERENCE TO ALPHA PASCAL

A.6 ALPHA

gelow 1is
procedures
particular

- Page A-12

PASCAL STANDARD FUNCTIONS AND PROCEDURES

ar. alphabetic tist of all AlphaPascal standard funciions and
that vou may use. To find out what pages of this book discuss a
nrocedure or function, refer to the Index.,

ABS ARCCOS ARCCOBH- ARCSIN
ARCE INH ARCTAN ARCTANH CHARMOGE
CHR CLOSE CONCAT CopY

COs COSH CREATE CRT
DELETE EGF EQLN ERASE.
ERROR ERRORINFO ERRORTRAPRP EXIT

EXP EXPOMENT EXTENSTON FACTORIAL
FIi.LCHAR FILESIZE FSPEC GET
GETFILE GETLOCKS INCHARMGDE INSERY
JOBDEY JOBUSER KILCMD LLs
LENGTH LINEMODE LN LOCATION
106G LOOKUP MATNPROG MARK
MEMAVAIL MOVELEFT MOVERIGHT NEW

aph QPEN QPENI OPENG
OPENR ORD PAGE PFILE
FOS POWER FRED PUT
PYVIRT PWROFTEN PWROFTWO RADSD
READ READLN RELEASE RENAME
RESET REWRITE ROUND SCAN
SEEK SETFILE SHIFT SIN

S INH SLZEQF SPOOL SQR

SQRT STDERRORTRAP STRIP suCc

TAN TANH TIME TOD
TRUNC ucs WRITE WRITELN
XEQERR XLOCK XMOUNT

For & lList of all standard identifiers and reserved words, see Section 5.4,

"Legal Identifiers.”

APPENDIX B

THE ASCII CHARACTER SET

The next few pages contain charts that List the complete ASCII character

set. We provide the octal, decimal and hexadecimal representations of the
ASCII values.,

Note that the first 32 characters are npon=printing Control—characters.

THE ASCIL CHARACTER SET Page B-Z

THE CONTRGL, CHARALTERS

5 ! | | | f
§ CHARACTER } OCTAL % DECIMAL | HEX ; MEANING E
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm E.,,.w.,.m.,.,,.,._, a5 78 i e o P A e T . T e 2 P . . e e e
! NULL. boooon 0 { 0o | Nubi (fill character: i
E SOH | o001 i 1 b0 | Start of Heading i
| STX Poonz | 2 oo Start of Text I
| ETX Io003 | 31 03 | End of Text |
| ECT oons | 4 P o0& | End of Transmission !
5 ENG | 005 | s b0 | Enquiry i
| ALK Pooos | 6 06 | Acknowledge |
i BEL | o007 | 7 07 | Bell code i
| Bs [010 8 [T Back Space
I HY S Q o0 Horizontal Tab %
| LF oz | 10 | oa Line Feed i
] VT {013 | L B Vertical Tab i
1 FF I o141} 12 1 o0c | Form Feed !
| CR o015 13 I op | Carriage Return !
! 30 Lo01e | 1% | 0 | Shift Out
] &1 S o 15 [OF | Shift In I
DLE [020 | 16 | 10 | Data Link Escape !
ped Poo21 17 o1t bevice Control 1 |
pL2 ooz | & 1 12 | pevice Control 2 E
DC3 [0z23 | 19 | 13| pevice Control 3 |
BC4 P02 | 20 [14 pevice Control 4 E
| NAK | 025 | 21 Po1s Negative Acknowledge |
SYN | Q026 | 22 I 16 Synchronous Idle E
ETH | 027 | 23 P17 End of Transmission Blocks |
| CAN | o030 | 26] 18 | Cancel §
i EM | 031 25 Fo1e End of Medium i
| §% I o032 | 26 | 1A Special Seguence [
| ESC 033 | 27 b o1e Escape
! FS I 034 | 2R [File Separator [
| GS Po03s] 29 | b | Group Separator |
| RS | 036 | 30 I1E | Record Separator E
§ us g 037 5 31 % 1F § Unit Separator E

THE ASCII CHARACTER SET Page B-3

PRINTING CHARACTERS

| | | i
g CHARACTER § OCTAL E DECIMAL i HEX % MEANING
| SP T 3z |20 | Space
! i [041 | 33 P21 Exclamation Mark
! a [042 | 34 |22 | Quotation Mark
! # L0430 35 23] Number Sign
% $ TV R TS VA bollar Sign
| % I 045 | 37 boz2s | Percent Sign
} & i Dée | 38 26] Ampersand
' 067 | 39 27 Apostrophe
(0s¢ | 40 28 Opening Parenthesis
} 051 | 41 29 Closing Parenthesis
* 052 | 42 2A Asterisk
+ | 053% | 43 o2 | Plus
P 054 | &4 Z2C Comma
- 055 | 45 2D Hyphen or Minus
i ; | 056 | by | 2E | Period
| / | os7 | 47 | 2F | SLash
| 0 Poosn | 48 | 30 | Zero
! 1 Poo0etl 4@ S S I One
! 2 | 062 | 50 Eorz | Twao
| 2 | 063 51 I 33 | Three
! & | 064 52 I %4 | Fouy
! 5 I 065 | 53 I 35 | Five
| & I 066 B4 | 36 | Six
i 7 | 067 55 boosr | Seven
8 | 070 56 I 38 | gight
9 | 07 57| 39 | Nine
i : | 072 | 58 Y S Colon
: Loors | 59 1= S Semicolon
< boore | 40 T Less Than
i = | 075 | &7 bo3p Sign
i > | ore | 62 | 3E Than
? | 077 | &3 bO3F Question Mark
i Lo1oo b | 40 | Commercial At
' % i i |

THE ASCII CHARACTER SET Page B4

| 1 | |
| | OCTAL | DECIMAL % HEX | MEANING [
mmmmmmmmmmmmmmmmm o | |
! A | o107] A% |41 Upper Case Letter §
| B o2 | 66 | 42] Upper Lase Letter
E C Io103 | 67 o3 | Upper Case Letter
| D | 104 | 68 P44 | Upper Case Letter |
| E io105 69 1 45 | Upper Case Letter
| F o106 70 1 46 | Upper Case Letter
G L1107 71 | &7 | Upper Case Letter ,
H 110 72 48 Upper Case Letter
I 111 73 &9 Upper (ase Letter
J 12 74 | 4A Upper {ase Letter
K 113 75 48 Upper Case Letter
L 114 76 4C Upper Case Letter
M 115 77 40 Upper Case Letter
N 114 78 4E Upper Case Letter
I 0 P17 79 4F Upper Case Letter
i P 120 &80 I 50 Upper Lase Letter |
| @ 124 81 | 51 Upper Case Letter |
| R I 122 | g2 | &2 Upper Case Letter [
| S o123 | 83 I 53 | Upper Case Letter !
i T | 124 | 84 [54 | Upper Case Letter i
i 1 bo125] 85 | &5 | Upper Case Letter i
} V [126 | 86 Pose | Upper Case Letter i
| W o127 | &7 | 57 Upper Case Letter |
% X P30 | 88 | 58 Upper Case Letter |
¥ 131 | 29 | 5% Upper Case Letter |
z 132 | 90 I sA Upber Case lLetter |
L 133 | 91 | 58 Opening Bracket §
\ I 134 | 92 | s¢ | Back Slash |
1 135 | 97 [sb Closing Bracket |
" 136 | 94 Iosg Circumflex i
= | 137 | 95 | sF] Underline ' !
’ 140 | 36 P60 Grave Accent |
a 141 | 97 I 61 Lower Case Letter |
E b o142 | 98 I 62 | Lower Case Letter !
E c o143 99 P63 Lower Case Letter i
E d I 144 | 100 | 64 | Lower Case Lettar i
§ @ | 145 101 a5 | Lower (ase Letter !
| £ I146 | 102 66 | Lower Case Letter §
? g | 147] 103 &7 lLower Case Letter |
[f Lo1s0 | 104 bos8 Lower fase Letter |
| % S 108 5% | Lower Case Letter E
| i 182] 106 6A Lower [ase Letter |
[I PosE | 107 a8 | Lower (ase lLetter |
| L o154] 108 60 | Lower (ase Letter |
5 m 155 | 109 Ioap l.ower Case Letter |
| n o156 | 110 | 6B | Lower Case Letter |
§) o487] 111 I & | Lower Case lLetter |
i ! E ?

THE ASCTII CHARACTER SEY

b3 W S 7 B B B

e

o e g DY

Lower {ase
Lower {ase
Lower (ase
Lower {ase
Lower (ase
L.ower (ase
Lower {ase
Lower (ase
Lower Case
Lower (ase
l.ower Case

lLetter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
l.etter

Opening Brace
vertical Line
{lLosing Hrace

Tilde
Pelete

APPENDIX C

ALPHA PRASCAL COMPILER ERROR MESSAGES

Below 145 an alphabetic L{ist of all error messages output by the AlphaPASCAL
compiler. For a discussion of how to compile programs, and for information
on Breor reporting and error recovery, ses Chapter 4, "Operating
Instructions and Characteristics.”

We believe that the error messages below are very helpful in explaining
exactly what part of your program caused the error. Therefore we have not
provided detailed explanations for each error message. For some of the
messages beloy we have added notes that give more information about the
error and that tell you where to look in this manual for more information on
the operator, data structure, or declaration involved in the error.

Whern {MPILR displays an error message, it also displays the Line of the
program that contains the error and points to the problem. For example, i
vou tTry to compile the following small program:

PROGRAM TestError;

VAR Number1 : REAL;
Mumbersg : STRING;

BEGIN { Try to use additiorn operator on real and string data. }
IF Sumberl + NumberZ = O THEN WRITELN('Zero.')
END .

you see the following displays

{Changed 30 April 19813

ALPHA PASCAL COMPILER ERROR MESSAGES Page (¢

AlphaPascal Compiler Version 2.0
< {120 o o e
PROGRAM < S
BEGIN { Try to use addition operator on real and string data. }
‘ "IF Numbher? + Number? = 0 THEN WRITELN('Zerg,'?

Py

Line &: [BOPNBN] In ‘x+y', x and vy are not both numeric
THIT RETURN to continue
< b
7 Lines
4.1 seconds, 102.44 Lines/minute
“Total of 1 compilation errors.

The error above ogccurred because we tried to perform an arithmetic operation
on numeric and string data; both Number? and Number? must be numeric in
order to use the additien operator,

The first eight characters of the error message identify the portion of the

compiler that caught the error. You will probabily not need to make note of
this identifier.

in many of the error messages, CMPILR actually substitutes intg the error
message the operator or identifier that is the source of the error. For
exampie, *n the List below, the error message above appears as:

[BOPNEN] In *x <op>» ¥', x and ¥y are not both numeric

In our example above, CMPILR substituted into the error message the operator
{("<op>") causing the problem, and displaved the message:

IBOPNBNI In 'x+y', % and v are not both numeric

tThe symbols in the error messages that are replaced by elements from your
program when the message is displaved are:

<o Operator

L 9.9 User~defined Tdentifier
XA X

Yyy Keyword

ZZE

{Changed 30 Aprii 1981

ALPHA PASCAL COMPILER ERROR MESSAGES ‘ Page (-3

C.7 THE ERROR MESSAGES

£277797] #+* Undefined error ®¥*
You should-never see this érror message. Please report it and the
circumstances under which vou saw it to Alpha Micro.

CANEANXT In *x AND y', x must be of type BOOLEAN
CANENGTY In 'NOT x', x must be of type BOOLEAN
See Lhapter 8 for information on ROOLEAN cperaiors.

CASGAST] In 'x:my', the types of x and.y are incompatible

CASGFILY 1t is illegal to assign files to one another
See Chapter 7 for informaticn on the FILF data type.

LASGMAT] In 'x <op»= y', the tvpes of x and vy are incompatibie
You tried to use a modifying assignment operator on two pieces of
data that were of incompatibie tvpe, For example, vou cannot use
"RHUMBER /= DATA" if NUMBER ds an INTEGER but DATA is REAL, since
you cannot return an INTEGER result 3f vou divide an INTEGER by a
REAL number, :

CASGSWLT String constant has wrong length for packed array
CRDYULRBY Undefined tabels cccur in this function/procedure

CBEXARL]Y Only '=' and *<>' are permitted with ARRAYs
See Chapter 7 for information on ARRAY datas types.

CBEXCMTI In 'x <relation> v', x and y are incompatible
[BEXFRL] Comparison of FILEs is undefined

[CBEXINSD In *x IN y', y must be a SET type

CREXINTI In fx IN v', % must be competible with bese type of v
CRBEXPRLY COnly '=° and <> are permitted with pointers
LBEXRRLY Only '=* and '<»' are permitted with RECORDS

TBEXSRLI <! and '>' are undefined on SETs

[BLEROTI '.' (denoting end of scurce) expected ~ assumed missing
CMPILR reached the end of the file, but saw no period. Remember
to end all program and module files with a period.

{BOPINTY Only INTEGER operands are permitted with <op>
[BOPIOST Only INTEGER or set operands are - permitted with <op»
TBOPNBNT In "x <op> ¥', % and y are not both numeric

IBOPNBS] In "x <op> v', x and v are not both sets

EROPNOST Only numeric or set operands are permitted with <op>
[BOPNUMT Only numeric (INTEGER or REAL)Y dperands are permitted with <op»
LCALAPR] Preceding argument must not be & packed char field
CCALBRL] The preceding string constant has wrong length
LEALARST The preceding SET variable has wrang size

[CALARYI The preceding argument has wrong type

CLALARVI The preceding argument must be a varisble expression
[CALEHRY The preceding must be aof type CHAR

{(Changed 30 April 198712

ALPHA PASCAL COMPILER ERROR MESSAGES Page C—4

CCALEXT]

CCaLFTLY
CeaLrrMl
CCALINTT
CCALIOR]
CCALLPR]
CCALNRST

CecaLapma

CCALPACT
LCALPTY]
CCALRDR]
CCALRDTI
FCALSOND
LCALSEX]
CeaLsvrl
LCALTEAD
CCaLTESd

CCALTGTS

reaLTMal
CCALTXTD
CoalwRMl
[CaluwrTl
CespaNKD
resrsend
CEXPORX]
CFACCET]
TFACCLT]
CFACCYTS
CFacDpesy
[EACIFT]
CFACRTL]
CFACSCKT
CFACSCT]
CavnfFiL]
LGV EWR]
CEVDJINK]
CINTESF]
CInzLTLd
CINIPOM]
CINERMR]
CINISEM]
CINESOID
CINESOP]

{Changed

EXTIT(x} where x is a standard func or proc is iltegal
You may only supply EXIT with the PROGRAM keyword or the name of
your own procedure or function that you want to exit; you may not
supply the name of a function or procedure in the Library.

Preceding argument must be of FILE type

formal procedures and functions not implemented

The preceding argument must be of type INTEGER
Preceding argument must be of type INTEGER or REAL

PP expected -- assumed missing

Preceding argument must be a pointer or non~REAL scalar

INPUT, QUTPUT,or RANDOM expected —— INPUT assumed
See Chapter 10 for information on:fﬁiemidentif€9?sa

Must be a packed array of char or a char element

The preceding must be a pointer variable

it is itlegal to read into a packesd char field

arguments to read must be INTEGER, REAL, CHAR, or String
Onkty "= and '<>' are permitted here

The preceding must be a string expression

The preceding must be a string variable

Too fey arguments supplied

The preceding must not be a string or a real

The preceding constant is of incorrect type for variant
See Chapter 7 for informaticn on RECORD variants.

Too many argument s supptied

Preceding argument must be of type TEXT (FILE OF CHAR)
Preceding modifiasr must be of type INTEGER

Must be INTEGER, REAL, CHAR, String, or pck'd arry of chr
Junk after <constant definmition® ==~ scanning

Only INTEGER and REAL constants may be signed

I "% OR v', x must be of type BOOLEAN

In 'CASE x OF ...', x must be a non-REAL scalar type

Tn TOASE x OF ...', Labels must be compatible with x

in CASE expressions, all cases must have compatible types
The previous case label has already appeared

THEN and ELSE sxpressions must have compatible types

Praoc or func too large, split it into smaller pleces

In set constructor [--J, sat slements must be scalars

Tn set constructor [=-1, all elements must be compatible
Global files must be deciared in PROGRAM file

"% present and x never declared for some X

Junk after <variable definition» == scanning

Empty source file

First source bLine too long == truncated to 132 characters
PROGRAM or MODULE expected —- ‘'PROGRAM:' assumed

3% expected -- inserting ')°

2% expected -~ dnserting '

Fat oor Zidentifier> expected -~ dinserting 't

ot oar (7 expected -- dingserting ':!

30 april 1981

ALPHA PASCAL COMPILER ERROR MESSAGES ‘ Page (-5

LLADERR] w## Compiler error in LOADADDRESS ##%%

You should never see this error message. Please report it and the
circumstances under which you saw it to Alpha Micro.

LLARPCKD Packed variables may not be used in this context
LLBLDDCT Label already declared in this scope

CMPATEG] Maximum string size ig 285

CPRDAFLT Only formal (VAR) FILE parameters are permitted

CPRDDDF] Function or procedure already declared forward

LPRDDDPI Parameter~list must only appear in FORWARD declaration
TPRDFNRT * <result type identifier>' expected -~ assumed missing

EPRDFTMI Function tybe not compatibis with forward declaration
For information on forward deciarations, see Chapter 6.

CPRDLPXT *{* expected -~ assumed missing

CPRONSTY Procedure/function declarations nested too deeply
LPRDPDF] function or procedure previeusly defined

CPRBEPRFI Previously declared a function in same scope

[PRDPRP] Previously declared a procedure in. same scope
CPRDSSPI Function must be of scalar, subrange, or pointer. type
CSCNINST Giving up scan ~- inserting xxx

LSCNMIST Giving up scan -— xxx assumed missing

CSELATON In xIvd or xC=--,v], % or xL==3 must be of ARRAY type

[SELERR] ++% Compiler error in SELECT *#%
You should never see this error message. Flease report it and the
circumstances under which vou saw it to Alpha Micro.

CRELEGPT In "x7', x must be of pointer or FILE type

CSELIXTI In x[¥l, ¥ must be compatible with index type of x
[SELNIST Only enclosing func identifiers may be used as variables
[SELNSFY In "x.v', v must be a field of the RECORD x-

[SELRTOD In 'x.y', x must be of RECORD type

CRELSTFI standard function identifiers may not be used as variables
For a Llist of the standard identifiers, see Chapter 5.

LSELSXOT 1n xLvl, v must be of non-REAL scalar type

CSIDUDF] "wXx' s undefined

CSIDWRCT *YXX' 45 not a TYPE/CONST/VAR/FIELD/PROCEBURE/ FUNCTION identifier
LSMPNUMYE In *-x', x must he numerig

LETMBIDD Wrong BEGIN-END identifier —— XXX expected

For information on BEGIN-END Labels, see Section 6.2, "Label
Declarations.,”

LSTMOSD] The oreceding case lLabel appears more than onge
LSTMCSTI The preceding case label has wrong type

CSTMbOW] DO without WHILE, FOR, or WITH

CSTMEWTI] FLSE withouwt IF or CASE

CSTMFEK] Final FOR value must be of scalar type

[STMFFY] FOR variable and final vaiue have incompatible types

{Changed 30 April 19812

ALPHA PASCAL COMPILER ERROR MESSAGES _ Page (-6

LsTMFIK]
FSTmMFIT]
[E3TMFYFT
CETmEvIC
[8TMGTO]
LSTMMDL]
ESTMPEX]
ESTMPEXD
CSTHMRTLD
CSTMTWED
CSTMiLe]
CSTMUWR]

LSTMWRT]

CsTmuTs]

CSTRERR]

LTOKEDG]

CTOKEGF]

CTOKFDG]
£rokricd

CTORINE]

[TOKIRG]
CTOKLTLY
TTOKNING
CTOKBL8]
CTRMNEN]
CTRYINS]
CYTRYINST
CTRYINST
TTRYINST
CTRYMIS]
[TRYSCN]
LTRYSCNT
CTRYSONT
LTYDFWPY
CTypunid
CYYPRTF]
LTYPCTR]
CTYPCTRS
CTYPIXR]

(Changed

Initial FOR value must be of scalar type

FOR variable and initial value have incompatible types
T "FOR x:=...', x must not be a formal variable

In 'FOR x:=...", x must be a non~REAL scalar variable
GOTO statements are not permitted without (*3G+x) option
Definition for this label has already appeared
Function calls are not Legal as statements

Procedure identifier was expected

Proc or func teo large, split it into smaller pieces
THEN withouwt IF

Undeclared label

UNTIL <expression® without REPEAT

In "WITH % DO ...', x must be a RECORD variable
see Chapter 9 for information on accessing record fields with
WITH=DG,

WITH statement has caused too many nested scopes

k% Compiler ereor in STORE #xx
You should never see this error message. Please report it and the
circumstances under which you saw it to Alpha Micro,

Digit (0-9) expected in exponent -- assumed missing

Unexpected end-of-spource~file encountered
Remember to end every program or module file with a period.

Bigit {(0~9) expected in fraction -- assumed missing
Tliegal character encountered -- fgnoring

Include file not found
See Chapter 4 for information on Include Files.

Integer constants must be in the range +-32747

Lirme too long == truncated to 13%2 characters

File includeg (*81 -==-%)} may not he nested
Unterminated string (multi=line strings not permitted)
In '%x/y*, both cperands must be numeric

xxx or yyy expected -~ inserting xxx

xxx or yyy expected -- inserting yyy

KEX, Y¥Y. OF zzz expected -- dinserting xxx

XXX . ¥Y¥Y, OF zzz expected =— inserting vyy

xxx expected -~ yyy assumed missing

xxx expected —— scanning

XXx or vyy expected -~ scanning

X¥K, Y¥YY, OrF zzz expected —= scanning

“x prasent and x never declared for some x

Junk after <type definition> =-- scanning

In PARRAY [x1 OF v', v must not be a FILE tvpe

in "CASE x OF ...', x must be a scalar type identifier
T TCASE x OF ,..', x must not be of type REAL

Array 18 too Large

20 April 19812

ALPHA PASCAL COMPILER ERROR MESSAGES

[TYPIXR]
TTYyPIXT]
TTYPLGHT
ETYPNST]
CTYPRFF
[TYPRGE]
ETYPSCID
[TYPsRR]
CTYyPsTRY
[yyPsTBd
[TYPsTKY
LTYPSTR]
Cryrsxg]
fTYPsxTa
CTYPTTED
fyaoruwp]
TVRDJINK]
TYPRAFL]
[XPRLPX]
[¥PRSSP]

In TARRAY [xJ OF ¥', x must not be of type REAL
Im TARRAY [xJ OF v', x must be a scalar type
Xan¥ where x>y is il legal
peclarations too deeply nested
Record fields must not be of FILE type
x..Y where x and v are incompatible
A string constant identifier must not appear here
Subranges of type real are 1llegal
Set 1s too large
Set 1s too large (must be <= SET OF 0..409%)
In "S5ET OF %', % must be a scalar type
Im 'SET OF x', x must not be of type REAL
STRINGLxT must have 1 <= x <= 255
STRINGIx] where x i3 nat an integer
In "CASE x OF ...', tag tvype i3 incompatible with x
"% present and x never declared for some x
Junk after <variable definition> -- scanning
Only formal (VAR)Y FILE parameters are permitted
"7 expected ~~ assumed missing
Function must be of scalar, subrange, or pointer type

{Changed 30 April 1981

ALPHA PASCAL USER®S MANUAL Page Index—1

Index

$G compiler options . . b~7
I compiler option . . .+ . h=7
BL ocompiler options . . & o « « . LG8
$P compiter option 4=
$Q compiler options b1
3R compiler opticons £y~

SING files o 0 b 4 s w e e e o o« L=

SPCF files . . . & « 4 o & . . . A=11

LPOT files L L L . . . e e e e . 4=B, &=11
PSR Files . . 4 b 4 s e e ow o . A&=13, 15~1

JLINK Uinker option o » o o w o » 4=15, 15=2, 15=5%
FBMASH Linker gption 4~18, 4-16

Aborting command file execution . 11-2
ABS . 4 . h c s s s e e w e e e . 2R
Aotual parameters . . . e o«
AlphaBASTC file locks S
AMOS file 3pac1f1cat10n o u
AMOS files o 4 n s . ow . =15, 10~14
BND & o v o s b e e e e e e e s ?m3

ARCCOS
ARCCOSH+ & .
ARCSIN G .,
ARCSINH o . o . . 4 .
ARCTAN & . & 4 o a v a e o w =« 122
ARCTANH & .+ . o 4 v 4 s e v w = - T12-3
Arithmetic operator .
ARRAY o w & & o 0 s s s s o s &« = T=8, 15=5

Array index « + & & « 4 + ¢ 4 & . -8

O e

ASCTII character set « - - 11-1

ASCIT value « . . & . . . e = o= 11

Assembly language sub?outwnes e w E=b, 4-1F, 15=1, 164
Assigrment Operator . . « & . - . 5=, B3

Assignment statement G-t
BEGIN & . 2 v 4 v« n w e e e . 2=3, S5=4
Bibliography . . + w 5 & & « « - 1=1
Block W o w2 4 & v 4 4 ¢ & e w0 o« 51
Block structure & . 4 & w o 2 5 W 27
Blocking records &« « . . 10-18

ALPHA PASCAL USER'S MANUAL Fage Index—?

BOOLEAN o . & .+« & 4 s 4 s w . . =R 15-4
Butfer variable . & + & 0 & w o o 1

CASE expressions . . v » o « o o B8=Q
Case label & . . . 7-18
CASE~OF o w v 4 4 o 4 v s w v w W 718, 96
CHAR . . 0 i i s e s e e e e e e 511, P&, 15-4
Character array functions and procedures

FILLEHAR © 0 & v v v v 4w w o 13=7

MOVELEFT & 4 6 & v w s w o« 13=7

MOVERIGHY & & o w o . 13-8

SCAN L oL L L L L. L L 139
Character editing+ . . 1014
Character mode & . . 11-6
Character set . « . o v W v o w o 7=k
Charmode o ¢ 10-2, 10~14, 11-6
O A B
Clearing file locks . « o « o« & . 14-%
Clock, System « + . . 1411
CLOSE &« v & 4 ¢ o v & & v = = » 10=-17
CMPILR . o o . s s e s e s e . &S
Collating sequence 7=4&
Command files 4~20, 11-2

Comments & & & . 4 4 . 2=3, 54
Compiler & 4 « o o =« o « £&=5
Compiler display .+ o v v o« w = o 410
Compiler listing . . . ¢« o & » . 48
Compiler options 4 w & » 4&=7

$G+ and $G~ =T

T

S+ and SL~- L 4-8

F . o e L L e e e e e e . . A0

A+ and $Q- A4=10

SR+ and SR~ 4=10
Compiling a program o o o o o « o 2=7
Compiling a single file 4=20 to 4-21
Compiling/updating one module . . &4-22
Compound statement B4
COMCAT . . o o v a h e s e w e o 1B=2
CONST & o v f h s d e e e e v o o b=h
Constant definition 5-11, 6-4
Constants . . . s s e w e ow s Bmh, BT

Control~C handling 14-15
COPY o . o . . .
CO8
COBH . . . 0w w o w .
CREAYE
Creating a source file 2-4

CRY & v 4 o v vt e s e e e e e . 1T

Data objects & o o . . 61
Data stack . . . ¢ @ o 4 & o . o 15=2
Gata structures . . ., . :

ALPHA PASCAL USER'S MANUAL

Data tvpe &+ « -+ « .
Pebugging«
Pecimal notation . .
Declarations . . .
beclaring
Functions
Labels « .
Procedures
Type o o o s & 4« o«
Variables

= e

@

=

-

@

beclaring external elements

Declaring vartables .
befining constants . .
DELETE . & & ¢ o o = «
Bisk blocks
Displaving file locks .
Dynamic variables .

= a

E osymbol . . + + « &
1 5
End-of-file
End-of-line
End-of-Line separators
EQF & & & 4« « = .
EOLN . & & & & & « &« =
ERASE &+ . .
ERROR . . . « +» o .
Error cades - .
Error hnandling . o . .
ERRORINFO
EXIT & & o o .
S
EXPONENT
EAOTESSI0ON 2 = 5 o o -«
Expression handling . .
Expressions
Agsignment operator .
CASE-OF construct . .
IF-THENM-ELSE construct
EXTENSION . . - . .
EXTERNAL . . . + . - =
External declaration .
External library . . .
Modifying
Version number . . .
Version stamp . . < .

EI

s =

FACTORIAL
FALSE o
Field . « . « .
FILE . .« .

bots, 71
143

O AT
i1
Y

fus]

b-&

20 I O O O
[IR

—
e I S T N O O T |

i A A LR S I AV RS

I
nG
=

s 133
10-%5
14-5
7-19, 11-3

510

?=3, 5-2, 54
10~3, 10=16
104

10-15

10-3, 10-15
104

10-19

1416

14-13

V12, 155

14-13
2w, 9-2, 14~15

7=15, 10-~16, 15=5

Page Tndex—3

ALPHA PASCAL USER'S MANUAL Page Index—4&

File error codes . o 4 o o o » o« Th-14
File handiing . « & & 2 & = o « « 3=4&

File fodks &+ 4 & ¢ o o « = = o 14~5
File sedrch patiern . . . « & o . A=3
File specification . . . « « » . 10-16
Fitle window &« ¢« « « « - 10-3

File—ddentifier . . o « 2 o & « « =16, 10-16
FILESIZE .+ & o 4 v o & 5 o = « = 10=-20
FILLEHAR 5 « o o« « o 137
Floating peoint numbers . . « « . B=4

FOR=DO . . o 4 4 o 4 a4 o o o & & o=@

Formal parameters . . « « « » o « H=11
Formatting output « o = « « » « o 10-10
FORWARD . © - &2 o & v & = o = o « &=10
Forward declaration « . . » « - « 6~10

FSPEC & & & 4 4 4 m e w o« o w a = =16, 1021
FUREEion .« & o 4 & o o v o » » « 15-3
Function block . & & & & « o & o B6=7

Functton call o . & v o &« o & o - 8-1
Function declaration . . . « « « &=b
Function result . & & « & v & » « BHB=6

GET » v v s v v e e e s e e o oa 105
GETFILE o w v o ¢ s a & w0 2 = « 1022

GETLOCKS & & . . « v &« o« o « » Th4=5
GOTO & v v v 4 o e e s e s w AT, 9=2 to 93

Heading + = « o « = o a2 o« 2 o o 9=1
Heap o v 2 5 o = o o = 2 = = o « =22, T1=3, 11=5

I70 errors o 4 4 4w w s v e = ow T4H=13E
Tdentifier . . . « ¢ ¢ ¢ = = = =« 5=2, 55
Identifier scope . . & = « & 2 » 2=2, 57
IF-THEN © . o & & & & 4 2 « o« = - 9=4
IF=THEN=ELSE . . & « o o o = = » 9=5
Image mode . . . 4 s 4 s s e« o 1i1-6
Include file . © o « v o & o o = &=7
Incliude files o o & & & o o « & » Ha=3
Indentation conventions . . +» o » 5=&

INFOREC o . o . . o . .

INPUT & v v w e o w w
INSERT o 4 & 4 & w a4 2 o = = o 134
INTEGER . . o & + &4 & «
Integer numbers « =« =«
INTERACTIVE . . .

Involking functions

JOBBEY . . 0 0w s e a s e w . . 023
JOBUSER & . . & . . . L 10=24

KED: o o v 0 o s e a e e e e w102, 1014
KEYBOARD . . &+ v 4 & « = = @« « 10-2, 116

ALPHA PASCAL USER'S MANUAL Page Index—3

Keywords . « & 4 « o 2 &
ARRAY . . & & & o 2 o o o » a =
BEGIN . . . + o ¢ o « =« s = & =
CASE | % i s s e e e s s s o
CASE-OF v . . o & & « » =
CONST & . ¢ & 4 o v o e e m o w
END . . o o e e e e e
EXTERNAL
FILE w v 4 o s s 5 a4 s 5 & s =
FOR-DO . v . & 4 ¢« « 4 o = n =«
FORWARD . . & & & o & & « = = =«
FUNCTION | L . o & & 4 « « o &
GOTO . . & & 4 4 & & o = = =
IF=THEN . . . & v &« o & « & « «
LF=THEN-ELSE . . . & & o = =« =
LABEL . o v = & v 4 4 o« w = =
MOBULE . . & v ¢ o + 4 & o = =
FACKED . & & o & 2 5 s = = n «
PROCEDURE ., . . & 4 & % & & o «
PROGRAM & & & & o w o =
RECORD « & w8 8 8 % = s & s =
REPEAT-UNTIL . . + ¢« 2 =« + o =
SET @ & 5 & & & = = 2 2 = » 5 =
VAR & o o 4w w6 s n s s e s s
WHILE-DD . . & & « & « = = =« =
WITH-DO & v v 2 ¢ 5 & = & o =

KILCMD . . o a4 a2 & & = w = & o =

.
1
§
L

%]
i
i

I I B
S0
o A
ooy
aéf)a

§

2,

i1
LV T
)
o
i
;)

-]

§

N N A
i O

(%3

i

—

i
P ok 00O o D b b D D DE P A B O b D e i Ll o sl OB L
]
~£3
i
e

AN o

M\O\G&”Q\ONWO\MWO\@\?%O\O\{}”\Q%NQ}@Q“‘-«JNNN

-y

Label declaration +» « - &2
e
Legal identifier & « » - 55, 6-1
LENGTH . W 4 v 4 2 o » w v s w o« 155
Library version checking . . . - &-17
Line printer aspoocler . + . « - - T4=3
Linked 198t o 2 o o o & = o = « o =22
Linker o o & v & o « o o = o » « &=1
Linking a2 Drogram . « . . « = = = &%7
Linking a2 single file 4-27
[0 A
LOAD L 0w s 6 s s s a e ow e ow 15-6
local procedures . . o O&
Local reference . . o & o o o » « 3=7
LOCATEON . .« & v & & & & o = = T1é4-1
LOG & & o o v v s s s e e s e s e 124
Logical operators . . . ¢« &« = &« - B-6
Logical records . . & & &« & « o - 10-16
LOOKUFR L o h h s s e« s« v o« o 1024
LOCO & 4 4 v s o = « s 2 o« = & = |2=9

MAINPROG . . & v ¢ 5 v & v = » » 142
MARK « & v o s v e e e e e e . 122, 113, 115
Mathematical functions 12-1

BBS . .+ 4 - s s s h s s e e s s 123

ARCCOS & o &« s ¢ 4 o 5 « & =« « 12-2

(Changed 30 April 19812

ALPHA PASCAL USER'S MANUAL , Fage Index—6&

ARCCOSH . . 4 4 & w 4 o = = = o 12-3
ARCSIN & v 4w a s & a s o o= . 122
ARCSINH , & . W v v w0 o« w = 12-3
ARCTAN .« « o o o o v o = o o 1272
ARCTANH © . v w w2 @ v o = » o 12-3
CO% u b v v« o s o & u o & = « 2=
COSH v . o 4 e o s e s = a0 o 122
EXP & & ¢ & s 4 2 2 = & » 5 = o ¥2=3
EXPONENT . . . & & + & « & » - 12-4
FACTORTAL . . . & 4 w o = « &« « 12-4
T b]
< =i
1 T
POWER . . & & o o = 5 = = o o« « 12=4
PHROFTEN « » « = . 12-5
PUROFTWE . v 4 v o 4 « o o » o 125
RANDOMIZE & « & = » = 12-5
T
BOUND 4 v v e s« o = o 126
SHIFT L . 4 b v e v e e v e o« o« 12-6
SIN & . 4 4 4 e s e e e e s 1271
O T -
SBR . . . s h s s s s e s e e . 126
SERT . . . h i e e e e e . . 1278
] STR 4 2 s & s 2 s 2 o & « o o 12v6
TAN . . b s s e s e s e e s o s 121
TAMH . . 0 h v e e e e e e e W 22
TRUME & w0 v e v o w s o« a ow . F2-7F
MAXINT . . . & & s & s & = & & = {72, 8~7
MEMAVAEL . . & & = &4 2 o = = = » 142
Modifying assignment operators . 32, 84
Modifying STOLIBR « « 16-4
MODULE L L & . v & e v a a s = & B5-2
MOUNTLING & 0 & % o o« o o = 2 = = H4=10
Mounting a disk+ « . o . 14-9
MOVELEFT & & W ¢ % & 5 o 2 s « « T32-8
MOVERIGHT & , + o = » - « 13-9
Multi-dimensional arrays . . - - -0
Multi-user file tocks &« o« o« = = » 145
Multiple Libraries - « o T1é~1

Mapierian logarithm 1Z-4

Matural logarithm - . T1é~&

HNEW & & ¢ o s s s e e m e e e e . 2B, Fr22, 11-3, 115
NTL & b &« s s 4 s e s o e oe s . =20

Norn=lacal reference . . o o o « o B=7
MOT . o 4 s & s o« - a -3
Mull statement G-
Numbers & + & & « « = » » 372
Numeric constants . . . « &1
Mumerio Literals &b
Numeric notation . . & - . 50

{(Changed 30 April 198712

ALFHA PASCAL USERTS MANUAL Page Index-7?

8 A

OPEN . . . s e e e e m e s e 10-16, 10~-25
Opening files 10-168

GPENG & L h 5 & 4 4 4 v o« « = = » 10-25

GPENR . & v v v 4 s 4 o s n = = o 10-264

Gperator o & o w o o & 2 = « a - 8=1 :
Operator precedence - . « 3=3, 81 to 8~-2
L

ORD & o v o v s s o s s s s om e s Tm2, T4, 113
QUTPUT . . & 4 s s s v = « & « 10=-2

PACK
Packing data . . . &+ « o o = o « 7-B
PAGE . . . < . . .
Parameters . . . & =
Pascal . .«
S .
POLLDO o w o v w v h h e e e e . A=21, 112

PCULDO o 0 4 4 i e s e e e o . 4m22

PEILE . . o 4 v 4 5 2 o = = = « - 10-26

N L L

PLINK © o 4 o 6 4 a « o o w & o o =11, 151

POinter . o o v 4 o o o w o = » « =19 v 7-20, 15-4
Fointer data typPe » w « 2 = « = o =18

FOS & 2 4 & 5 o « = s = = % 0w o= ow 13,,,3'1'{-“5

POWER . & 4 2 & o 5 o 2 = o « » » 12=4

Pre-declared constants B~7

PRED . & 2 & 4 4 « o 2 o » 5 a n (=2, F=4, 11-4
Previous versions of AlphaPascal 31

Printer QUeUE . . & « » = o = o » 16=3%

Procedure . . . v ¢ v 4w e e & o 153

Procedure call « + « & o @1

Procedure declaration . . « . « .
PROGRAM 4 & & « = & « = =
Program declaration « . . . « « .
Program Listing . « 2 - « « = =« =
Program name . . ¢ a2 s » « » & &«
Program structure o & . o o « s =
Frohibiting G0T0s . . & « » = « «
T
PUT o s s s n 2 s a « &« s o o « «
PHROFTEN . o w4 4 4 5 & = = = =
PUROFTHD . . v 4 o & % o e = o

i

i

i

§

i
PRy~ - o TD L = 00

Ni‘;}Q
WU A -

[

to 10-é

3

Guiet compiler display 4&-10

RARSD . . . & 4 o & s e 2 s o= o« o 10=26
Random files & + & o = « 10=15

B ORANDOMIZE . . . 4 v v 0 v v o o . 125
Range checking . . . & « w v « - 410
REBAD . & s o a4 s e e e e e o s TO-T
READLN & . & v v 4 o = = = » o« « H~R8
REAL & & & 5 o = & o = o s = = o =3, 15~4
Real numbers . . v o 4 e e oa = - 59, 10-10

{(Changed 30 April 19813

ALPHA PRASCAL USER'S MANUAL : ‘ Page Index-&

RECORD & & & v o o« w o n o o o « =16, 15=5
Record variants . « « » « o « & « 18
Recursion « o o = = « ¢ » 2 = = = 3-8
rReference parameter , . , . . . « 0~12, 153
ReGiStOrS o » n o o o o = 2 « « » 15=2
Relational operator . . o 2 o = o« 86
RELEASE . . v o = o o = o = o« = « =22, 11=5
RENAME . . & ¢« =« o & o0 o =« = « - 1027
REPEAT-UNTIL . o o w = « o = = o @9
Reserved words « « « o . 1=4, 5-5 to 5-6
RESET &+ ¢« ¢« v v = = 2 2 o « = = - 10=13
REWRITE . . & « =« = "% 2 & o = « 113

BAD . . v h o s 6 s ow s s o= o« s w1275

ROUND &+ v 4 2 « a = o = = = o » 12=6
Running a progeam . . « « +» « = . 278

Sample program
BPPBY & v o v o a o % s s a8 w o 7%
pemonstration 4 4 . o o £=3
EOF & v v e n s e mom o x o oa oo 04
FRRORTRAP . . 2 W o 2 = = » « « 14=12
Formatting output . . .+ o & = » 10-T1
forward declaration ©&6=10
FUNCTION & « « o = = « = « « « GOm8
GEY and PUT . 4 « 4 « & w & = « 106
GETFILE and SETFILE 10-23
GOTOS & w o s s » 2 = = = « = « 972
Identifier Scope . + & o + « « a=@

IE-THEN in 2xXDressions . . . - &8=9
Linked List . . . 4 o &« . e oo 7721
Modifying assignment operator . 8-5
Mathematical functions 127
POiNTErS « 2 2 « s » o & » = = =20
Random file . .« o & « =« « =« « =« 10-29
REPEAT-UNTIL . v o o o o o = « @9
SET8 w 0w e e e n s s ow s o . =14
WHILE=DD . & & « = « & =« » = = -8
Scalar constant . « 2 « = = « = &« 75
Scalar date tvpPe . . 4 4 e o & o =1, 75
SCAN . . 4 s s s s e e e s o« e . 1310
Scientific motation . . . « « « - 510

Scope of identifiers . . . « . . 22, 5-7
SEFK L w e s s s e om e o oe oa o« 10727
52micolon o . . 4 4 s s w4 om e = 2E
Sequential Files . ., . . . « - = 10-15

SET & 4 v e e e e s on e s e e e o =12, 154
Set operaltors » 4 v - 4 o« o4 o o o« (=13, 8T
SETFILE o v & o o o o 2 s = 5 « « 10-27
Setting file locks 145
SHIFT @ v 4 4 % a4 2 s 5 = a5 o= = o 1i=6
Simple date tvpe o & 4 2w s 2 o =1
T d

SINH & v s v 4 ke x s e s e e e 122
SIZEOF . 4 v s e e m s s e s w . AT

ALPMA PASCAL USER'S MANUAL fage Index-9

Spacing conventions, + . 52
SPOOL . . 0 o i a s e e e e wow s V43
Spool switches o . . . o 143

SPOOLLING o o i w w o v v w o 14-3
BAR L L oL s e e e e e e e s e s TE=6

R
R T R T -
Standard constants B=7F
Standard data twvpe o . 71
Standard identifiers . . . - - « 14, 2+3, 5=5 to 5-6
Standard Pascal . . . « « . & . . 22
Statement label & &« « &2
Statement s2paralor . . & « o » o =2, 54
Static variables . . & 4w o o &« » T-19
STRERRORTRAP &« 4 4 o o« « T4-13
STBLIB . & 4 v o = 2 & = = = = = 161
B STR & v o 4 s 6 & 5 5 & = o o » o 12-6
STRING o+ & & o & ¢ = o = = = u = S=6, 7=5, 710, 154
String constant & . . @ 5 = e = = =11
String constants . . . v s s = & 61, 8T
STRING dats tvpe . o o = o « = o o=

String funciions and procedures
CONCAT & & v & o & & « 5 & = «» 13
T e
DELETE © v 4 o « o 5 o = « = o 13-
INSERT & & 2 o o = o a « » = = 13
LS w v v s v s a2 s s oa s oa s . 13
LENGTH . & & o 2 « 5 o s o o « 13
POS & @ v = o o & & = o 2 = = & 13-3_ 13-53
STRIP 4 4 = 4 0« ¢ s 4 2 a a o 13=6
0
VAL o 0w & a s 6 o 4 e s s o u o 13~6a

String Literal . o o 4 « 5 « o « 5311, 64

String notation o . . « & o o W« o 5=10

SEringsS w 2« 4 o« = o« w o= o= o« = = 510

STRIP 4 v o 2 & o n =2 o 2 & » =» = 13=6

Structured dats type o 4 o o « » 71, 76

Subrange data type . . « 4 o o« . (=6

Subscript » o 5 4 s s v s 4 s & o 8

Subiset operator . . o2 a2 = o o+ s - B—H

T
Bty
4

SUCL o 0 s s e e e e e e s e e s
Superset operalor o o &« s s a4 e
SYstem QUeU® . + « 2 = = o s« s =

. T=b, 11=5

TAN & .« 4 o % 2 s s m s ow e s e 121
TAMH . . & & @ 2 & & = & n & = o 12=2
Terminal display o & o o o« « & o« H#=F

Terminal screen-handling 11-7
TEXT &« & 6 o a a5 o 2 o 2 = o F=71
TIME & & & & v & 2 & = & 5 = o« « =11

R
TRUE . . & & & o 4 s 4 = =« . I3

{(Changed 30 April 19812

ALPHA PASCAL USER'S MANUAL . Page Index-10

TRUNC W 0 0 o o« = & o v o o w o 12=7
TTY: 4w e e 2 e o & s = o & » « 10-2, 114
Type declaration . . ¢ +» « o« « - &4

HES « v v v o o & o o 5 » » o & o 138
Unmounting a disk . . + « « & - - T14-9
Updating a single module 4&~21
User-defined data tvpe 75
User-defined ERRORTRAP . . ., . . 14~12
Uger—detined functions 6~&
User~defined subrange . . . o o » 7=&

WAL . . o & & 5 o & 4 « 2 » a ° « 13=6a
Yalue parameter« + o = . 153

Value parameters £6=12

VAR . & 2 2 2 2 % o o s = & » o = D=6
Yariable declaration . . . o . . é&~¢
Variables . . + o & o 4 = « a2 w o =1
¥artant . . . 4 2 s o 0 s = o a o =1
Version number « « 2 o &1
Version stamp .+ « « o o = » = o « A=t
VUE & . 4 v 4 s v e s s s s s o os 25

WHILE=DO . o ¢ v v & 4 & o « o « =8

WITH=BD o . v o 4 v v v & s a o - 910
WRITE . o o & v 2 5 & o o o 2 = o 10=9
WRITELN . . &+ « & & & & 4 & » . 10-9
Writing an external Uibrary . . . 16=4

XERROTRAP . . & « v = v 2 » » = « T4-16
KLOCK & v s v w6 v e a n e e w o 145
KLOCK.SYS & . v v 4 v e s w s o . T14-6
AMOUNT W v v v 2 v v n e e v o w 14-9

(Changed 30 April 19813

