
SOFTWARE IV1ANUAL

AIphaPASCAL
USEWS GUOE

ov/rA 00100 08
REV 801

alpha micro

ALPHA PASCAL USERS MANUAL Page ii

NOTE: This printing of the manual, contains the contents of
Change Page Packet ill for the AIphaPASCAL Users Manual',
(OSS"1OOO01O), which may be orff7Tsepa7tetyfrALpa
Micro,

First Print mg: 1 August 1981)
Second Printing: 30 April 1981

Alpha Micro', 'AMOS', 'ALohaBASIC, AM'1OO'
'AIphaPASCAL', 'AlphaLlSP', and 'ALphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This book refLects AIphaPASCAL Versions 2,1) and later,

©1981 " ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

C'2.M 10/81

0. 0

ALPHA PASCAL USER'S MANUAL

Table of Contents

Page iii

1.1 ORGANIZATION OF THIS BOOK
1.2 PASCAL BIBLIOGRAPHY
1.3 GRAPHICS CONVENTIONS USED IN THIS BOOK

2.1 WHAT IS PASCAL'
2.2 SAMPLE PROGRAM
2.3 BRIEF DEMONSTRATION

2.3.1 Building a Pascal Program
2.3.1.1 The VUE Text Editor

2.3.2 Compiling and Linking a
Pascal Program

2.3.3 Running a Pascal Program

3.1 PREVIOUS VERSIONS OF ALPHA PASCAL
3.2 STANDARD PASCAL
3.3 MAKING PROGRAMS COMPATIBLE WITH

THE NEW ALPHA PASCAL 3—7

4.1 FILE AND MEMORY REQUIREMENTS
4.1.1 File Extensions
4.1.2 File Search Pattern
4.1.3 Program Restrictions •0•S
4.1.4 Memory Requirements

4.2 CREATING A PASCAL PROGRAM.
4,3 THE ALPHA PASCAL COMPItER,

4.3.1 The Diagnostic Display
4.3.2 Compiter Options

4.3.2.1 The IGTO Options

4—8
4—10

4—10

CHAPTER 1 INTRODUCTION

CHAPTER 2 GETTING STARTED

1—2

1—3
1—3

2—1

2—3
2—4
2—4
2—4

PART I THE ALPHA PASCAL SYSTEM

CHAPTER 3 COMPATIBILITY AND CONVERSION

2—7

2—8

CHAPTER 4 OPERATING INSTRUCTIONS AND CHARACTERISTICS

3—1

3—6

4—2

4—2
4—3
4—4
4—4
4—5
4—5
4—6
4—7

4—7($G+ and $G—)
4.3.2.2 The Include Option (SI) 4—7
4.3.2.3 The List Options

(SL, SL+ and SL—)
4.3.2.4 The Page Option (SP)
4.3.2.5 The Quiet Options

($Q+ and SO—)

4 1

ALPHA PASCAL USER'S MANUAL 4..v Iv
4.3.2.6 The Range Check Options

($R— and $R+) 4—10
4.4 'THE ALPHA PASCAL LINKER 4—11

4.4.1 Linking a New .PCF File 4—12
4.4.2 Replacing a .PCF File 4—13
4.4.3 Updating a .PCF File 4—14
4.4.4 Linking Assembly Language Subroutines

(the /LINK Option) 4—15
4.4.5 Preventing Backtracing of .PCF Files

(the /SMASH Option) 4—16
4.5 THE ALPHA PASCAL RUN—TIME PACKAGE 4—17

4.5.1 Library Version Checking 4—17
4.5.2 Interrupting a Program 4—10

4.6 HELPFUL COMMAND FILES 4—20
4.6.1 CompiLing a Single File (PC.DO) 4—20
4.6.2 Linking a Single File (PL.DO) 4—21
4.6.3 Compiling and Linking

a Single File (PCL.DO) 4—21
4.6.4 Updatinq a Single Program

Module (PU.DO) 4—21
4.6.5 CompiLing and Updating a Single

Program Module (PCU.DO) 4—22

PART II SUMMARY OF ALPHA PASCAL

CHAPTER 5 GENERAL INFORMATION

5.1 BASIC STRUCTURE OF A PROGRAM s_i
5.2 COMPOUND STATEMENTS (BEGIN AND. END) 5—3
5.3 COMMENTS 5—4
5.4 LEGAL IDENTIFIERS 5—5

5.4.1 Reserved Words 5—6
5.4.2 Standard Identifiers 5—6

5.5 SCOPE OF IDENTIFIERS 5—?
5.6 NOTATION 5—9

5.6.1 NUMBERS 5—9
5.6.2 STRINGS 5—10

CHAPTER 6 DECLARATIONS AND DEFINITIONS

6.1 PROGRAM DECLARATIONS 6—1
6.2 LABEL DECLARATIONS 6—2
6.3 CONSTANT DEFINITIONS 6—4
6.4 TYPE DECLARATIONS 6—4
6.5 VARIABLE DECLARATIONS 6—5
6.6 FUNCTION AND PROCEDURE DECLARATIONS 6—6

6.6.1 Functions 6—6
6.6.2 Procedures 6—8
6.6.3 Forward Declarations 6—9

.

6.6.4 Formal Parameters
6.6.4.1 Value Parameters
6.6.4.2 Reference Parameters

6.7 EXTERNAL DECLARATIONS

7.1 SIMPLE DATA TYPES
7 .1..1 INTEGER
t.i.z REAL

7.1.3 BOOLEAN
7.1.4 CHAR
7.1.5 User—Defined Scatar
7.1.6 User—DefIned Subrange

7.2 STRUCTURED DATA TYPES
7.2.1 Packed Data Types
7.2.2 ARRAY

7.2.2.1 Multi—dimensionat Arrays
7.2.3 STRING
7.2.4 TEXT
7.2.5 SET
7.2.6 FILE
7.2.7 RECORD

7.2.7.1 variant Parts
7.2.8 PoInter Type

8.1 OPERATORS
8.1.1 Operator Precedence
8.1.2 Assignment Operator

8.1.2.1 ModIfying Assignment
Operators

8.1.3 Arithmetic Operators
8.1.4 Retational Operators
8.1.5 Logical Operators
8.1.6 Set Operators
CSTANTS
VARIABLES
IF—THEN—ELSE EXPRESSIONS
CASE EXPRESSIONS

CHAPTER 9 STATEMENTS

9.2 —

9.3 9—2
9.4 9—2
9.5 9—3
9.6 9—4
9.7 9—4

9—4

9—5

.-. V

ALPHA PASCAL USER'S MANUAL Page v

CHAPTER 7 DATA TYPES

CHAPTER 8 EXPRESSIONS

6—11
6—1,1

6—12
6—12

7—2
7—2

7—3

7—3
7—4
7—5
7—6
7—6
7—7
7—8
7—10
7—10
7—11

7—12
7—15
7—16
7—1 8

7—19

8—1
8—1

8—3

8—4
8—5

8—6
8—6
8—7
8—7
8—8
8—8
8—9

8.2
8.3
8.4
8.5

ASSIGNMENT STATEMENT
PROCEDURE CALLS
EXIT
GOTO STATEMENT
NULL STATEMENT
COMPOUND STATEMENT
CONDITIONAL STATEMENTS
9.7.1 IF—THEN

9.7.1.1 IF—THEN—ELSE

I

ALPHA PASCAL USER'S MANUAL
Page vi

9.7.2 CASE—OF 9—6
9.7.2.1 CASE—OF—ELSE 9—7

9.8 REPETITIVE STATEMENTS 9—8
9.8.1 WHILE—DO 9—8
9.8.2 REPEAT—UNTIL 9—8
9.8.3 FOR—DO 9—9.

9.9 WITH—DO 9—10

CHAPTER 10 INPUT/OUTPUT FUNCTIONS AND PROCEDURES

10.1 BASIC FUNCTIONS AND PROCEDURES 10—1
10.1.1 The File Window 10—3
10.1.2 EOF (End—of—file Funotion) 10—3
10.1.3 EOLN (End—of—line Furktion) 10—4
10.1.4 GET and PUT 10—5

10.1.4.1 GET la—s
10.1.4.2 PUT 10—6
10.1.4.3 Sample Program Using

GET and PUT 10—6
10.1.5 READ, READLN, WRITE, and WRITELN 10—7

10.1.5.1 READ 10—7
10.1.5.2 READLN 10—8
10.1.5.3 WRITE 10—9
10.1.5.4 WRITELN 10—9
10.1.5.5 Formatting Output 10—10

10.1.6 PAGE 10—13
10.1.7 RESET 10—13
10.1.8 REWRITE 10—13

10.2 SPECIAL FUNCTIONS AND PROCEDURES
FOR FILE I/O 10—14
10.2.1 Information on AMOS Files 10—14

10.2.1.1 Random Files 10—15
10.2.1.2 Sequential Files 10—15
10.2.1.3 Logical Records 10—16
10.2.1.4 Opening and

Setting Up Files 10—16
10.2.2 CLOSE 10—17
10.2.3 CREATE 10—18
10.2.4 ERASE 10—19
10.2.5 EXTENSION 10—19
10.2.6 FILESIZE 10—20
10.2.? ESPEC 10—21
10.2.8 GETFILE 10—22
10.2.9 JOBDEV 10—23
10.2.10 JOBUSER 10—24
10.2.11 LOOKUP 10—24
10.2.12 OPEN 10—25
10.2.13 OPENI 10—25
10.2.14 OPENO 10—25
10.2.15 OPENR 10—26
10.2.16 PFILE 10—26
10.2.17 RADSO 10—26
10.2.18 RENAME 10—2?

• 10.2.19 SEEK .
10.2.20 SETFILE

10.3 SAMPLE PROQRAM TO DEMONSJRATE FILE HANDLING,
10.3.1 Sample'Run
10.3.2 The Program,.,
10.3.3 Program Organization

10.3.3.1 The, AMOS file NAMREC.INC
10.3.3.2 The AMOS file EMPREC.INC
10.3.3.3 The AMoS file FIND.PAS

12.1.2
12.1.3
12.1.4
12.1.5
12.1.6

12.2 HYPERBOL
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6

12.1.1 COS(X)
SLN(X)
TAN(X)
ARCtOS(X)
ARCSIN(X)
ARCTAN(X)
IC TRIGONQMETRIC FUNCTIONS
COSH(X)
SINH(X)
TANH(X)
ARCCOSH(X)
ARC5INHçX)
ARC'TANH(X)

FUNCTIONS
12.3.1 ABS(X)
12.3.2
12.3.3
12.3.4
1?.3.5
12.3.6

EXP(X)
EXPONENT(X)
FACTORIAL(X)
LN(X)
LOG(X)

11—1

11—1

11—2
11—2

11—3
11—4
11—5
11—5
11—6
11—6
11—7
11—7

11—7
11—8
11—9

12—1
12—1

12—1

12—1
12—2
12—2
12—2
12—2
12—2

12—2
12—2
12—3
12—3
12—3
12—3
12—3

(Changed 30 April 1981)

ALPHA PASCAL USER'S MANUAL ,
' Page vii

10—27
10—27
10—29
10—29
10—31
10—38
10—38
10—38
10—39

CHAPTER 11

CHAPTER 12

MISCELLANEOUS FUNCTIONS AND PROCEDURES

11.1 BASIC FUNCTIONS' AND
111.1 CHR

11.1.2 KILCMD
11.1.3 MARK
11.1.4 NEW

11.1.5 ORD

11.1.6 PRED

11.1.7 RELEASE
11.1.8 SUCC

11.2 SPECIAL TERMINAL DISPLAY PROCEDURES
11.2.1 CHARMODE

11.2.2 CRT
11.2.2.1 Cursor Positioning
11.2.2.2 Extended Screen

Display Options
11.2.3 INCHARMODE
11.2.4 LtNEMODE

MATHEMATICAL FUNCTIONS

12.1 TRIGONOMETRIC FUNCTIONS

12.3 MISCELLANEOUS MATHEMATICAL

12—3
12—4
12—4
12—4
12—4

ALPHA PASCAL USER'S MANUAL
Paee viii

12.3.7 000(X)
• 12—4

12.3.8 POWER(X,Y) . 12—4
12.3.9 PWROFTEN(X) 12—5
12.3.10 PWROFTWO(X) 12—s
12.3.11 RANDOMIZE 12—S
12.3.12 RND 12—5
12.3.13 ROUND(X) 12—6
12.3.14 SHIFT(X,Y) 12—6
12.3.15 SQR(X) 12—6
12.3.16 SQRT(X) 12—6
12.3.17 STR(X) and STR(X,a,b) 12—6
12.3.1 TRUNC(X) 12—6

12.4 SAMPLE PROGRAM TO PAD A I'SJMBER WITH LEADING
ZEROS 12—6

CHAPTER 13 STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES

13.1 STRING INTRINSICS 11—2
13.1.1 CONCAT 13—2
13.1.2 COPY 13—2
13.1.3 DELETE 13—3
13.1.4 INSERT 13—4
13.1.5 LCS 13—4
13.1.6 LENGTH 13—5
13.1.7 P05 13—5
13.1.R STRIP 13—6
13.1.9 UCS 13—6

• 13.1.10 VAL 13—6a
13.2 CHARACTER ARRAY INSTRINSICS 13—7

13.2.1 FILLCHAR 13 7
13.2.2 MOVELEFT and MOVERIGHT 13—7
13.2.3 SCAN 13—9

PART III ADVANCED PROGRAMMING ON THE ALPHA PASCAL SYSTEM

CHAPTER 14 SYSTEMS FUNCTIONS AND PROCEDURES

14.1 LOCATION 14—1
14.2 SIZEOF 14—1
14.3 MEMAVAIL 14—2
14.4 MAINPROG 14—2
14.5 SPOOL 14—3

14.5.1 Switches 14—3
14.5.2 Error codes 14—4
14.5.3 Function definition 14—4
14.5.4 The SPOOL subroutine 14—4

14.6 XLOCI(AND GETLOCKS 14—5
14.6.1 The XLOCI(subroutine 14—6
14.6.2 Setting a lock 14—7
14.6.3 Setting a lock (and waiting

until it is available) . 14—7

(Changed 30 April 1981)

ALPHA PASCAL USER'S MANUAL Page ix

14.8
14.9
14.10

(Changed 30 April 1981)

Clearing a lock
The GETLOCKS subroutine

Error codes
Unmounting a disk
Error codes
14.7.3.1 MOUNTED
14.7.3.2 UNMOUNTED
14.7.3.3 DEVNOTFOUND
14.7.3.4 BADHASH
14.7.3.5 NOVOLID

TIME
TOD
ERROR HANDLING PROCEDURES AND VARIABLES
14.10.1 Including ERT.INC
14.10.2 ERRORTRAP
14.10.3 XERRORTRAP
14.10.4 ERROR

STDLIB
WRITING LIBRARY FILES
MODIFYING S'TDLIB
VERSION CHECKING

15—1
15—2
15—3
15—4
15—4

15—4
15—4

15—4
15—4
15—4
15—4
15—4
15—5
15—5
15—5
15—5
15—S

15—5
15—6
15—6
15—6

14.6.4
14.6.5

14.7 XMOUNT
14.7.1
14.7.2
14.7.3

14—8
14—9
14—9
14—10
14—10
14—10
14—10
14—10
14—10
14—10
14—10
14—11
14—11
14—12
14—12
14—12
14—1 5

14—16

ASSEMBLY LANGUAGE SUBROUTINES

15.1 CALLING ASSEMBLY LANGUAGE SUBROUTINES

CHAPTER 15

CHAPTER 16

15.? ARGUMENT PASSING CONVENTIONS
15.2.1 Argument Passing
15.2.2 Data Formats

15.2.2.1 CHAR

15.2.2.2 INTEGER
15.2.2.3 BOOLEAN
15.2.2.4 Subranqes and

Scalar Tyoes
15.2.2.5 REAL
15.2.2.6 STRING
15.2.2.7 Pointers
15.2.2.8 Sets
15.2.2.9 Arrays
15.2.2.10 Records
15.2.2.11 FiLes

15.2.3 Error Exit
15.3 CODE RESIDENCY

15.3.1 Routine, PLINKed with /LINK
15.3.2 Routines PLINKed without ILINK

15.4 OBTAINING MEMORY FOR DATA AREAS
15.5 RESTRICTIONS

WRITING AND MODIFYING AN EXTERNAL LIBRARY

16.1
16.2
16.3
16.4

16—2
16—3
16—4
16—5

ALPHA PASCAL USER'S MANUAL Page ,

PART IV APPENDICES

APPENDIX A QUICK REFERENCE TO ALPHA PASCAL

A.1 PROGRAM STRUCTURE A—i
A.2 DECLARATIONS AND DEFINITIONS A—2

4.2.1 LabeL Declarations
A.2.2 Constant Definitions 4—2
4.2.1 Type Definitions 4—2
4.2.4 Variable DecLarations
A.2.5 Procedure Declarations A—3
4.2.6 Function Declarations

A.3 DATA TYPES A—6
A.3.l Simple Data Types 4—4

A.3.l.l Standard Data Types 4—4
A.3.l.2 Scatar Data Types A—4

A.3.2 Structured Data Types A—4
A.3.2.l String A—S
4.3.2.2 Arrays A—S

A.3.2.3 Sets A—s
A.3.2.4 File Type A—S

A.3.2.5 Record Type A—5
A.3.2.6 Pointer Data Types A—6

A.4 EXPRESSIONS 4—6
A.4.l Operators 4—6

A.4.1.l Assignment 4—6
A.4.1.i.1 The Modifying

Assignment
Operators A—i

A.4,.l.2 Arithmetic nperators• A—i
A.4.1.3 Relational Operators A—i
A.4.l.4 Logical Operators 4—7
4.4.1.5 Set Operators A—i

A4.2 Constants A—S
4.4.3 Variables A—S

4.4.4 Function Calls 4—8
4.4.5 IF—THEN—ELSE and CASE—OF Constructs

in Expressions A—9
A.5 STATEMENTS 4—9

A.5.l Simple Statements A—9
A.S.l.l Assignment Statement A—9

4.5.1.2 Procedure CML A—9

A.5.i.3 GOTO Statement 4—10
A.5..1.4 Null Statement A—iC

4.5.2 Structured Statements 4—10
A.5.2.l Compound Statements A—1O
A.5.2.2 Conditional Statements
A.5.2.3 Repetitive Statements A—li
4.5.2.4 WITH—DO Statements A—li

A.6 ALPHA PASCAL STANDARD
FUNCTIONS AND PROCEDURES 4—12

APPENDIX 8 THE ASCII CHARACTER SET

APPENDIX C ALPHA PASCAL COMPILER ERROR MESSAGES

INDEX

CHAPTER 1

INTRODUCTION

This book is a reference manual for the AlphaPascal programming system, We

realize that some of you may be experienced PascaL programmers, whiLe others
may never have seen a Pascal program before, Therefore, to suit the wide
range of interests and backgrounds our readers are LikeLy to have, we have
tried to organize this book so that you can easily find the information that
you need without spending unnecessary time on chapters that contain
information that you already know or that is not important to you (For
information on the organization of this book, see Section Li, below,)

Because there are so many exceLLent books available that teach you how to
program in Pascal, we have not attempted to do so in this book. (For a list
of some of the books that we found heLpfuL, see Section 1,2, "Pascal
BibLiography,") However, our intention is to provide a detailed enough
description of AlphaPascal that an experienced computer programmer who is
unfamiliar with Pascal can get some idea of how to write PascaL programs

The major purpose of the book is threefoLd:

1, To describe this impLementation of ALphaPascaL;

2, To discuss how this impLementation differs from previous versions
of AlphaPascal and from the standard Pascal as set forth in the
PascaL User Manual and Report by Jensen and Wirth (and to give
hints on converting programs written in these versions of Pascal to
the current AlphaPascal format); and

3. To give operating instructions for the various components of the
ALphaPascai programming system: the compiler, the Linker, and the
runtime package.

This book aLso gives information to systems programmers on writing their own
assembLy Language subroutines caLlabLe by Pascal programs, and on writing
and modifying an externaL procedure library

INTRODUCTION
Page 1—2

1.1 ORGANIZATION OF THIS BOOK

Some of the chapters in this book are aimed at experienced Pascalprogrammers, while others are specifically for new Pascal users. To helpyou find the information that you are particularly interested in, we havedivided this book into four general parts:
PART I — THE ALPHA PASCAL SYSTEM

PART II — SUMMARY OF ALPHA PASCAL

PART III — ADVANCED PROGRAMMING ON THE ALPHA PASCAL SYSTEM

PART IV — APPENDICES

The rest of this section discusses which chapters may be of particular
interest to specific readers.

IF YOU ARE AN EXPERIENCED PASCAL PROGRAMMER:

You wilt probably want to skip Chapter 2, "Getting Started," and go
directly to Chapter 3, "Compatibility and Conversion," which tells you
how this version of Pascal differs from earlier versions of
AlphaPascal and from the Jensen and Wirth standard. Chapter 4
discusses how to operate the various components of the AlphaPascat
programming system. Rather than read through Chapters 5 through 13,
which give detailed discussions of the AiphaPascat statements and
procedures, you may want merely to turn to Appendix A, "A Quick
Reference to AlphaPascal," to get an idea of the functions and
procedures included in this implementation of Pascal.

After you are somewhat familiar with the AlphaPascal system, you may
want to read Chapter 15, "Writing and Modifying an External Library
File." If you are a systems programmer, you may want to read Chapter
16, "Assembly Language Subroutines."

IF YOU ARE NEW TO PASCAL:

You will probably want to read Chapter 2, "Getting Started," which
gives a brief discussion of Pascal, and goes through a quick
demonstration of building, compiling, andt running a small, simple
Pascal program. Next, you will probably want to start reading PartII, "Summary of AlphaPascal," for information about this version of
the Pascal language.

When you are ready to begin writing Pascal programs, turn back to
Chapter 4, "Operating Instructions and Characteristics,' for
information on using the AlphaPascal compiler and run—time package.

NOTE: We would appreciate any comments or suggestions; note the Reader'sComments Form in the back of this book. .

Jensen, K, and Wirth, N,
PascaL User Manual and Report (Second
Springer'Verlag, 1976

If you are interested, in Learning to program in Pascal,
take a Look at one or more of the foLLowing textbooks:

Conway, R,, Gries, 0, and Zimmerman, E,C,
A Primer on Pascal
Winthrop, 1976

Grogono, P
Programming in Pascal
Addison"Wesley, 1978

you might want to

Kieburtz, R,B,
Structured Programmi ngand
Prentice"Hall, mc,, 1978

ProbleirSolving with Pascal

Schneider, G,M,, Weingart, S,W,, and Perlman, D,M,
An Introduction to Programming and Problem Solving
with Pascal
John Wiley g Sons,. 1978

Wilson, hR. and Addyman, A,M,
A Practical Approach to Pascal
Springer"Verlag, 1978

1,3 GRAPHICS CONVENTIONS USED IN THIS BOOK

The symbol indicates the place
terminal carriage return key if you
computer. (The carriage return
labeled RET or RETURN, and tells the
current line,)

in an example where you would press the
were entering the example into the
key on the terminal keyboard is usually
computer to accept and process the

INTRODUCTION Page 13

1,2 PASCAL BIBLIOGRAPHY

The most important source book for Pascal programmers (containing the
definition of standard Pascal) is:

Edition)

INTRODUCTION
Page 14

It is often confusing when Looking at a program in a new computer Language
to determine which elements are an inherent part of the Language (forexample, program statements) and which elements are to be supplied by theprogrammer, To help eliminate some of this confusion, our sample programsfollow these conventions:

Reserved words are all upper case and underlined,

Standard identifiers are all upper case, but not underlined,
All user identifiers (for example, variable names, constants, etc.)are in a combination of upper and lower case, and are not underlined,

reserved words are underlined, For claritys sake, therefore,
I deviates from the usual Alpha Micro documentation practice ofall output the computer displays on your terminal display, We
to clearly indicate which portions of our examples are entered bych portions are printed by the computer,)

(Note that
this manua
underlining
will try
you and whi

- CHAPTER 2

SETTING STARTED

This chapter is primarily for the benefit of the programmer who is

interested in learning Pascal, but who has not yet had the chance to become
familiar with the language. If you are already familiar with Pascal, you
wilt probably want to skip to Part I of this book, "The AlphaPascal System,'
for information on Alpha Micro's specific implementation of Pascal, and for
operating instructions for the AlphaPascal compiler. (You may be interested
in SectIon 2.3 of this chapter, however, which contains a brief
demonstration of creating, compiling, linking, and running a small Pascal
program.)

The rest of this chapter gives a brief discussion of Pascal and walks you
through a quick demønstration of building, compiling, linking, and running a
program under the AlphaPascal system.

We also show you a small Pascal program and discuss its component parts.

2.1 WHAT IS PASCAL?

The Pascal language is based on the 1970 work of Jensen and Wirth, and is
related to the ALGOL—family of languages.

Pascal is a fairly new programming language, and is considered by many to be
"cleaner" and more powerful in design than many older languages as welt as
more reflective of current trends in the philosophy of program design and
structure. However, this does not mean that programs written In Pascal will
necessarily be clearer or more powerful than programs written in other
languages—— that wiLl depend on thi programmer. The major claim made for
Pascal is that the language makes it easier to write programs that may be

easily understood and maintained.

It was developed in response to increasing concerns that current programming
languages were not encouraging good programming "style," and is based on the
idea that an effective programming language should help the programmer to
apply design techniques in a natural and simple way. The result should be
well—made, welt—structured programs that are easy to read and easy to

GETTING STARTED
Page 2—2

maintain. Because most of a program's life cycle is spent in design and
maintenance, the creators of Pascal tried to develop a language that helps
programmers In these areas.

Pascal's use, acceptance, and availability have become widespread in recent
years. An increasingly large number of students are being taught Pascal as
their first programming language. Pascal's use in Industry is also becoming
more prevalent as project planners become more aware of its usefulness in
implementing large programming projects.

Some of Pascal's advantages stem from these characteristics:

* Pascal encourages welt—structured programming by requiring that
programs be built in a block structure in which the beginning and
end of each procedure is clearly marked. Because program structure
is hierarcHal in nature, programming in Pascal lends itself
naturally to top—down design.

* One of the most important features of Pascal is its
extensibility. It is very simple to add your own functions and
procedures if the routines provided by Pascal do not exactly match
your needs. In addition, on the AlpitaPascal system, you can add
these user—defined routines to an external library where all
Pascal programmers can make use of them.

* Pascal was designed to be a general—purpose language. Since it is
not specifically aimed at scientific or data processing
applications, it can be used to solve a wide range of problems.

* An important feature of Pascal is its powerful data structures
(arrays, sets, records, pointers, user—defined, etc.), and the
sophisticated structures you can build from those primitives
(e.g., linked lists).

* Any variable used in a program must be declared within that
program. That is, Pascal requires that the type of values that a
variable may assume (e.g., integer or boolean) be clearly stated
by the programmer. This helps both in program design and
maintenance, since the readability and organization of your
program are enhanced. Variables may be global or local in scope,
depending on where they are declared.

* Most implementations of Pascal, while they may include extensions
to the language, also contain a subset of Pascal which adheres
firmly to the standards for the language as set forth by Jensen
and Wirth. This means that programs wrttten in standard Pascal
are transportable between computer systems on which Pascal is
implemented.

.

GETTING STARTED Page 2—3

2.2 SAMPLE PROGRAM

If you have never •before seen a PascaL program, you may be interested in

taking a look at the small, simpLe program below:

(Determine what % is deducted from your gross salary)
PROGRAM Salary;
VAR Gross, Takehome, Deductions, Percentage REAL;

BEGIN (Begin Program Salary)
(Print ques.t1ons and read answers from terminal)
WRITE ('What is your•gross salary? ');
READLN (Gross);
WRITE ('What is your takehome salary? ');
READLN (Takehorne);
Deductions : Gross — Takehome;
Percentage : 1OO*theductio,s/Grpss);

WRITELN ('They keep', Percentage, ' percent of your salary!')
END (End Program Salary).

NOTE: To help you keeç track of which words in the program are eLements of

the Pascal language:and which are variab{e names and data supplied by you,
we have written in upper case and underlined those words (calLed "keywords")

that are actually part of the Pascal language. (Of course, you do not

underline such keywords when you write your own Pascal programs.) Those

words that are in upper case, but that are not underlined, are called

"standard identifiers"; they are elements of the Pascal language which can
be re—defined by you. The words that are upper and lower case and that are

not underLined in the example above are variable names, comments, and string

data supplied by the writer of the program.

The first line of our sample program is catted a "comment." It Is ignored

by the computer, and has no effect on the execution of the program. Its

purpose Is to make the program easier to read for humans. (Comments in

Pascal are denoted by enclosing text either with the symbols "(*" and "*)"

or with the symbols "C" and ")".)

The second line "declares" the program name, "Salary."

The third tine "declares" the variables "Gross," "Takehome," "Deductions,"
and "Percentage," and tells Pascal that they can only assume the values of

real numbers. (For information on declaring programs and variables, see
Chapter 6, "Declarations and Definitions.")

The fourth line contains a BEGIN statement; this statement marks the

beginning of a program block. The end of. this block (and in this case, the
end of the program) is marked by the END statement on line 13. Within this

block, we send questions to the terminal display (sixth and eighth lines)
and read data from the terminal keyboard (seventh and ninth tines). On the

tenth and eleventh lines we compute the answer we need based on the data we
received from the user of the program. The twelfth line sends the computed
answer to the terminal display. (For information on Pascal program
statements and procedures, see Part II, "Summary of AlphaPascat.")

GETTING STARTED
Page 2—4

(NOTE: So that we could identify specific tines of the program to you, wementioned identifiers such as "first line" or "fourth line." This was forour convenience only; the tines in Pascal programs do not ordinarily startwith numbers.)

2.3 BRIEF DEMONSTRATION

Now that you've taken a look at a small Pascal program, we would like towalk you through a brief demonstration of building, compiling, linking, andrunning the program.

We'll assume that the computer and your terminal are on, and that you havebeen assigned an account in which to work. Make sure that you are at AMOScommand level (that is, that you see the prompt symbol, ".", that indicates
that you are communicating with the operating system).
First, log into the system by typing LOG followed by the device thatcontains the account you want to log into and then entering the number of
that account. Then press the RETURN key on your terminal. For example, ifyou want to work in account [20,33 on device DSKI:, enter:

LOG DSK1:[20,33 t!D

Now you see something like:

Logged into DSK1:[20,33

You can now begin to create your Pascal program.

2.3.1 Building a Pascal Program

To build a Pascal program, use one of the system text editors to create yourprogram as a text file. If you are using a video—display terminal, you will
probably want to use the screen—oriented text editor, VUE, rather than thecharacter—oriented text editor, EDIT.

2.3.1.1 The VUE Text Editor — First, we'll make sure that no earlierversions exist of the program we're going, to create. So, we'll erase fromthe disk any file called SALARY.PA5. At AMOS command level, enter:

ERASE SALARY.,PAS

If you see:

SALARY.PAS erased
Total of 1 file deleted, 2 disk blocks freed

GETTING STARTED: Page 2—5

that means that thefile did exist on the disk, and that we have now erased

it. If you see:

ZNo files erased

no error occurred, it's just that no file named SALARY.PAS was in the

account you are logged into, and so we couldn't erase it. tn either case,

you now are free to create a new file of the name SALARY.PAS.

So, enter:

VUE SALARY.PASt

Now VUE looks for the disk tile SALARY.PAS in the account you are loqqed

into. Since the file does not yet exist, WE says:

SALARY.PAS does not exist — create it?

Enter a V followed by a RETURN to tell VUE that you do want to create a new
file named SALARV.PAS.

Now

you see one or more tines of asterisks. (If you do not see this

display, but instead see a display whose first line begins: "AlphaVue n.n

Status:" (where n.n is the version number of VUE), simply type an Escape

(sometimes labeled ESC or ALT MODE on your keyboard), and VUE will display

the asterisks.)

The display of asterisks means that you are in editing mode, and that VUE is

ready for you to type your program in. Start typtng the sample program in

Section 2.2 just as you would if xou were using a typewriter. Type in the

example exactly as shown, inctudln alt semicolons, quote marks, and

parentheses.

If you make a mistake, you may erase single characters by using the RUB key

(sometimes labeled DEL. or DELETE). To erase the characters on an entire

line, type a Control—RUB. (That is, hoLd down the CONTROL key while you
press the RUB key.)

The cursor (which may appear as a small white rectangle, triangle, tine, or

other symbol) marks your place on the screen; the next character you type
appears at the cursor position. If more extensive corrections are needed,

you may back up in the display by using the arrow—keys to move the cursor

back and forth in the text on the screen. (If your terminal does not have

these arrow—keys, you must move the cursor by typing Control—J, Control—H,

Control—K, and Control—L. For example, to move the cursor to the left, hol4
down the CONTROL key and type an H.)

When the cursor is positioned just to the left of th! error, you can

overwrite the error by typing your new characters over the problem spot.
Or, if you do not want to overwrite the error, type a Control—Q. From this

point on, the new characters you type will be Inserted into the current
line, rather than overwriting it. (To resume overwriting characters, type

another Control—Q.)

(Changed 30 April 1981)

GETTING STARTED Page 2—6

Of course, there are many more WE editing commands that we won't discuss
here. You can, for example, erase characters a word at a time, insert
entire new lines of text, search for particular groups of characters, or
move the cçirsQr a word at a time. For more information on usinq VIlE, see the
AIphaVUE User's Manual, (DWM—OO100—15),

When the program is entered correctly, you are ready to leave VIlE. Type an
Escape. The screen clears, and the cursor is now positioned next to the VIlE
prompt symbol, > (You are now in command mode.) Type an F followed by a
RETURN. This tells VUE that you are finished; it therefore writes your file
SALARY.PAS out to the disk. Next you see the AMOS prompt symbol, a dot,
which tells you that you have exited VIlE, and are now back at AMOS command
level.

Here is a summary of the keys that you will use the most when editing
programs with VIlE:

RETURN End each line with a carriage return symbol by pressing the
RETURN key (sometimes labeled RET, CR, or CARRIAGE RETURN).

ESC To change from editing mode to command mode (and back
again), type an Escape by pressing the ESC key (sometimes
labeled ALT NODE or ESCAPE).

CONTROL Most of the VUE commands are control—characters. To type a
control—character, hold down the CONTROL key (sometimes
labeled CTRL), and type the appropriate character. For
example, to type a Control—C, hold down the CONTROL key
while you type a C.

RUB To delete a single character, press the RUB key (sometimes
labeled DELETE or DEL).

ARROW—KEY To move the cursor around on the screen. use the keys
marked with arrows (labeled with a left—arrow, right—arrow,
up—arrow, and down—arrow). For example, to move up on the
screen, press the up—arrow key. If your terminal does not
have arrow keys, you will use these control—characters
instead:

Control—H To move left
Control—J To move down
Control—K To move up
Control—L To move right

If VIlE is new to you, you may want to ask the System Operator to place into
your account a copy of the VIlE initialization file in which the menu—display
option has been enabled. VUE wilt then display a summary of its commands when
you enter command mode. You may also want to ask the System operator to modify
the VIlE initialization file so that the default extension is set to .PAS (which
means that VIlE wilt, expect you to edit .PAS files and thus will not require you
to enter a file's extension unless you want to edit a non—.PAS file).

.
(Changed 30 Apri1 1981)

GETTING STARTED: Page 2—7

2.3.2 CompIling and Linking a Pascal Program

The first step after creatinq your Drogram is to compile it using CMPILR.

After you have compiled it, the program is still not ready to run until you use
the linker, PLINK. (Both PLINK and CMPILR are themselves programs written in
Pascal.) Chapter 4, "Operating Instructions and Characteristics," discusses the
operation of PLINK and CMPILR in detail. Fornow, we'll, simply show you one

way to use them—— t* compile and link a new program made up of only one file.

For this demonstration, we will use one of the command files provided with your

system, PCL.DO. This command f:ite conDains a series of commands and data that

automatically invo CMPILR and PLINK far you, and provide necessary

information

to those programs. NOTE: Remember that the larger your memory

partition is, the faster your programs will compile!

At AMOS command level, enter PCL followed by the name of your program (leaving

off the .PAS extension). Then type a RETURN. For examplel

PCL SALARYtj

Now the PCL command file runs CMPILR and PLINK for you. As your program is

compiled, you see a display something like this:

PRIJN CMPILR
AlphaPascal V2.O
Source file name? SALARY
Diagnostic file name (<return> for terminal)?
AlphaPascal Compiler Version 2.0

0>———
PROGRAM < 3>
12 lines
10.47 seconds, 68.79 lines/minute
No compilation errors.

If CMPILR spots an error while it is comotling your program (for example, if
we left the semicolon off the end of the second line), CMPILR pauses, and
tells you about the problem. For example:

VAR Gross, Takehome, Deductions, Percentage : REAL;

?Line 2: CINISOP] ;' or ')' expected —— inserting ';

Hit RETURN to continue

The message above tells us that a semicolon is missing in front of the

symbol VAR. ("(INISOP]" identifies the portion of the compiler that caught
the error—— you can disregard that information.)

Now you may type a RETURN to resume program compilation, or you may type a

Control—C (hold down the CONTROL key while you type a C) to interrupt the
compilation. (If you type a Control—C, CMPILR displays the message:

"?Compilation aborted" and then returns you to AMOS command level. If you

type a RETURN, CMPILR resumes the compilation, and then returns you to AMOS

command level. In either case, because an error has occurred PCL does not
go on to link the program and you are returned to AMOS command level.)

If CMPILR reported something other than "No compilation errors," your

program is incorrect. You should use VUE on the oroqram and check your copy

(Changed 30 April 1Q81)

GETTING STARTED
Page 2—8

of the program against the one in this book. Correct any discrepancieg, anduse the PCI command file again. (For full information on using CMPILR andits options, refer to Section 4.3, "The AlphaPascal Compiler." That sectionalso discusses the compiler display.)

Let's say that your program has compiled without error. PCL.DO goes on toinvoke the tinker, PLINK. At this point, CMPILR has,, created threeintermediate files: SALARY.Po1, SALARY.Po2, and SALARY.p03. However, yourprogram still is not completely ready to run. PLINK wilt fully resolvereferences within the intermediate files and will produce the final,executable .pcr file. The second part of the screen display that you seelooks something like this:

.ERASE SALARY.PCF
ZNo files deleted
.PRIJN PLINK
Aiphapascal V2.O
Code file = SALARY
Creating new code file SALARY.PCF
Library code file for SALARY.pCF = STDLZB

Please specify files to be linked into SALARY,
one per line, ending in a blank line

File 1 = SALARY
File 2 =

Loading Drogram and library dictionaries
Processing SALARY

Linking in global func/proc PROGRAM
Transferring temporary file to new code file
SALARY completed

The first thing that the command file does before linking your file is terase any file SALARY,.PCF that already exists. (This is because PLINK asks
different questions depending on whether or not the specified program
already exists, and we want to make sure that PLINK asks a particular set of
questions.) Now it invokes PLINK.

For more information on linking a file, see Section 4.4, "The ALphaPascalLinker." That section also discusses the meaning of the display you see
above, and talks about the concept of a "library."

2.3.3 Running a Pascal Program

To run the program you have compiled, use the Pascal run—time package, NUN.At AMOS command level, enter:

PRUN SALARY.PCF

followed by a RETURN. At last your program is running! (For full
information on executing Pascal programs, refer to Section 4.5, "The

(Changed 30 ApriL 1981)

GETTING STARTED Page 2-9

ALphaPascal Runtime Package)

As you run SALARLPAS, you see:

AlphaPascaL V2D
What is your gross salary?

Lets assume that you want to enter 250 as your gross saLary and 175 as your
takehome, Below is a sample run of your program:

AiphaPascal V20
What is your gross salary? 250
What is your takehome salary? 175 tED
They keep 30 percent of your salary!

ALPHA PASCAL USER'S MANUAL

PART I

THE ALPHA PAScAL SYSTEM

The next two chapters introduce you to the Alpha!ascal programming system.
Chapter 3 is aimed at the experienced Pascal programmer; it discusses the
differences between this Implementation of Pascal and previous versions of
AlphaPascal. It also discusses the major differences between this Pascal
and the standard Pascal as described in Jensen and Wirth's Pascal User
Manual and Report. The last section of Chapter 3 gives some flints for
converting programs written in earlier versions of AtphaPascal over to the
current AiphaPascal standards.

Chapter 4 gives full, operating instructions for the various components of
the AlphaPascal system; the compiler, the linker, and the run—time package.
Chapter 4 tells you everything you need to know about the actual processes
of creating, compiling, linking, and running an AlphaPascal program.
Chapter 4 also discusses file requirements and memory limitations of the
AlphaPascal system.

CHAPTER 3

COMPATIBILITY AND CONVERSION

This chapter is aimed primariLy at the experienced Pascal programmer who
wants to know how this impLementation of Pascal differs from previous
versions of ALphaPascai and from the standard Pascal described by Jensen and
Wirth in the Pascal User Manual and Report

We have also included a section that provides hints on converting Pascal
programs written under earlier versions of AlphaPascal to the format used by
the current AlphaPascal.

If you have never before programmed in Pascal, you will probably want to
skip this chapter and go directly to Part II, "Summary of AiphaPascal," for
information on the Alpha Micro Pascal, or to the next chapter, "Operating
Instructions and Characteristics," for information on using the AlphaPascal
compi Icr and linker,

3,1 PREVIOUS VERSIONS OF ALPHA PASCAL

Previous versions of AlphaPascal were based on the UCSD Pascal programming
system, Version 1.4. In order to provide a Pascal that is more fully
integrated with the Alpha Micro operating system and file system, we now
offer this new version of AlphaPascal that was expressly developed for the
Alpha Micro computer.

To make life easier for programmers who have written programs using previous
versions of AlphaPascal, we have tried to keep many of the same features and
functions, while adding a number of new extensions and abilities. Most of
the changes between this version and earlier versions are added features
that do not require that you rewrite your earlier programs.

Several of the most important difference are:

The operating instructions for AlphaPascal have changed. An important
difference is that you will use the Alpha Micro screenoriented text
editor, VUE, to create your programs. You must also use the linker,

COMPATIBILITY AND CONVERSION
Page 3—2

PLINK, to link any compiled program, whether or not it consists of morethan one file. See Chapter 4, "Operating Instructions and
Characteristics," for complete instructions.

— Expression handling has been considerably enhanced:

1. You may now include the assignment operator in an expression.
For example:

5 + X : 7

The expression above is equivalent to 5 + (X : 7), and means
"Let X assume the value of 7, and then be added to 5."

2. Wherever an expression is legal, you may include an IF—THEN
expression of the form:

IF condition THEN expression ELSE expression

For example:

Year : (IF Feb = Leap THEN 29 ELSE 28)+337;

If Feb equals the value Leap, then Year assumes the value
29+337; otherwise it assumes the value 28+337.

3. Wherever an expression is legal, you may include a CASE
expression of the form:

CASE value OF valuel : expression;
value2 : expression;

ELSE expression

For example:

WRITE(CA$E Errorcode OF
'Illegal iiiut';

2 : 'Number too large';
3 : 'Number too small';
ELSE 'undefined error');

— AlphaPascal. now recognizes modifying assignment operators. These
operators are:

Adding assignment operator
—= Subtracting assignment operator

Multiplying assignment operator
1= Dividing assignment operator

COMPATIBILITY AND CONVERSION S Page —3

These operators teLl the compiler to modify (instead of replace) the

value of the variable on the left of the assignment operator with the
value of the expression on the right of the operator.

For example, in the case of the adding assignment operator:

X += 1

tells the compiler to let X assume the value of X+1. For more
information on these operators, see Section 8.1.2.1, "Modifying

Assignment OperQtors."

— Operator precedence has beenchaAqed to make it more compatible with
operator precedence in other Language processors on the Alpha Micro

system. The relational operators have ,been made of higher precedence
than the Bootean operators. (See Section 8.1.1, "Operator Precedence,"
for more Information.)

— AlphaPascal allows you to label BEGIN—END blocks by following the BEGIN
and END keywords:with a colon followed by an indentifler. These labels
allow you to tell the compiler which BEGINs and ENDs should match. If

the structure of your program is such that they do not match, the

compiler wilt til you so.

For example:

BEGIN : Blocki

BEGIN : Btock2

END : Block2

END : BLocki

The compiler checks these Labels to make sure that the designated pairs
of BEGIN—END keywords are indeed property matched. For exampLe, the
following program would cause an error because the BEGIN—END blocks are
not property nested:.

BEGIN Blocki

BEGIN : Block2

END : Blockl

END :Block2

(Changed 30 April 181)

COMPATIBILITY AND CONVERSION
Page 3—4

— Two new keywords have been added to AlphaPascal. EXTERNAL and MODULE.These words may no longer be used as identifiers, If they do appear in
your programs, you see an error message (e.g.,, "(TRYSCAN] VAR,
PROCEPURE, or FUNCTION expected —— scanning") when you compile theprograms.

EXTERNAL allows you to access variables, procedures, and functions In
an external library, and aLlows a file in a multiple—file Program toaccess variables, procedures, and functions in another file. See
Section 6.7, "External Declarations," for more information.

The MODULE keyword designates a file that does not contain the main
program portion of the program. Modules may contain declaration and
definition statements, but may not contain the final BEGIN—END block.
(That is, BEGIN—END blocks may only appear in function or procedure
definitions if they appear in modules.) See Section 6.1, "Program
Declarations," for more information.

— The SEGMENT keyword and seqment procedures are no Longer supported.
(See the discussions of EXTERNAL and MODULE, above.) Remove the
SEGMENT keyword from your programs.

— Floating point numbers are now three words in length (i.e., 12 digits).
(They used to be two words, and could only represent six digits.)

— You may call assembly language subroutines from within your Pascal
programs. For information on writing assembly language subroutines,
see Chapter 15, "Assembly Language Subroutines."

— Opening, closing, and specifying files have changed. You may now
access AMOS files, and make full use of the Alpha Micro fit. system.
Refer to Chapter 10, "input/Output Functions and Procedures," for more
information on the procedures and functions that allow you to search
for, open, and read and write sequential and random files. (NOTE: Those
of you who have done assembly language programming using monitor calls
on the AMOS system will recognize some of the new procedure names such
as FSPEC, OPEN, OPENI, OPENO, and OPENR.)

— AlphaPascal supports an external procedure Library. This Library
contains a series of procedures and functions available to your
programs. You may write your own external libraries that make use of
the library provided. See Section 16.1, "STDLIB," for a list of
procedures and functions in the library. If you wish to access these
routines in your programs, your programs may not use these names in

global identifier definitions, since such definitions will override the
standard library definitions.

if you wish to access these procedures and functions, simply invoke
them in your program. If they are not defined within that program,
Alphapascal assumes that they are in the external library.

.
(Changed 30 April 1981)

COMPATIBILITY AND CONVERSION Page 3—5

Several, procedures and identifiers used by previous versions of

AlphaPascal are not supporte4 by the current version:

BLOCKREAD
BLOCKWRITE
UNITREAD
UNITWRITE
UNITWAIT
UNITBUY
UNILEAR
GOTOXY (Refer to Section 11.2.2, "CR1," for

information on cursor positioning.)
HALT
IORESULT
INTERACTIVE tiles

— PROGRAM (the main program) may not be catted recursively.

— You should be aware of these changes to the standard procedures:

1. RESET and REWRITE accept only one argument: a variable of type

FILE. You rnèy not specify a filename after that argument.

2. The file type INTERACTIVE is no longer supported or needed; replace
It with the standard file type TEXT.

3. In earlier versions of AlphaPascat, CLOSE took an option as an

argument tn addition to a varlabtt of type VIE; it now accepts
only a single argument—— a variabtie of type VILE.

4. When you use the EXIT statement to exit a program, you must supply
the PROGRAM keyword as the argument, not the program—name. (That
is, EXIT(PROGRAMY is valid, but EXIT(NewProgram) is not.) You may,
however, exit a procedure br function by giving the name of that
procedure or function (e.g., EXIT(EvalError)).

5. WRITE and WRITELN do not accept a Boaiean variable as an argument.
That is, If NewElte is a Boolean variable which evaluates to TRUE:

WRITELN(NewFl Ic);

does not print TRUE, but instead generates an error.

COMPATIBILITY AND CONVERSION
Page 3—6

3.2 STANDARD PASCAL

The standard. Pascal is described by Jensen and Wirth, in the Pascat User'sManual and Report (Second Edition). AlphaPascal differs from this standard
in several ways (also, note the extensions discussed In Section 3.1, above):

The program heading file identifiers are scanned but ignored. That Is,
if you have any information in the program heading after the program
name, that information is ignored. (For example, "PROGRAM MailBox;" is
equivalent to "PROGRAM Mall$ox(INPUT,ouypuT);".) This Is because
Alphapascal uses its own form of file handling that Is consistertt with
the AMOS file structure. (Note, however, that the remainder of theheading after the program name is scanned, and that therefore the
program heading must be syntactically correct. For example: "PROGRAM
NewAccount (;" will generate an error because of the open parenthesis.)
If you want to use any files other than the predeclared file INPUT and
OUTPUT, you must use VAR statements to declare them.

— Operator precedence has been changed to make it more compatible with
other language processors on the Alpha Micro system. If It ts
important that your program be able to run under another Pascal that
uses standard Pascal's rules of operator precedence, you will have to
use parentheses In your expressions to override AlphaPascal's rules of
operator precedence.

This will only become necessary if your expressions use relational
operators to compare Boolean expressions. For example, if A, B, C, and
D are Boolean variables, standard Pascal evaluates: IF A = B AND C D
THEN.., as: IF (A = (B AND C)) = D THEN ..., white AlphaPascat
evaluates it in this way: IF (A = B) AND (C = D) THEN...

(See Section 8.1.1, "Operators," for information on operator
precedence.)

— Two new keywords have been added to the list of reserved words:
EXTERNAL and MODULE. In addition, several identifiers have been added
to the standard identifier list. (For a list of AlphaPascal standard
identifiers, see Section 5.4.2, "Standard Identifiers.")

Also, several standard identifiers used by standard Pascal are NOT used
by Alphapascal (DISPOSE, PACK, and UNPACK) since AlphaPascal does not
use these procedures. AlphaPascal uses MARK and RELEASE to reclaim
memory alLocated by NEW, and automatically unpacks packed data
structures for you when necessary. (See Section 11,1.4, "NEW," for
information on allocating dynamic variables.)

— Standard Pascal supports the data type CHAR (single character).
AlphaPascal atso supports a non—standard type, STRING, which contains a
length fieLd as well as a field of characters. (See Section 7.2.3,
"STRING," for a description of this data type.)

.

COMPATIBILITY AND CONVERSION Page 3—1

33 MAKING PROGRAMS COMPATIBLE thTH THE NEW ALPHA PASCAL

In general, programs written in previous versions of AlphaPascal or standard
Pascal wilt require very little modification before being runnable under the
current AlphaPascal. For example, the sample progrèm given in Chapter 2

runs correctly in any of these versions ot Pascal. The largest number of
changes will probably involve fuWttions and proeedures that read and write
disk files, since the new AlphaPascal is fully Integrated into the AMOS file
structure.

If your programs were written under previous versions of UCSD/AlphaPascat,
you will need to transfer your programs toAMOS files before you begin to
perform any necessary conversions. To do so, use the UCSD/AlphaPascal
programming system (which was provided only in earlier releases of
AtphaPascal):

1. At AMOS command level, enter the UCSD/AlphaPascal programming
system by typing PASCAL followed by,a RETURN:.

PASCAL €E

When you see the initial prompt:

Command:E(dit,R(un,F(i le,C(ompl le,X)ecute,D(ebug,I(nit,H)alt

Type an F.

2. You are now communicating with the Filer. You see this prompt:

Fl ler:G(et,S(ave,W(hat,N(ew,L(dir,R(em,C(hng,T(rans,D(ate,Q(uit

To see what Is in your library, type L. Now yâu see the question:

What volume?

Enter a colon followed by a RETURN. Now you see a list that might
took something like this:

5CR:

ROMAN.TEXT 4 28—Jun—80
POSTFIX.TExT 4 28—Jun—80
2 files, 8 blocks used, 26 unused

This is a list of the files in your library.

3. You see the Filer prompt again. To write one of the programs out
to an AMOS file, enter T.

a. The Transfer function asks you:

Transfer what file?

enter one of the files listed in the directory. For example:

COMPATIBjLjT AND CONVERSION Page 3—8

Transfer what file? ROMAN.TExT

b. Now Transfer asks:

To what file?

Enter "REMOTE:' and type a RETURN:

To what file? REMOTE: fEED

c. Now Transfer asks:

Using what AMOS file?

Enter a valid AMOS file specification. For example:

DSK1 :CONVRT..PAS

IMPORTANT NOTE: You must make sure that this file does not
already exist; if it does, the UCSD/AlphaPascal system wilt not
do the transfer, and will make the accessed drive inaccessible
to you (that Is, it wilt declare that drive "off tine') until
you exit or re—enter Pascal.

d. Now Transfer asks:

CONVRT..PAS mode: T(ext, t(mage:

Enter an upper case T followed by a RETURN.

e. Now transfer begins to copy ROMAN.TEXT into the AMOS file
DSK1:C0NVRT.PA$. When Transfer is done, you see:

SCR:ROMAN.TEXT transferred to REMOTE:

You may now use the text editor, VUE, to modify the AMOS file that
contains your program. NOTE: If your file is too large, Transfer
may ask for additional AMOS file specifications. When you are
finally finished, you will need to append all such files into a
single file, using the AMOS APPEND command.

Here is list of things to check when converting your old programs to current
AlphaPascal format:

1. Make sure that you do not use the reserved words EXTERNAL or MODULE
as identifiers.

2. Check the list of standard Identifiers in Section 5,4.2, "Standard
identifiers, to make sure that you do not redefine any identifiers
that designate functions or procedures you need by including them
in global declarations.

COMPATIBILITY AND CONVERSION Page 3—9

3. Remove any information concerning input or output files from your
program heading.

4. The INTERACTIVE file type is no longer supported. Change any
occurrences of the INTERACTIVE file type in your programs to TEXT.

It might be easiest to just redefine INTERACTIVE at the fronf of
your programs via a type statement:

TYPE INTERACTIVE = TEXT;

S. Previous versions of AlphaPascal expected a UCSD file specification
for the argument of the compiler include option, SI. Now the SI

option request accepts an AMOS file specification. The default

extension is INC. If you have used the $1 compiler option, you
wilt have to change your file specifications to valid AMOS file
specifications, and make sure that those files exist. For more

information on include files, see Section 4.3.2.2, "The Include
Option (SI)."

6. If it occurs in your programs, remove the SEGMENT keyword.

7. Note that the operator precedence used by AlphaPascal is different

from that of standard Pascal and previous versions of AiphaPascat.
You may need to check expressions in which Boolean expressions are
compared with relational operators to make sure that the

expressions will be evaluated correctly. See Section 8.1.1,
"Operator Precedence," for more information.

Besides changing your programs so that they will run under AlphaPascal, you
might also want to add some of the new AlphaPascal features listed in

Section 3.1, above. As an example, instead of the statement:

TOTAL : TOTAL + SliM; *

you might want to say:

TOTAL += SUM

Or, you may want to break your programs up into modules. (For information
on modules, see Section 6.1, "Program Declarations.") Of course, if you

want your programs written in standard Pascal so that they can run with
other Pascal implementations, you may want to restrict your programs to
using features found only in standard Pascal.

CHAPTER 4

OPERATING INSTRUCTIONS AND CHARACTERISTICS

This chapter assumes that you are ready to start compiling and running
Pascal programs. If you are not familiar with AiphaPascat, you may want to

skim through Part II, "Summary of AlphaPascal," before 4'ou attempt to start
using the AlphaPascal system. This chapter gives, you tnfGrmation that you

will need to know about the programs that make up the AlphaPascat

programming system. The first few sections talk about file and memory

requirements. Operating instructions begin with Section 4.2, "Creating a
Pascal Program."

The AlphaPascal system consists of the compiler, CMPLLR; the tinker, PLINK;.

the run—time package, PRUN; and, the standard external library, STDLIB.

To create a Pascal source program, use the system screen—oriented text
editor, VUE. WE is an easy to use, powerful editor that allows you to see

your Pascal program on the screen of your terminal, and to make changes to
that program by moving the cursor around, on the screen display and entering

the new or replacement characters., For, information pn using VUE, see the
AIphaVUE User's Manual, (DWM—OO100—15). (Also, a brief, introduction to

VUE is given in Secti'on 2.3.1 of this. book, "Building a Pascal Program.")

After creating your, program, you will exit VUE and use the AtphaPascal
compiler, CMPLLR, which compiles your souroe,,program (a file that has the

.PAS extension) into a seri:es of intermediate flies. Next you will use the
Alphapascal linker, PUNK, which uses the intermediate fites created by the

compiler to create a fully resolved, runnabte P—code ,fite that has the .PCF
extension. The linker also allows you to Link together separate files into

one proqram, and allows you te update,one portton of an existing compiled
program without re—compiling all of the modules thit make up that program.

To run your .PCF file, you wilt use the AlphaPascal run—time package, PRUN.

The external library contains a set of procedures, variables, and functions
that are available to your Pascal programs. For a list of the routines

within the external library, see SectIon 16.1, "STDLIB." For information on
writing and modifyinq your own procedures within this library, see Chapter
16, "Writing and Modifying an External Library rile."

(Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—2

4.1 FILE AND MEMORY, REQUIREMENTS

The AlphaPascal system consists of these files:

DSKO:PRLJN. PRG(1 ,4)
DSKO:CMPILR.pCFCT,5]
DSKO:PLINICPCF(7,5)
DSKO: STDLIB.PCF(7,5]

U
DSK0:DEMO.PASC7,5)
DSKO:DEMO.PCFrT,5)

DSKO: UT. INC(7,5)
OSKO: SPOOL. INCC7,5)
DSKO:XLOCK. INCC7,5)
05KG: XLOCK. SYS(1 ,4]
05KG: XMOUNT. INC(7,5]

DSKO:PC.DO(2,2)
DSKO:PCL.D0E2,2]
DSKO:PL.D0t2,2)
DSKO:PCU.DO(2,2)
DSKO: PU. 00(2,2)

The first four of these files must be on your system if you are to use the
AlphaPascat system. PRUN.PRGC1,4) is a re—entrant assembly Language
program; you may load it into system memory. CMPILR[7,5), PLINKC7,5), and
STDLIBCY,5) are Pascal code file programs. (.PCF files may not be loaded

into

system memory.) DEMO,,PAS and DEMO.PCF are the source and compiled
versions of a samDle Pascal program that demonstrates file handling. (This
program also appears at the end of Chapter 10 of this book.)

The .INC files are special files you will include in programs that make use
of several of the subroutines we have provided with the AiphaPascal system.
(The special routines that make use of the .INC files are described in
Chapter 14, "Systems Functions and Procedures.") (See SectIon 4.3.2.2, "The
Inctude Option (SI)," for information on Include fiLes.)

The Last five files listed above are .00 files: these are special command
files that help you to compile and Link files. They invoke the compiler and
tinker for you, and automatically answer alt of the questions asked by those
programs. Although these command files are not for use in all cases, you
will probably be able to use them most of the time when you are compiling,
linking, or updating a single file. For information on how to use these
files, see Section 4.6, "HeLpful Command Files."

4.1.1 File Extensions

Some of the extensions recognized by various components of the Pascal
programming system are:

.
(Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—3

.PAS Pascai. source tile, created by text editor.

.PO1 Pascal intermediate files, crepted by the

.P02 &ompiler. Not directLy executabLe.

.P03

.PCF Pascal code file. The executable prqgram file

created by the tinker.

.PSB Pascal assembly language subroutine.

.INC Include files

NOTE: No .PSB files have been inctuded with this release, aLthough many of

the routines in the standard library are aàtuauly 'linked—in assembly

language programs. If you write your own assembly language subroutines,

they must have the .PSB extension. Theadvantage In using assembly Language

programs in combination with your Pascal functions and procedures is that

some systems functions can best be performed by an assembly language program

because of speed, size, or hardware requirements.

4.1.2 File Search Pattern

Pascal uses a standard search patter-n in Looking for those files that it

needs. For .PCF and .INC files, this pattern is:

The account you are logged into
Your project Library account: [*,O]
The Pascal Library Account, PAS: —— DSKO:17,5]

For PRUN.PRG, this pattern is:

System memory
User memory partition
System Library Account, SYS:—— DSKO:C1,4]
Your project library account: [*,O]
The account you are logged into

For .PSB files, this pattern is:

System memory
User memory partition
The account you are logged into
Your project library account: [*,O]
The PascaL Library Account, PAS: —— DSKO:C7,S]

For example, if you are logged into DSK1:[100,3], and want to execute the

program PRIME.PCF, you enter:

PRUN PRIME @E

OPERATING INSTRUCTIONS AND CHARACTERISTICS. Page 4—6

(PRUN assumes a file extension of .PCF,) Pascal first looks for the file
PRIME.PCF in the account you are logged into (in this case, DSK1:C100,3));next it looks in your project library account, DSK1:C100,0]. Finally Itlooks in the Pascal Library Account, DSKQ:C7,5]. If it doesn't find the
file in any of these places, you see the error message:

?Cannot OPEN PRIME.PCF — file not found

Of course, if you give a complete file specification (including device
and/or account specification) Paseat will look for the file on the device
and account you have specified, without going through its search pattern.
The standard, complete AMOS file specification consists of a device
specification, a file name, a file extension, and an account specification.
For example:

PRUN HWK1:PRIME.PCFC200,56] @D

4.1.3 Program Restrictions

AlphaPascal handles your programs via a virtual memory paging system. This
means that there is no limit to the size of your programs. (NOTE: Only
programs are paged, not data allocated by NEW.) However, there are minor
limits on the size of components of those programs:

1. The object code version of any one procedure may not be larger than
2000 bytes.

2. You may not have more than 255 global procedures and functions in
any one program or library.

3. Any global procedure or function cannot have more than 255 local
procedures or functions.

4. Maximum nesting of program block declarations is 15.

5. Maximum nesting of procedures, WITH—Dos, and RECORD type
descriptions is 12.

4.1.4 Memory Requirements

Because AlphaPascal uses a virtual memory paging system, there is no Limit
to the size of your programs. However, a certain amount of memory is
required to use CMPILR, PLINK, and PRUN. Although the minimum size of your
memory partition depends on the data space requirements of the Pascal
program you want to use, you should have at Least 16K of memory to run a
small program. To compile and link a program, you should have at least 24K
of memory.

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—5

Also, you should note that even though you may execute a program that Is
larger than your memory partition, the larger that memory partition is, the
less paging must be done and, in general, the faster your programs will run.
To help even more in speeding up orogram execution and In reducing the
minimum meAiory partition size, remember that you may load PRUN.PRGC1,4) into
system memory. Also, if the assembly language subroutines that you write
are re—entrant, you may load them into system memory. If you should run out
of room in memory while compiling a program, CMPILR displays the messages:

?Insufficient memory
or:

?Attempt to call ERRORTRAP while in ERRORTRAP

4.2 CREATING A PASCAL PROGRAM

To create a Pascal source program, use one of the system text editors, VUE
or EDIT. If you are using a video display terminal, you wilt probably want
to use the screen—oriented text editor WE. Ear a full description of how
to use VIJE and a list of all of its commands, see the AIph3VUE User's
Manual, (DWM—OO100—15). Also, Section 2.3.1, "Building a Pascal Program,r
of this book contains a brief introduction to VUE.

4.3 THE ALPHA PASCAL COMPILER

The compiler reads the source program that you have created, and compiles it
into three Intermediate files that have the same name as the source program
file and the extensions .PO1, .P02, and .PO3. These files are used by the
linker to create the final, executable program file, which has a .PCF
extension. (If .PO1, .P02, and .PO3 files already exist with the same name
as the program, CMPILR deletes them before compiling the new source
program.)

To use the compiler, at AMOS command level enter:

PRUN CMPILRtEJ

The compiler now asks you for the name of the source file:

AlphaPascal V2.0
Source file name?

Enter the name of the file that contains tie program or module you want to
compile followed by a RETURN. (CMPILR assumes the .PAS extension.) This
source file may be in any account, but the .PO1, .PO2, and .PO3 files for
the program will be generated in the device and account you are logged into.

(Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS
•' Page 4—6

4.3.1 The Diagnostic Display

After you have given CMPILR the name of the source file you want to compile,
it asks:

Diagnostic file name (<return> for terminal)?

The diagnostic file contains information about the, program compilation. You
wilt usually want. to see this information on the screen as the compilation
proceeds, and therefore will enter a RETURN. If you want this information
sent to a file so that you can have a permanent record of the compilation,
enter a valid AMOS file specification. For, exampte:

Diagnostic file name (<return> for terminal)? DIAG

The default extension is .LST. The diagnostic display might took something
Like this, depending on the program you are compilinq:

AlphaPascat Compiler Version, 2.0
< 0>

NEWCHECI(C 4>————
PROGRAM C 10>
16 lines

7.07 seconds, 152.83 lines/minute
No compilation errors.

The
diagnostic display above shows the line nunbers at which the procedures

within the orogram begin (line #6 for the Drocedure NEWCHECK; line #10 for
the main program). 'Each dash indicates the compilation of one program line.
The last three lines tell you a) how many lines were in the program; b) how
quickly the compilation was done; add'c) how many errors occurred.

If an error occurs, you see it reported at, the appropriate place In the
compilation. For example, suppose we had left off a statement separator
(the semicolon) at the end of the firSt line of the program. The diagnostic
display would look like this:

AlphaPascal Compiler Version 2.0
< 0>—

PROGRAM MYPROG
VAR Target : REAL;

?Line 1: CINISOP] ';' or '(' expected —— inserting ';

< 1>
NEWCHECI(< 6>————

PROGRAM < 10>
16 lines
6.97 seconds, 155.02 lines/minutes
?Total of 1 compilation errors.

NOTE: If you tell CMPILR to send the diagnostic display to the terminal
screen instead of a file, CMPILR pauses when an error occurs, and gives you
a chance either to continue or quit. For example:

(Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—?

AtphaPascal Compiler Version 2.0

. < 0>—

PROGRAM MYPROG
Target REAL;

?Line 1: CINISOP) '; or (' expected—— inserting ';'
Hit RETURN to continue

At this point you may continue the compilation by typing a RETURN, or you
may stop the compilation by typing a Control—C (in which case you see the
message: ?Compilation aborted). If an error occurs, CMPILR does not
generate the .PO1, .PO2, and .PO3 intermediate files; this is to prevent you
from linking a program that contains a comDile—time error.

4.3.2 Compiler Options

The AlphaPascal compiler has a nunber of options available to you. You may
select one or more of these options at compile—time by including the
appropriate option codes in your program.

You tell the compiler that you want to make an option request by Including
the symbol $ at the front of a program comment followed by the specific
option code you want to use. The compiler acts upon the option requests as

It reaches them in the program.

Option codes may be in upper or lower case. No space may separate the left
comment delimiter and the option code. For example, ($6—) is valid, but
'C $6—) is not.

4.3.2.1 The GOTO Options ($G+ and $6—) — The $G+ code tells the compiler
to allow use of the GOTO statement: the $6— code telLs the compiler to
qenerate an error message if it encounters a GOTO statement. You may use
these options to turn GOTO recognition on and off within your program. (The

compiler uses the $6— option as the default; that is, it does not recognize
GOTO statements unless you use the $G+ option in your program.)

4.3.2.2 The Include Option (SI) — The SI code tells the compiler to
include the contents of the specified file in your program. Supply a valid
AMOS file specification. For example:

(SI MACRO.INC)

The default extension is .INC. The SI option code tells the compiler to
physically Insert the contents of the specified file into the file being
compiled. The Insertion takes place at the point of the option request. You
may not include any other option codes after the file specification. The

(Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—8

purpose of the SI option is to save you from having to duplicate frequently
used declarations or lines of code.

The Include file pan contain any valid program elements, as long as those
elements can Legally be inserted at the olace in the program where the
incLude file option occurs. (For example, you will not use the SI option
request in a program's variable declaration section to include a file that
contains a program header.)

NOTE: You cannot nest tnâlude file requests. That is, the include file may
not itself contain an include file reqdest.

4.3.2.3 The List Options (SL, SL+ and SI.,—) — The SI option request tells
the compiler to send a listing to an AMOS file. (You do not see a orogram
listing if you do not use the SI. option.) Supply a valid AMOS file
specification. For example:

<SI DSK1 : DIA6t33,2]}

The listing will now be written to the specified file. The default file
extension is .1ST. If you do not give a file specification when you use the
SI request, CMPILR creates. a listing file bearing the name of your source
file and a .LST extension in the account you are Logged into.

Of course, you may not create a listing file outside of the project of the
account you are logged into. For examDte, if you are logged into
DSKO:t100,2] and try to create the listing file DSKO:LIST.LSTC200,2J, the
AMOS system wilt respond with a "protection vioLation" error and abort the
compilation because you tried to create the file in an account outside of
the 100 oroject area.

You may use the codes SI— and SL÷ to turn program listing off and back on
again. For example, suppose you have a long program that contains a large
section of comment that you don't want In your Listing tile. At the front
of your source program you might say:

<SI MYPROG)

Directly in front of the section you do not want in your listinq, you would
place:

(SI—)

At the point where you want the listing turned back on again, place:

C$I+}

The compiler tells you in the diagnostic display that It is writing a

listing file. For example:

.
(Changed 30 April 1981)

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—9

AlphaPascal. CompiLer VersIon 2.0
< 0>

List to LIST

ERRCHECK C 9>————

PROGRAM < 13>
20 lines
12.36 seconds, 96.90 tines/minutes

No compilation errors.

If you want the listing to appear on your terminal screen, use th device
specification TTY:. For example:

C$L TTY:)

(NOTE: This display will be interminaled with that of the diagnostic display
unless you send the diagnostic display to a file—— see SectIon 4.1.1, "The
Diagnostic Display.') No other option requests may appear after the $L
option. The listing consists of a display of your program with additional
information to the left of the program. If your program contains errors, the
Listing file contains the appropriate error messages at the places in the
program where the errors occurred. The listing takes a form that looks

something like this, depending on the program you are compiling:

line# proc lv il dsp ic/Ic
1—— Dl 0 1 1 'C$LDIAG}
2 — 0 1 0 1 1 PROGRAM Validate { Validate nijueric entry; make
3 Dl 0 1 1 sure that it is between 1 and lQO.1;

6—— Dl 0 1 1

5—— Dl 0 1 1 VAR Target:REAL;
6— Dl 0 1 1

7 —— D 2 0 2 4 FUNCTION ErrCheck(Local : REAL) : BOOLEAN;

8 —— D 2 0 2 7 C Function checks entry. If 100<nuiiber<1,
9 — 0 2 0 2 7 ErrCheck reports error by returning a TRUE. 3-

10—— C 2 1 2 0 BEGIN C Begin function ErrCheck 3-
11 —— C 2 1 2 0 ErrCheck := Local < I OR Local > 100
12 —— C 2 0 2 12 END C End function ErrCheck 1;
13—— C2 0 2 40
14— Cl 1 1 0 BEGiNCMainProqram>
15 —— C 1 1 1 2 WRITE('Enter a number between 1 and 100:);

16 — C 1 1 1 45 READLN(Target);
17 —— C 1 1 1 63 IF ERRCHECK(Target)
18 —— C 1 2 1 69 THEN WRITELN('Invalid entry: try again.')
19 —— C 1 3 1 112 ELSE WRITELN('Very good. Correct entry.')

20

—— C 1 0 1 157 END 'C Main Program 3-.

o compilation errors.

On the right you see a listing of the program. The left contains additional
information about the program:

Line# — This is the nunber of the program line on the right—hand
side of the display. The rest of the information on this line
refers to this program line.

(Changed 30 April 1981)

OPERATING tNSTRUCTIONS AND CHARACTERIST!CS. Page 4—10

Proc You see the name of each locally declared procedure as
CMPILR comes to it,

Cor D Pascal tells you if data (0) or code (C) is being generated
for the program line,

lv and
FIT Internal information used by the compiler,

Indentation level, Tells you what nesting level the
current program line is at,

is/Ic — Internal code location counter, This number tells you how
many total bytes have been allocated at this ooint in the
program compilation for the object code of the current
orocedure or function, The ic/Ic number can come in handy
later when you debug programs. If you interrupt program
execution and hacktrace that program, the backtrace gives you
the 'IPC' number—" the Interpreter Program Counter," The
IPC is the number designated by ic/Ic in the program listing,
you can thus compare your backtrace with your program
listing, and see exactly where the problem occurs,

Also, if a run—time error occurs, the error
IPC in the procedure at which the error
?Vaiue range error in PROGRAM at IPC = 64
(For information on backtracing, see
"Interrupting a Program,)

flptions ($Q+ and $0") $Q+ designates the
This option request tells the compiler to give you a

lay, leaving off procedure names and line numbers, To

ode back on (the default condition), use the $Q— option

The Range Check OQtions (SR— and SR4) The $R— option tells the
to turn off range checking; that is, the compiler does not output

I code to perform checking on array subscripts and assignments to
type variables, Programs compiled with range checking off run
faster; however, since the compiler is not checking for range
if an •invalid index or assignment is made by your proqram, the
package will not stop the program when that error occurs, You

(Changed 30 April 1981)

,

4,3,2,4
page in
point
effect,

message gives the
occurred (e,g,,

within FILL,PAS),
Section 4,5,2,

The Page Option ($P)

the listing by telling the
in the program listing,

The $P option allows you to start a new
compiler to insert a form—feed at that
($P is ignored if the $L option is not in

4,3,2,5 The Quiet
quiet—compile ootio
brief diagnostic disp
turn full—display m
code,

4,3,2,6
compi Icr
additiona
sub range

slightly
errors,
run—time

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—11

should not turn off range checking until your program has been tested and
you are absolutely sure that your program runs without error. To turn range
checking back on (the default condition), use the $R+ option.

4.4 THE ALPHA PASCAL LINKER

The tinker, PLINK, reads the .PO1, .P02, and .P03 files created by the
compiler and resolves the files into a single executable program. You may
use PLINK to link multiple files together into one program. However, even
if your complete program consists of only one file, you must use PLINK on
that file to generate an executable program file. The final file created by
PLINK has the .PCF (Pascal Code File) extension. Although the use of PLINK
may at first look complicated, once you begin to use It, you will find that
its questions are rather self—explanatory. The paragraphs below discuss the
different ways in which you can use PLINK. The last few paragraphs of this
section (Sections 4.4.4 and 4.4.5) dIscuss the PLINK options.

To use PLINK, at AMOS commmand level enter:

PRUN PLINK @iD

Now PLINK asks:

Code file:

Enter the specification you want given to your final .PCF file. This
specification may be that of an existing file, or it may designate a new
file. It may be the same as or different than the specification of one of
the files you are going to link. Make èure that you supply a valid AMOS
file specification that cpntains a filename of no more than six characters
(for example, DSK4:VALIDC1IO,4D. For the purposes of our discussions,
let's say that you enter VALID *

Code file: VALID@!fl

(PLINK will automatically assign the file a .PCF extension.) If you do not
include a device and account specification, PLINK assumes that you want to
Link a file that is in the device and account you are logged into. At this
point PLINK asks you different questions, depending on whether or not the
specified .PCF file already exists. In the next sections we will step
through the three situations which can occur: 1) you are creating a new
file; 2) you are replacing an existing .PCF file; 3) you are updating a
single module in the .PCF file.

For now, let's assume that PLINK has asked its next few questions, and knows
what files to link together and what external library to use. You see:

Loading program and library dictionaries

OPERATING INSTAUCTIONS AND CHARACTERISTICS Page 4—12

This tells you that PLINK is getting ready to process your file. For eachfile that you are linking, PLINK. tells you when it begins working on that Afile. For example:

Processing NEWNOD

Next PLINK tells you what globally declared f%,nctions and procedures arebeing linked into your .PCF file. (These routines are in your program andthe external library.) For example:

Linking 1v4 global func/proc ERRCHECI(
Linking in global func/proc PROGRAM

At last, PLINK is finished, and begins to copy the resolved code into the.PCF file:

Transferring temporary file to new code fi I.e

PLINK's final message tells you that it is finished:
VALID completed

Now, let's get back to the questions PLINK asks when It is determining whichfiles to link together. NOTE: Keep in mind when answering PLINK'S questionsthat PLINK converts all of your input to upper case. .
4.4.1 Linking a New .PCF File

If you use PLINK to create a .PCF file, and that fiLe does not alreadyexist, PLINK knows that you are linking a new program, and not trying to
replace or update an existing program. For example, suppose you have toldit that you want to create VALID.PCF. It tells you:

Creating new code file VALID.PCF

Now it asks which external library you want to use for the new program:
Library code file for VALID.PCF =

Enter the file specification of the library you want to use. In almostevery case, this will be the standard library file, STDLIB.PCF. Theexternal library contains routines used by your program and the compiler.
You must specify a library (except in the very rire case where you arelinking a "root" Library—— that is, a library that has no library of its
own—— such as SIDLIB itself). For information on the external library, seeChapter 16, "Writing and Modifying an External Library File." Now PLINK askswhich files you want to link together: .

OPERATING INSTRUCTIONS AND CHARACTERISTICS
Page 4—13

Please specify files to be Linked into VALID,
one per tine, ending in a blank tine

File 1 =

Enter the specification of the first file; then type a RETURN. Now PLINKasks for another file:

File 2

Remember that a single .PCF file may be made up of several separately
compiled modules. If you are linking only one file, enter a RETURN here;
otherwise enter the file specification of the next module. If you are
linking together more than one file, the file specifications do not have to
be entered in any special order, but at least one of these files must be a
main program file (rather than a module), or you see the message: ?Attempt
to create new code file without main program block. (For information on
module files, see Section 6.1, "Program Declarations.") Remember that you
are entering AMOS file specifications, and not the internal names of your
programs or modules; each specification must contain a six—character or less
file name that designates an AMOS disk file.

NOTE: Although you will usually be linking together compiled Pascal files,
you may also want to use .PSB (Pascal assembly Language subroutine) files.
To tell Alphapascal that a file is an assembly language subroutine rather
than a Pascal program file, you will specify the .PSB extension. For
example:

File 1 = MODUL1 @!D
FiLe 2 = MAINPRtTh
File 2 = INPUT.PSB
File 3 ANYCN.PSB/LINKEff
File 4

The example above shows us linking together a main Drogram file, MAINPR, a
module file, MODUL1, an assembly language subroutine file reference,
INPUT.PSB, and an assembly language subroutine, ANYCN.PSB. For a discussion
of how these .PSB files are linked in, see Section 4.4.4, "Linking Assembly
Language Subroutines (the /LINK Option)." For information on assembly
language subroutines, see Chapter 15, "Assembly Language Subroutines."

4.4.2 Replacing a .PCF File

If the VALID.PCF file that we specified as "code file" already exists, PLINK
knows that we want to either update or replace the file. Therefore, after it
asks for the code file, PLINK asks:

Do you wish to 1) replace or 2) update VALID.PCF?

To replace the file, enter a 1. PLINK now says:

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—14

Creating new code file VALID.PCF

It asks which external library to use:

Library code file for VALID.PCF =

Once again, you wilt probably want to answer "STDLIB." Now PLINK asks for
the names of the files you want to link together:

Please spqify files to be linked into VALID,
one per line, ending in a blank line

File I =

Enter the specification of the first file; then type a RETURN. Now PLINK
asks for another file:

File 2 =

Type a RETURN if you are only linking one file; otherwise, supply the file
specification of the next module. When you have finished entering all
module specifications, enter a single RETURN. (See Section 4.4.4 for
information on linking assembly language subroutines.)

4.4.3 Updating a .PCF File

It would be extremely inconvenient to re—compile and re—link a huge Pascal
program every time you wanted to èIlange a tiny portion of it. AlphaPascal
allows you to split one program up into a number of files called "modules,"
which are linked together with one main program tile. You can change a
module file, re—compile just that file, and then re—link the changed module
into the main .PCF file. -

To update a single module, make. your changes and then re—compile that
module, Now, use PLINK to re—link the modu4e into the program. When PLINK
says:

Do you wish to 1) replace or 2) update VALID.PCF?

enter a 2 followed by a RETURN. Now It will tell you what external library
was used to link that .PCF file. For example:

The standard library code file for VALID.PCF is STDLIB.PCF
Do you wish to change this?

Answer V or N. You will probably want to answer N, to instruct PLINK to use
the same library the file was originally linked with. If you answer V,
PLINK asks for the new library:

New standard library

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—15

Enter the specification of the external library you want to use.

Now PLINK asks what files you want to link together. Just enter thespecifications of the module or modules you have re—compiled. The rest ofthe modules in the .PCF file wilt be left alone., NOTE; If you do change toa new tibrary, you wilt have to re—link alt modules used in the program andthe main program file, since the old modules wilt be incompatible with •thenew library. (See Section 4.5.1, "Library Version Checking,' for moreinformation on program—library compatibility.)
PLINK wilt tell you what new procedures or functions have been linked in,
and what old procedures or functions have been kept. For example:

Keeping global func/proc ERRCHECK
Keeping global func/proc PROGRAM
Linking global func/proc NEWPROC

4.4.4 Linking Assembly Language Subroutines (the fUNK Option)

We mentioned briefly above in Section 4.4.1, "Linking a New .PCF File," that
you can tink assembly language subroutine (.PSB) files into your .PCF file
by specifying the .PSB extension when you use PLINK to link the subroutine
files into the program. (For information on such routines, see Chapter 15,
"Assembly Language Subroutines.")

What actually happens is this: when you specify a .PSS file to PLINK, PLINK
then inserts a reference to that file In your final .PCF file. When you
execute the .PCF file, AlphaPascal searches for the specified .PSB file
(using the standard file search pattern we discussed at the front of this
chapter), and then loads that file into memory from the disk (if the file Is
not already in system or user memory); next, it executes the routine when
catled by the program. When PRUN finishes executing the .PSB. file, it
detetes it from memory. (You can force PRUN to leave the .PSB file in
memory by explicitly loading the file into memory via the monitor LOAD
command before using PRUN to run the program that calls the .PSB file. If
the .PSB file has been placed into memory via the LOAD command, the file
remains in memory until you use the DEL command to remove it.)

If you want the contents of the .PSB file to be physically part of your .PCFfile (so that this search—and—load procedure does not take place), you may
specify the /LINK option after the name of the .PSB file when you link that
file in. For example:

File 1 MODUL1 lEE
File 2 = MAINPRJ
File 3 = XPUT.PSS/LINKj

The fUNK option refers only to the single file specification on the same
line as the option request. If you are going to physically link a .PSB file
into your .PCF file, the .PSB file cannot be larger than one disk block.

OPERATING INSTRUCTIONS AND CHARACTERISTICS. Page 4—16

NOTE: UsuaUy if you modify a module or .PSB file, you only need to re—link
the modified file into the linked .PC.F file of which It is apart.. (For
example, If you changed the file XPUT.PSB in our example above, you wouldnot need to re—link MAINPR and MODUL1; only XPUT.PSB.) However, if you
decide to replace a .PSB file with a Pascal file of the same name or vice
versa, you wilt need to re—link all modules that form the .PCF file of whichthat file Is a part. For example, looking at our example above again, if
you decide that the tile MODUL1 would be better as an assembly languagefile, MODUL1.PsB, you wilt need tore—link all of the files that form the
complete .PCF fite—.MODUL1.pSB, MAINPR, and XPUT.PS8.

4.4.5 Preventing Backtricing of .PCF Files (the /STIA$H Option)

AtphaPascal allows you to trace the functions and procedures called by a
program. This is a useful debugging feature when you are developing a
program, since you can interrupt the program at a trouble spot and see whatfunction or procedure it is in. (For more iMormation on backtraclng, see
Section 4.5.2, "Interrupting a Program.")

However, once a program has been finistied, and tested, you may not want users
of that program to be able to find out the names of the program functions
and procedures (which they can ordinariiy do by interrupting the execution
of the program and backtracing). Therefore, AlphaPascal provides the linker
/SMASH option.

When you link a program using the /SMA$H option, users of that program are
prevented from seeing the names pf the program!s procedures and functions
when they backtrace the program; instead, the names are replaced withasterisks. For example, instead of the backtrace dispLay:

Interrupt (?Help): 8j
In STDLIB.PCF

RDR at IPC = 33
In VALID,PCF

PROGRAM at IPC = 43
In STDLIB.PCF

PROGRAM at IPC = 423
Exit to AMOS

they see:

.

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—17

Interrupt (?Help): 8

th STDLIB.PCp
RDR at 1PC33

in VALID.PCF
at IPC 43

In STDLIB.PCF
PROGRAM at IPC 423

Exit to AMOS

Note that in the smashed version above, the name of the function in your own
program, VALID.PCE, is blanked out with a tine of asterisks.

To use the /SMASH option, pLace the option request after the name of the
code file you want to smash,. For exampLe:

Code file = VALID/SMASH tED

When PLINK finishes linking the specified fiLes, it t.eLLs you that the names
of the functions and procedures in the code file have successfulLy been
hidden from the backtrace option. In the case of the file discussed above,
VALID.PCF, you see:

SMASHed VALID/SMASH Completed

NOTE: CMPILR and PLINK have both been linked using the /SPIASH option.

4.5 THE ALPHA PASCAL RUN—TIME PACKAGE

The AtphaPascal run—time package, PRUN, is the program that executes your
program by interpreting the .PCF fiLe created by the tinker. To use PRUN, at
AMOS command level enter PRUN followed by the specification of the fiLe that
contains the program you want to execute. Then type a RETURN. For exampte:

PRUN LSTSQRC200,1] @D

4.5.1 Library Version Checking

Because you can add routines to the external library, the situation can
arise where an old program was linked with an external Library that is
different from the current external library. PRUN wiLl not execute a
program that is not compatible with the library it Is being run with. By
'compatible," we mean that a program that was Linked with a certain external
library cannot be run with an older version of that Library, or with a
completeLy different library.

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—18

You wiLl rarely have to worry about library version numbers; if you modify a
Library, you can run programs linked with earlier versions of that library
without re—Linking the programs (unless you changed functions and procedures
used by those programs, in which case you might have to change your programs
to be compatible with the new procedures and functions).

AlphaPascal uses a system of version numbers and version stamps to keep
track of program and Library versions. (These numbers are for Internal use,
only—— they are not accessibLe to your programs.) Whenever a library is
created or modified, AlphaPascat writS a unique identifying number caLled
the "version stamp" to that Library. It, also keeps track of the number of
version stamps generated for a. Library; this number is called the "version
number."

Whenever you link a program, AlphaPascal writes the version stamp and
version number of the external library you are using to the .PCF file being
linked. Whenever you execute a program, PRUN: checks to make sure that the
version stamp for that program matches one of the program stamps in the
current external library. This makes sure that the current Library is not a
compLetely different Library than the one the program was linked with. If
the ltbrary Is a modified version of the , Library the program was linked
with, checking to see that the version stamp in the program exists In the
list of version stamps in the library makes sure that the Library is not an
earlier version than the library with which the program was Linked.

If the library and program are not compatible, you cannot run the program
with that version of the Library; instead, you must re—link your program
with the current Library.

PRUN displays the following message if the program version stamp and number
of the Library are older than those of the program:

?Wrong version of xxxx for use with yyyy

where xxxx is the external library, and yyyy is your .PCF file.

If you update an external library, check to see if your oLd .PAS files have
to change because of the revisions. For example, if a hypothetical
procedure REVERSE now expects three arguments, while a previous version
expected two, your programs will have to change to accommodate the changes
in the procedure. (For more information on, the external Library, see
Chapter 16, "Writing and Modifying an ExternaL Library File.")

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—19

4.5.2 Interrupting a Program

Whenever you use PRUN, you can tell it to interrupt program execution bytyping a Control—C. PRUN stops the program being executed and displays:

Interrupt (?Jlelp):

You may enter one of four responses: Q, R, B, or ?, followed by a RETURN:

Q — Tells PRUN that you want to terminate program execution. PRUN
returns you to AMOS command Level.

R — Tells PRUN to resume program execution at the point of
interruption.

B — Tells PRUN to print a backtrace of all the procedures and
functions invoked during the program execution to this point.
These procedures and functions are listed in order, with the
last—called procedure or function listed first. The display
might look something like this, depending on the program you are
executing:

Interrupt (?=Help): BI!

In STDLIB.PCF
RDR at IPC 33

In VALID.PCF
PROGRAM at IPC = 43

In STDLIB.PCF
PROGRAM at IPC = 423

Exit to AMOS

Interrupt (?Help): QD

(For information on keeping program users from using the
backtrace function to see the names of the functions and
procedures in your programs, see Section 4.4.5, "Preventing
Backtracing of .PCF Files (the /SMA$H Option).")

— Tells PRUN that you need help. PRUN now displays a menu of
the responses you can enter:

Interrupt (?Help): ? €!fl

Q = Quit
B = Backtrace
R = Resume

Interrupt (?Help):

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—20

4.6 HELPFUL COMMAND FILES

Although our discussions above on the compiler and linker discussed several
special uses of thost programs, in general the iaformation that you give to
the programs will be fairly standard. For example, you will rarely want to
use an external library other than SIDLIB. To make CMPILR and PLINK easier
to use, we have provided a number of special command files that you can use
for most cases of compilation and linking; these files automaticalLy supply
much of the information needed by CMPILR and PLINK.

These command files are in the Command File Library Account, DSKO:C2,2). (A
command file is a text file that contains a series of AMOS commands and
input for those command programs. Such a file allows you to execute a

string of commands and provide a stream of input by simply entering the name
of that file.)

You will use these command files at AMOS command level. To invoke one of
the files, enter the name of the file followed by one or more file
specifications. For example, suppose you want to use the command file named
PC (for Pascal—compile) to compile your program file SMALL.PAS,. At AMOS
command level, enter:

PC SMALL @D

The PC command file now invokes the Pascal compiler, and tells it that you
want to compile the file SMALL. Then it tells CMPILR that you want the
diagnostic file to be displayed on the screen. NOTE: If an error occurs
while you are using one of these command files (for example, if your program
contains an error or if AMOS cannot find the specified file), AlphaPascal
stops execution of the command file., After you clear up the problem, you
can then use the command file again.

The command files we have provided are:

DSKO:PC.DOCZ,2) Pascal—compile
DSKO:PL.D0C2,2] Pascal—Link
DSKO:PCL.D0t2,2] Pascal—compite and —link
DSKO:PCU.D0C2,2] Pascal—compile and —update
DSKO: PU.D012,2] Pascal—update

Remember that these command files do not cGver all cases of compiling and
linking files. If after you read these descriptions you realize that the
file will not do exactly what you need, you will have to run CMPILR and
PLINK yourself to perform the actions you want.

4.6.1 Compiling a Single File (PC.DO)

To use the PC file, enter PC followed by the name of the file that contains
the program you want to compile. Then type a RETURN. For example:

PC DRWLIN E

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 4—21

CMPILR compiles the file DRWLIN.PAS into the files DRWLIN.PO1, DRWLIN.P02,
and DRWLIN.p03.

4.6.2 Linking a Single File (PL.DO)

To use the PL file, enter RI foltowed by the name of the file that you wantto link. For example:

P1 DRWLIN fj

PLINK now links the files DRWLIN.PO1, DRWLIN.P02, and DRWLIN.P03 together
into DRWLIN.PCF. Before you try to link a file, make sure that it hasalready been compiled; that is, that the .PO1, .P02, and .P03 files exist.
P1 assumes that you want to link a single file, and that you want to use the
standard external library, SIDLIB.

4.6.3 Compiling and Linking a Single File (PCL.DO)

To use the PCI file, enter PCI followed by the name of the file you went tocompile and link. For example:

PCI TRSRCH

The compiler compiles the file TRSRCH..PAS into the files TRSRCH.PO1,
TRSRCH.P02, and TRSRCH.P03. Next, PLINK links these intermediate files into
TRSRCH.PCF. The command file assumes that you want to link a single program
file, and that you want to use the standard external library, STDLIB.

4.6.4 Updating a Single Program Module (PU.DO)

To use the PU file, enter PU followed by the name of the module you want to
update, followed by the name of the .PCF file you want to Link the moduleinto. For example:

Pu MODUL1 TRSRCH @23

PLINK now links the module into TRSRCH.PCF. This file assumes that MODUL1
has already been compiled, and that you want to use whatever external
library TRSRCH was originally linked under.

OPERATING INSTRUCTIONS AND CHARACTERISTICS Page 422

465 Compiling and Updating a Single Program Module (PCUDO)

To use the PCU file/enter PCU followed by the name of the module you wantto compile and update, followed by the name of the PCF file you want to
link the module into, For example:

PCU MODUL1 TRSRCH

CMPILR now compiles MODUL1; PLINK then links it into TRSRCH,PCF, PCU
assumes that you want to use the external library TRSRCH was originally
linked under,

ALPHA PASCAL USER'S MANUAL

PART II

SUMMARY OF ALPHA PASCAL

The next nine chapters discuss the elements of the Pascal Language as it has
been implemented by Alpha Micro. If you are interested in a quick summary,
refer to Appendix A, "A Quick Reference to AlphaPascat."

CHAPTER 5

GENERAL INFORMATION

This chapter contains very general information about AtphaPascat program
concepts such as: basic program structure, statement separation and spacing,
legal identifiers, compound statements, scope of identifiers, etc. For
detailed Information on specific elements of a Pascal program, see the Index
and Appendix A, "Quick Reference to AlphaPascal."

5.1 BASIC STRUCTURE OF A PROGRAM

This section lists the major elements of a Pascal program. We'll talk more
about each element in the following paragraphs, but this will give you a
general idea of what goes where. Every Pascal program follows the general
form:

Heading
block.

The heading follows this form:

PROGRAM program—name;

PROGRAM;

NOTE: Standard Pascal requires that you follow the program—name with a set
of names that are concerned with program input and output (for example:
PROGRAM Schedule(INPUT,OUTPUT);). AlphaPascal, however, ignores these
names, and you may omit them altogether. However, make sure that the
program heading is syntactically correct. (For example, "PROGRAM NewAccount
C;" generates an error message because of the open parenthesis.)

The program block which appears under the heading consists of a dectaration
section that defines the names and properties of various data objects (such
as variables and constants) and subprograms (such as procedures and
functions) that will be used In the program, and a statement section, which

GENERAL INFORMATION Page 5—2

lists the actions to be taken upon the declared items. (The names of the
data objects, as weLt as the names of the procedures and functions of a
Pascal program are called "identifiers.') The program block takes this
form:

Label—declaration part
Constant—definition part
Type—declaration part
Variable—declaration part
External—declaration part
Procedure—and—function—declaration part
Statement part.

(For information on the definition and declaration sections of the program
block, see Chapter 6, "Declarations and Definitions." For information on
the statement section of the program block, see Chapters 9—13.

Any number of spaces and/or blank tines may appear between words and symbols
in a Pascal program. Because program statements may be broken up by blank
lines and spaces, Pascal requires that you identify where one statement ends
and another begins by separating them with a semicolon. For example:

PROGRAM Newlest;

VAR Counter : REAL;

The last element of a Pascal program must be the END keyword followed by a
period. (The period indicates that the end of the program has been reached,
rather than just the end of a group of Statements within the program.)

As a final word on program structure, we would like to mention that your
program can consist of more than one file. The advantage of splitting your
program up Into multiple files is that when a change needs to b! made to one
of the files, you only have to re—compile the one file and then re—link the
files, rather than re—compile all of the files.

If your program does consist of multiple fiLes, only one of those files will
follow the main program format we discussed above; the rest wilt follow a
slightly different format. (This is because only one main program file may
be linked together with other files.) These non—program files follow this
format:

MODULE module—name;
block.

or:

MODULE;
block.

This heading tells the Pascal compiler that the file is not a main programfile, and that it is part of a multiple—file program. The module—name
identifies this non—program file, and does not necessarily have to be the

GENERAL INFORMATION
Page 5—3

same name as that assigned to the actual file or to the main program.

The btock takes this form:

Label—decLaration part
Constant—definition part
Type—dectaration part
Variable—declaration part
External—declaration part
Procedure—and_function..dectarat ion DartI

As you can see, the file does not contain a statement part. (Although, ofcourse, the procedure and function declarations can contain a statementsection.) The file ends with a period (even though it cannot end with an
END keyword fottowed by a period).

Below is a small sample of a module and the main program with which It is
linked:

A MODULE

MODULE;

FUNCTION MAX(Argl,Arg2 : REAL) : REAL;
BEGIN C MAX)

IF Argl>Arg2 THEN MAX:Argi ELSE MAX:Arq2
ENV{ End of MAX };

U

A MAIN PROGRAM

PROGRAM Main;

VAR NumI, Num2 : REAL;

EXTERNAL FUNCTION MAX(Arql,ArgZ : REAL) REAL;

BEGIN { Main Program)
WRITE('Enter two numbers: '); READLN(Numl,Num2);
WRITELN;

WRITELN('The larger number is: ',MAX(Numl,Num2))
END C Main Program).

5.2 COMPOUND STATEMENTS (BEGIN AND END)

The statement section of the program block starts with a BEGIN keyword and
ends with an END keyword. The elements within these two keywords may
consist of one statement or many, and comprise the executable section of the
program.

(Changed 30 April 1981)

GENERAL INFORMATION Page 5-'4

Any one statement may be replaced by a combination of statements called a
"compound statement," A compound statement is a series of statements, and
starts with the BEGIN keyword and finishes with the END keyword. By
convention, the programmer usually indents each compound statement one level
within the program (see the example below) so that he or she can visually
keep track of how compound statements are nested,

The individual statements within the compound statement must be separated by
a semicolon, For example:

PROGRAM Average;
C This program computes the average of a series of numbers 1

VAR Count : INTEGER;
Answer, Total, Num : REAL;

CONST Maxval 10;

BEGIN C Average }
Total 0
FOR Count 1 TO Maxval DO

BEGIN
WRITE CEnter number, please:) C Prompt user for number it;
READLN(Num) C Get number from user it;
Total := Total ± Num C Sum numbers it

END;
Answer := Total/Maxval C Compute average it;
WRITELN CAverage is: , Answer)

END C Average it,

In the example above, the statement section of the program block cortains
two nested BEGIN'END compound statements, Note that the BEGIN keyword does
not require a semicolon after it, and that you do not precede the END
keyword with a semicolon, This is because BEGIN and END are keywords, but
are not statements, Therefore, there is no need to separate BEGIN from the
WRITE statement •in fact, doing so causes an error, For the same reason, do
not place a semicolon between the END keyword and the statement before it,

5,3 COMMENTS

Sometimes the function of a section of a program is not immediately obvious
to the casual observer, To help the reader of a program understand what
that program is doing, Pascal allows you to enter comments" in your
program,

Comments are ignored by the compiler, and serve only to document the source
program, AlphaPascal accepts as comments any text enclosed either by a pair
of "Ct" or "(* *)" symbols, For example:

READ(PianeRoute) (* This variable is accessed by FLIGHT procedure *);

A comment may appear between any two symbols in a program, cover more than

(Chanqed 30 April 1981)

GENERAL INFORMATION
Page 5—5

one line, and may appear in the middle of a statement. Comments may not benested, but 'C) symbols. may appear within the symbols (* *), and vice versa;this allows you to "comment out" areas of programs that contain comments.For example:

(* WRITELN(RecCount) 'C Report # of records sorted)READLN;
IF Error THEN ErrorFix 'C Error condition); *)

5.4 LEGAL IDENTIFIERS

Identifiers are groups of characters that denote variables, types,constants, procedures, functions, programs, record fields, and recordtagfields. As one example of an identifier, consider a variable thatassumes the values of a range of school test scores; it might appear In aprogram as the Identifier Scores.

Identifiers in AlphaPascal may consist of combinations of upper and lowercase letters and numbers, but must begin with a letter. Identifiers may beas many characters as you wish, but only the first eight characters are usedby Pascal in recognizing the identifier. (That means that the IdentifiersSTANDARDBUFFER and STANDARDBUFFOON will be recognized by Pascal as the same
identifier—— STANDARD.)

IMPORTANT NOTE: AlphaPascal "folds" lower case identifiers to upper case.This means that It translates all lower case letters to upper case whenconsidering identifiers. In other words, AlphaPascal considers theidentifiers Evalauote, Evalquote, EVALQUOTE, and CvaIQUOTE to be the sameidentifier.

You may choose any combinations of letters and numb!rs for identifiers withthe following exceptions. Certain words (called "keywords" or "reservedwords") have been reserved by Pascal to identify statements and structuresinherent to Pascal, and may not be used as Identifiers. (These keywords arelisted in the section below.) Other identifiers (called "standardidentifiers") have been pre—declared by AlphaPascal. This means thatAlphaPascal recognizes these standard identifiers as denoting procedures,
functions, and types already defined to AlphaPascal. The difference between
standard identifiers and keywords is that you MAY redefine standardidentifiers so that they no longer represent predefined Pascal types,functions, and procedures. In other words, if you attach a new meaning to astandard identifier, no error message is generated; but, the procedure,function or type previously associated with that identifier is no longeravailable to the procedure or function in which you redefined theidentifier. (Of course, a re—definition only applies to the program inwhich it appears.)

For this reason, you must be very careful when assigning identifiers not toinadvertently redefine a standard Identifier whose procedure, type, orfunction you may have need for later on in the program.

GENERAL INFORMATION Page 5—6

5.4,1 Reserved Words

Below is a list of the Pascal reserved words. You may not use these
reserved words as identifiers.

AND ARRAY BEGIN CASE CONST
DIV DO DOWNTO ELSE END
EXTERNAL FILE FOR FUNCTION GOTO
iF IN LABEL MOD MODULE

NIL NOT OF OR PACKED
PROCEDURE PROGRAM RECORD REPEAT SET
THEN TO TYPE UNTIL VAR
WHILE WITH

5.4.2 Standard Identifiers

Below is a list of all AlphaPascal standard identifiers. You may redefine
these identifiers. However, be careful not to unintentionally redefine
them.

Constants:

FALSE TRUE MAXINT

Types:

INTEGER BOOLEAN REAL CHAR STRING
TEXT

Predectared files:

INPUT OUTPUT KEYBOARD

Procedures, variables and functions. (NOTE: Several of these procedures,
variables, and functions are for internal use of the compiler and standard
library. For a list of all functions and procedures available for your use,
refer to Appendix A, "Quick Reference to A1*haPascat," or to the Table of
Contents.)

.

GENERAL INFORMATION
Page 5—7

ABS ARCCO$ ARCCOSH ARCSIN
ARCS INN ARCTAN ARCTANH CHARMODE
CHR CLOSE CONCAT COPY
COS •-COSH CREATE CR1
DELETE EOF EOLN ERASE
ERROR ERRORINFO ERRORTRAP EXIT
EXP EXPONENT EXTENSION FACTORIAL
FILLCHAR FILESIZE F$PEC GET
GETFILE GETLOCK$ IDSEARCH INCHARMODE
INSERT JOBDEV .JQBUSER KILCMD
LCS I,ENGTH LINEMODE LN
LOCATION LOG LOOKUP MAINPROG
MARK MEMAVAIL MOVELEFT MOVER IGIIT
NEW ODD OPEN OPENI
OPENO OPENR ORD PAGE
PFILE PUS POWER PRED
PUT PVIRT PWROFTEN PWROFTWO• RAD5O RANDOMIZE RDC PD!
RDR RDS READ READLN
RELEASE RENAME RESET REWRITE
RLN RND ROUND SCAN
SEEK SETFILE SHIFT SIN
SINH SIZEOF SPL SPOOL• SQR SQRT STDERRORTRAP
STRIP SUCC TAN TANH
TIME TOD TREESEARCH TRUNC
tiCS VAL WLN WRB
WRC WRI WRITE WRITELN
WRR WRS XERRORTRAP XLOCK
XMNT XMOUNT

5.5 SCOPE OF IDENTIFIERS

Because Pascal is a block structured language, a Pascal program falls
naturally into a nested structure. (See Figure 5—1, below. Each Block in
the diagram represents some procedure or function within the program.) What
happens if, for example, a variable is declared in the main program, and
then re—declared in a procedure catted by the main program? Which
declaration is valid? This problem is resolved by defining the "scope' of
the identifier; that is, by defining the area of a program for which the
declaration of an identifier is valid.

The scope of an identifier is the program, procedure, or function in which
it is defined and any enclosed btockswhich do not redefine it. (The use of
an identifier in the same block as its declaration is called a "tocal
reference; the use of an identifier declared in an outer block is called a
"non—local" reference.)

(Changed 30 April 1981)

GENERAL INFORMATION Page 58

Main Program

BlockA BLockA

A2 kB2

Figure 5—1

Nested Structure of Program BLocks

Lets say that a constant is defined both in the main program and B1ockA
BlockA itself and the blocks enclosed in BlockA (BiockAl and BlockA2) use
the definition made in BiockA, The main program, BlockA, BlockBl, and
BLockB2 use the constant definition made in the main program.

The foLLowing small program demonstrates identifier scoping The variable
Counter is declared both within the main program and within the procedure
InnerB Lock:

(Changed 30 prit. 1981)

GENERAL INFORMATION
Page 5—9

PROGRAM Scope 'C Tjiis program tests identifier scoping };
VAR Counter : INTEGER;

T "Counter' declared for main program >

PROCEDURE Inrtere lock;
VAR Counter INTEGER;

T "Counter" declared for Procedure Innerelock 3
BEGIN

Counter : 1;
FOR Counter : 1 1010 DO

BEGIN
WRITELN('Procedure InnerBlock—— Counter = ',Counter);

END

END tind Procedure InnerOtock 3;

BEGIN C Main Program 3
Counter : 20;
WRITELN('Main Program—— Counter = ',Counter);
InnerBlock C Invoke Procedure InnerBl.ock 3;
WRITELN('Main Program again—— Counter = ',Counter)

END C End Main Program 3.

If our description of Identifier scoping is correct, we would expect the
statement:

WRITELN('Majn Program again—— Counter= ',Counter)

to produce the value 20, regardless of the value assumed by Counter within
the procedure InnerBlock. That is exactly what happens.

5.6 NOTATION

AlphaPascal uses several conventions in handling and representing numbers
and strings.

5.6.1 NUMBERS

Pascal recognizes two types of numbers: integer and real. The integer
numbers are the "whole numbers"; that is, they cannot contain a fractionalpart. Real numbers are numbers that contain a decimal point, and whichtherefore contain a fractional part (even if that fractional part Is zero).
For example, these numbers are integers:

—231
7

8098

GENERAL INFORMATION Page 5—1,0

These are real numbers:

567.8
—25.00

4.318

(For information on the REAL and INTEGER data types see Chapter 7, "Data
Types.') Pascal has two methods of displaying numbers: decimal noitatton and
scientific notation. Decimal notation allows us to represent a number with
an optional sign, a whole number part, a decimal point, and an optional
fractional part. If the fractional part exists, there must be at least one
digit on each side of the decimal point. For example:

—2405.3

Scientific notation is handy for representing very small or very large
numbers. A number represented in scientific notation is shown as a value
multiplied by the appropriate power of 10. To indicate the exponent, Pascal
uses the symbol "E". For example:

—2.4053E+3

represents "negative 2.4053 times 10 to the third"; that is, In decimal
notation, the number would be —2405.3. A positive number after the E tells
you how many places to shift the decimal point to the right, in order to
read the number in decimal notation; a negative number tells you how many
places to shift the decimal point to the left. For example, to represent
the number:

5.678E—2

in decimal notation, shift the decimal point to the left two places: 0.0567.

Alphapascal generally uses decimal notation to display real and integer
numbers. (Of course, if the number is integer, no fractional part Is
shown.) However, If a number is too large or too small to represent easily
in decimal notation, AlphaPascal displays it in scientific notation.

You may use either scientific or decimal notation when entering numbers to a
Pascal program, or within the program itself.

(For information on using the WRITE and WRITELN procedures to format numeric
and character output, see Section 10.1.5.5, "Formatting Output.")

5.6.2 STRINGS

A string is a group of characters. These characters may be numbers,
letters, or any combination of characters, including the delimiters for a
comment—— 0 or (* *) A string is identified to Pascal by enclosing it in
single quotation marks. For example:

GENERAL INFORMATION
Page 5—11

'This is a string.'
'Data: 123'
'The END itnear'

The characters in a string represent themselves, rather than numeric values,reserved words, etc. For example, the third example contains the characters"123", but does not represent the number 123. The fourth example containsthe characters "END", but does not represent the keyword END.

If you wish a string to contain a quotation mark, place two quotation markswhere you want the single quotation mark to appear. For example:

'You don''t say.'

A string may be defined in a constant definition. For example:

CONST Message 'Error — Type CR to recover'
(We then say that Message is a string constant.) Or, a string may be usedas a string literal. For example:

WRITELN('Do not forget to write—enable the disk.')
NOTE: Alphapascal includes the data type SIRING as a standard data type.Data of type STRING consists of a group of characters (data of type CHAR)rather than a single character. For information on CHAR and STRING, seeChapter 7, "Data Types.'

.

CHAPTER, 6

DECLARATIONS AND DEFINITIONS

One of the important features of Pascal is that it requires that you define
and name the data objects you are going to, use in a program before you
reference those objects. For example, if you are going to be using a
variable named 'Cost', you must 'dectare" that variable at the start of the
program or procedure in which that variable appears. Besides declaring
variables, you must also declare the program name, labels, functions and
procedures, and modules. Zn addition, you must define any numeric or string
constants you are going to use, as well as any data types. All declarations
and definitions appear at the front of the main program or the procedure or
function containing the declared data objects.

These centralized declarations and definitions greatly enhance the
legibility and organization of your program, and aid the compiler in
performing error detection.

You'll remember from Chapter 5 that the declaration and definition part of
the program block takes the form:

Label declarations
Constant definitions
Type declarations
Variable declarations
External declarations
Procedure and function definitions

6.1 PROGRAM DECLARATIONS

The program declaration consists of the PROGRAM. keyword. It may also
contain a program name. This program declaration assigns the name of the
main program, and marks the start of the main program file. A program name
may be any legal identifier (see Section 5.4, "Legal Identifiers"). The
program declaration statement takes the form:

PROGRAM prog ram—name;

DECLARATIONS AND DEFINITIONS Page 6—2

or:

PR PG RAM;

Unlike other versions of Pascal, AlphaPascal does not require or recognize
any information about external input or output files after the program name
in the program declaration, Neither does AlphaPascal attach any significance
to the program name. That is, the program name serves only as a type of
comment, and does not actually identify the file,

End the program declaration with a semicolon to separate it from the rest of
the program statements, For example:

PROGRAM BubbleSort;

An AlphaPascal program may consist of more than one file. You can compile
these files separately; then, using PLINK, you can link them together into
one program, Of the files that you are going to link together, only one may
be a main program file, You tell the linker which files are not the main
program file by including an external program declaration at the front of
those files, This declaration tells the linker that the file is not the
main program (that it is, in effect, an external file to the main program),
The declaration takes the form:

MODULE module"name;

(where module"name identifies the non"program file, and does not need to be
the same as the name of the main program) or:

MODULE;

If a file does not contain the main program, there are some restrictions on
the elements that it can contain, For information on the format of a

non"program file, see Section 51, "Program Structure,'

6,2 LABEL DECLARATIONS

If you want to transfer control to a particular section of a program, you
must label that section with a "statement label," Labels are unsigned
integers from 0 to 32767, and must be declared in a label declaration
statement, The label declaration statement takes this form:

LABEL one or more numbers, separated by commas;

For example, if we want to use the labels 25 and 100 in a program, the
declaration looks like:

LABEL 25, 100;

Labels appear in the program in front of the statement they designate, and
end with a colon, For example:

DECLARATIONS AND DEFINITIONS
' Page 6—3

25: IF EOF THEN WRITELN('End of file.');

To reference a labeled statement, use the GOlD statement. (For information
on GOTO, see Section,9.4, "GOb.")

In addition to the standard labels we talked about above, AlphaPascal also
recognizes another type of label which appears after the BEGIN and END
keywords. The purpose of these labels Is to enlist the compiler's help in
determining whether or not you are properly nesting BEGIN—END blocks. If

the same Label appears after two BEGIN, and. END keywords, the compiler checks
to make sure that,,, the keywords do Indeed, mark the beginning and end of a

block;

if they do not, the compiler reports an error ("CSTMBID) Wronq
BEGIN—END Identifier —— XXX expected," where XXX is the block label
expected). This helps you to make sure that the structure of your program
is correct. An example may help to clarify. Look at the following program
diagram:

BEGIN : Labell

BEGIN : LabetZ

END : Label2

*

END : Labell

The example above shows a program in which the bLocks are properly nested.
By including the labels "Labell" and "Label?", we have asked the compiler to
check the program structure and Sake sure that the BEGIN and END keywords
are Indeed nested properly. The program below wilt cause the compiler to

report an error:

BEGIN : Blocki

BEGIN : Block2

• END :

0

END : Block?.

since the END keyword for Blocki appears before the END keyword of Block2.
The BEGIN—END label may take the form of any Legal identifier, and must be

separated from the keyword by a colon.

(Changed 30 AprIl 1981)

DECLARATIONS AND DEFINITIONS Page 6—4

6.3 CONSTANT DEFINITIONS

Defining constants wilt be helpful whenever: you have a string or ntrerlc
literal that is used frequently within a program; a literal is important to

understandjng the logic of the program; or a literal may possibly be changed
in future versions of the program. (For irformat1on on constants, see

Section 8.2, "Constants.")

Th! constant definition takes the form:

CONST identifierl = nunber or string;
ldentifler2 S ntsnber or string;

S

.
S

identifierN = nunber or string;

For example, Instead of repeating the expression "Radius * 3.1415927"
throughout a program, you might want to define the constant Pi:

CONST P1 3.1415927

Then, wherever your program used to say "Radius * 3.1415927", you can now

say: "Radius * RI". This keeps your program easy to read. Also, If at a

future date you have to change a literal in your program, it Is now a simpte

matter since you have only to change one constant definition statement
instead of every occurrence of that literal in the program.

As an example of a string literal, consider the statement:

WRITELN('You have entered an invalid ntsiber—— try again');

If you use this string more than once, you might want to replace it with a

constant:

CONST Error = 'You have entered an invalid ntsnber—— try again');

Now your statements can read:

WRITELN(Error);

6.4 TYPE DECLARATIONS

The most important feature of Pascal Is its use and definition of the

concept of "data types." A data type is a set of data (for example, whole

nunbers) that are alike in some way. For more information on data types,

see Chapter 7, "Data Types." For now, let's just say that Pascal gives you

some very powerful ways of representing different kinds of data types.

Besides the standard types that Pascal recognizes (for example, the type

INTEGER, that represents whole nunbers), Pascal also allows you to define
your own data types. You must declare a user—defined data type at the front 5
(Changed 30 April 1981)

DECLARATIONS AND DEFINITIONS Page 6—5

of the main program or procedure inwhich you are going to access that data
type. The type deálar.ation takes this form:

TYPE identifierl = typel;
ldentifier2 = type2;

.

idectitierN = typeN;

For example, suppose you want to define a new data type that is a simple
scatar type whose elements are: MON, TUES, and WEDS. You can do so by
simply enumerating the elements of that type:

TYPE Days = (MON,TUES,WEDS);

On the other hand, suppose you want to declare a more complicated data type,
such as a type of array:

TYPE NewArray = ARRAY t1..1O) OF INTEGER;

The declaration above declares an array named NewArray which contains 10

elements (which are to be indexed by the tiumbers 1 through 10). The

elements are of type INTEGER.

6.5 VARIABLE DECLARATIONS

Pascal requires that all variables be "declared.' This means that you

assign a name to a variable and permanently associate a data type to that
variable. Since you tell Pascal the data type of each variable, Pascal
knows what operations can be performed on that variable, and which functions
and procedures can be used on It.

Be aware that Pascal. does not assume an initial value (e.g., zero) for a
declared variable; you must explicitLy assign a value to a variable. If you

try to assign a value that is not consistent with the data type associated
with that variable, the Pascal compiLer generates an error message.

The variable declaration statement takes the form:

VAR identifier.. .,identifier : data—type;
identifier...,identlfier : datátype;

S

identifier...,identifier : data—type;

For example:

DECLARATIONS AND DEFINITIONS Page 6—6

VAR TestScores, Variance, Mean : REAL;
StudentlD, ClassName,

StudentName, Teacher : STRING;
Passed BOOLEAN;

The variable name may be any legal identifier. The data types yoz can
assign to a variable are discussed in Chapter 7, "Data Types."

6.6 FUNCTION AND PROCEDURE DECLARATIONS

You may often need to perform the same sort of actions on a body of data
throughout your program. Rather than forcing you tb tediously duplicate one
piece of code every place It IS needed, Pascat gives you two ways to
generate "subprograms' which may be call!d upon wherever neded in a

program. These subprograms are cat led"functions" and "procedures." Such
subprograms atso help you to maintain your programs since, if a change must
be made, it only needs to be made once.

Although you may invoke these functions and procedures any place in the
statement part of your program (or within the declarations of other
functions and procedures), you must first define the functions and
procedures within the declaration part of your program before you invoke
them. (A special case exists for referencing funflions and procedures
within other functions and procedures before they have been defined; see
Section 6.6.3, "Forward Declarations.")

Functions and procedures can be thought of as prpgrarns within a program.
They can declare variables, define and invoke procedures and functions of
their own (known as "local" procedures and functions), and input and output
data.

6.6.1 Functions

A function is a subprogram that performs some computation and returns a

value. (For example, the standard funçtioñ ABS takes a number and returns
the absolute value of it..) Pascal allows you to define your own functions
by including function declarations at the front of the program or procedure
that will call that function. Function declarations must appear after any
variable declarations.

The function declaration takes this form:

FUNCTION function—name (format parameters) : data—type of result;
function—block;

where the format parameters are identifiers that describe the variables (and
their data types) which will be used within the function. These variables
do not have to appear in a variable declaration statement, since they are
being declared within the function heading.

DECLARATIONS AND DEFINITIONS - Page 6—7

Fol towing the format parameters is the data type of the result of the
function. For example:

FUNCTION SufficientFunds(Request : REAL) : BOOLEAN;
BEGIN

SufficientFunds : Request <= AmountAvaitable

The heading above might identify a function that returns TRUE if a checking
account has enough funds to cash a spectfled check. The function block
starts with the BEGIN keyword and finishes with the END keyword. The
statements in between perform the action on the input data when the function
is executed. The function block takes this form:

Labet declarations
Constant declarations
Type declarations
Variable declarations
Procedure/function declarations
BEGIN—END block

As you can see, the block of the function follows much the same form as the
program block itself, except that a function definition ends with a
semicoton, rather than a period. At some point withtn the BEGIN—END block,
a value must be assigned to the function name ttself. This is the way that
the result of the function is returned to the program or procedure that
invoked it.

To invoke a function, Include the name of the function within the program
block along with the names of the variables that are going to supply that
function with data. For example, to invoke the function SufficientFunds,
you might include a statement line like thts:

IF SufficientFunds (100.50)
THEN WRITELN('Good check')
ELSE WRITELN('Sorry, overdrawn');

The statement above prints 'Good Check' if SufficientFunds returns TRUE, and
'Sorry, overdrawn' if it returns FALSE. You may supply variables,
expressions, or constants as the arguments of the function. Note that the
names of the variables you pass to the function do not have to have the same
names as those variables listed in the function heading. The first variable
(or constant) mentioned in the function invocation is substituted into the
function for the first variable mentioned in the function heading, the
second variable (or constant) in the invocation replaces the second variable
in the function heading, and so on. (Of course, the data types of the
variables must be consistent. For example, if you supply the variable Check
to the function SuffictentFunds, it must contain a number of type REAL.)

Remember that a function Invocation is always part of an expression. For
example, given the function NaxNum, these are valid function invocations:

DECLARATIONS AND DEFINITIONS Page 6—8

WRITELNYThe Largest number is: ,MaxNum(Number1,Number2fl;

or:

IF MaxNum(VaLuel,Value2) C 0 THEN WRITELN(Numbers are negative);

Lets Look at an exampLe of a function and function invocationS Suppose

your program frequently needs to check the range of input numbers A simple
function to make sure that a number is between 1 and 100 might Look

something Like this:

PROGRAM Validate; C Validate a numeric entry; make sure
that it is between 1 and 1OO }

VAR Target : REAL;

FUNCTION ErrCheck(LocaL : REAL) : BOOLEAN;
C Function does error checking on entry If 100 C number < 1,

ErrCheck reports error by returning a TRUE)
BEGIN C Begin function ErrCheck }

ErrCheck : Local C 1 OR LocaL > 100
END C End function ErrCheck J-;

BEGIN C Main Program }
WRITEYEnter a number between 1 and 100:);
READLN(Target);
IF ERRCHECK(Target)

THEN WRITELNYInvaLid entry: try again)
ELSE WRITELN(9Very good Correct entry')

END C Main Program)

Note that untiL the program begins executing the main program, where the
function is actuaLLy invoked, the function is not executed, even though the
function definition appears at the front of the program

662 Procedures

The major purpose of a function is to compute and return a vaLue The main
purpose of a procedure is to perform a set of operations For example,
lets say that you are designing a program that plays a card gameS At
various times throughout the program you may need to simulate the shuffling
of a deck of cards Rather than include this same piece of code throughout
your program (which would make the program hard to read and maintain), you
may designate this piece of code as a procedure The procedure declaration
names the procedure, tells what kinds of variables it will use, and gives
the statements that make up the procedure It takes this form:

PROCEDURE procedure—name (formal parameters);
procedure—block;

DECLARATIONS AND DEFINITIONS
S Page 6—9

The formal parameters list the vafiables (and their types) with which the
procedure wilt work. 'for example:

PROCEDURE PrintReport (Title : STRING; PageSize : INTEGER);

The procedure block takes this form:

Label declarations
Constant dec (.arat ions
Type declarations
Variable dectarations
Procedure/function declarations
BEGIN—END block

F

To invoke the procedure, include the name of the procedure within your
program. Unlike a function invocation, a procedure invocation Is a program
statement, not an expression. For example, say that you have a procedure
named Shuffle that simulates the shuffle of a deck of cards:

BEGIN
IF Dealer = New OR Deck = Empty
THEN Shuffle

END;

Although a procedure may take a form very much like that of a function, it
does not necessarily return a value. Notice that it also does not have to
accept any arguments. (For information on using procedures to return
several results, see Section 6.6.4.2, "Reference Parameters.')

6.6.3 Forward Declarations

What happens when a procedure or function declaration invokes a procedure or
function whose declaration has not yet appeared In the program? There are
times when for aesthetic or practical reasons (or because the two routines
call each other) you must invoke a procedure or function before Its
definition appears in the, declaration part of the program. Pascal provides
a way to do this.

The forward declaration tells the Pascal compiler, "We'll define this later;
don't worry that you haven't seen its declaration yet.' The forward
declaration takes the same form as the heading of a procedure or function
declaration, except that the word FORWARD replaces the procedure or function
block. In effect, we separate the heading from the block. For example,
take a took at the procedure DrawLine:

PROCEDURE DrawLine (Character : CHAR; Linesize, AngLe REAL);
FORWARD;

DECLARATIONS AND DEFINITIONS Page 6—10

Now a function or procedure declaration may appear that inv9kes the
procedure or function. Later within the dectaration part of the program,
the actual procedure or definition btock appears, preceded by the name of
the function. For ecample:

PROGRAM TaxReturn; C This program computes tac returns. First it
asks if the user wants instructions (short or long).)

VAR Short BOOLEAN;
Query : CHAR;

PROCEDURE Display(Short : BOOLEAN);
BEGIN C Disptay }

C This is the procedure that actual.I.y disptiys the
Instructions. It prints a long or a short
file, depending on the value of Short.)

S

END C Display)';

PROCEDURE Printlnstructions (Short BOOLEAN);

FORWARD; C The forward reference! }

FUNCTION AskAnswer (Query : CHAR) : BOOLEAN;

BEGIN C AskAnswer }
AskAnswer : FALSE;
IF Query = 'Y' OR Query &y' THEN AskAnswer :: TRUE

ELSE IF Query = 'V THEN PrtntInstructlons (Short);
END C AskAnswer Y;

PROCEDURE Printlnstructions;
BEGIN C Printlnstructions }

Short := FALSE C Initialized to long instructions. };
WRITE('Do you want short Instructions? V or N:');
READLN (Query);
IF AskAnswer(Query) THEN Short : TRUE;
Display(Short)

END C Printlnstructions);

BEGIN C Main Program }
WRITELN('We''re going to compute your tax return.'); WRITELN;
WRITELN('At any time in this program, you may

review the instructions');
WRITELN('by answering anyV or,N question with a

WRITE('Do you want instructions? CV or N): '); REAOLN(Query);

IF AskAnswer(Query) THEN Printlnstruct4ons(:Short);
WRITE('Do you want to average? (V or N): '); READLN(Query);
IF AskAnswer(Query) THEN WRITELN('OIC, We''l.t average.');
CNow, compute taxes...

S

END C Main Program 1-.

DECLARATIONS AND DEFINITIONS Page 6—11

Note that when the procedure block Printlnstructions appeared after the
Function AskAnswer, we did not include the formal parameters for that
procedure, since the procedure heading appeared at the time of the forward
reference

6,6,4 Formal Parameters

We would like to include a word here on formal parameters. Parameters are
variables used within a function or procedure, Pascal greatly extends the
usefulness of your routines by allowing your program to supply those values
at the time that you invoke your function or procedure, This means that you
can use your routines in a wide variety of situations, on a wide range of
data, Parameters give your functions and procedures a way to communicate
with the program that calls them,

The variables that are specified at the time you
procedure are called the "formal parameters,"
the actual invocation of your routine are called
For example, given the function heading:

FUNCTION Salary(Takehome, Gross : REAL) : REAL;

the formal parameters are the variables Takehome and Gross, When we invoke
that function we might do so using constants:

Raise : =Sa La ry (183, 250)

or, we might use variables which contain those values

Raise: 5a lary (Net,Tota U;

Note that the variable identifiers we use as formal parameters do not have
to be the same as the identifiers for the actual parameters. You can think
of the formal parameters as "placeholders" for the actual data which will he
used, The actual parameters are "plugged into' the formal parameters in the
same order as they appear in the routine invocation, (For instance, in the
example above, Net takes the place of Takehome, and Total takes the place of
Gross,) The total number of actual parameters must match the number of
formal parameters,

unchanged

defi
The
the

ne your function or
values you supply with

actual parameters"

6,6,4,1 Value Parameters — The formal parameters we have seen in our
examples above were all used to pass information into the function or
procedure, When we left the function or procedure, the value of the
variable we passed into the routine was not actually changed, even though it
might have been modified within the routine, In effect, the function or
procedure made a copy of the variable and used the copy for its
calculations, Then when we left the routine, the original value of the
variable was

DECLARATIONS AND DEFINITIONS
Page 612

This type of variable is called a "vaLue parameter" Value parameters may be
variables or expressiOnS

664 Reference Parameters It sometimes happens that you would like a

procedure or function to actually modify a variabie (Otherwise, the only
values you could return would be the single value returned by a function)
To tell a function or procedure not to use a copy of a variable, hut to use
the variable itself, include the VAR keyword in front of the parameter For

cx amp Ic:

FUNCTION Justify(VAR InputString:STRING;PageWidthREAL)REAL

which might modify the string InputString by inserting blanks so that it
equaled PageWidth in length, and returns the number of blanks inserteth A

parameter like InputString is called a reference parameter'

Another way of looking at value parameters and reference parameters is that
in the case of value parameters we are really dealing with two different
sets of variables: those outside the routine and those insideS In the case

of reference parameters, we are dealing with only one set of variables
Reference parameters must be variables

6.7 EXTERNAL DECLARATIONS

AlphaPascal provides an external library of procedures and functions This
collection of useful routines is available for use by your progranL You may

also write your own external libraries To tell AlphaPascal that you are
going to use a function or procedure that is in a standard library other
than STDLIB, you must precede the declaration of that function or procedure
with the keyword EXTERNALS For example:

EXTERNAL FUNCTION Graph (X,Y : REAL) : REAL;

or:

EXTERNAL PROCEDURE PrintLine (Line : STRING);

You do not include the procedure block or function block, since the actual
definition of the routine is in the external library

Besides identifying procedures and functions within your program that are
defined in an external library, you will use the external declaration to
designate elements that appear in files that are not a main program file
For example, suppose you have a main program file and three other files
which will be linked together to form one program (See Section SA,
"Program Structure," for information on main program and nonprogram files)
Within one file you may well want to use a procedure, function, or variable
that was declared and defined in another file, If you are going to link a
number of fi les together into one program, each file must contain an

S —

DECLARATIONS AND bEFINITIONS Page 6—13

external declaration.., for every element it needs to reference, If that
element was declared and defined in another file.
For example, if the variable CustomeriD was declared in file File3, and you
need to reference that variable in File2, FileZ contains the external
decLaration:

EXTERNAL !& CustomerlD : STRING;

There are some things you should keep in mind when making external
declarations:

1. You may not externally declare labels, copstants, or types. If you
need to have common definitions of these Items, use include files.
For Information on include files, see Section 4.3.2.2, "The Include
Option ($I).'

2. If you are going to use data files in your program, the
declarations for those data files must be in the main program file.
(That is, data files may not be externally declared in your main
program file.)

3. You must be very sure that the types given in your external
declarations exactly match the types given In the original main
declarations. For example, If one file has the declaration:

VAR Network : CHAR;

the external declaration in another file for that variable must
specify type CHAR:

EXTERNAL VAR Network CHAR;

CHAPTER 7

DATA TYPES

Weve already mentioned that a variable is a symbol that can represent more
than one data value, Weve also said that you must "declare the type" of
each variable used in a program. This chapter discusses the idea of data
type," and the various data types available in Pascal,

A data type describes the kinds of values that a variable can assume, For
example, if the variable CustomerlD can assume only numeric, integer values,
we say that its data type is "integer," Some languages allow you to let one
variable assume a variety of types, (For example a variable could have the
integer value 34 at one point, and the real value 34,56 at another point,)
Pascal, on the other hand, allows each variable to assume only one kind of
data type,

Pascal requires that you declare the type of data that a variable can
assume, This results in several advantages: 1) you can always deduce the
type of values a variable can assume by reading the program; you do not have
to run the program to figure it out; 2) certain operations may only he done
on specific data types; having to declare your variables aids the compiler
in making sure that you are not performing an illegal operation on a

variable; 3) the compiler is able to make sure that you are not improperly
mixing variables of different data types, (For example, you may not
multiply a real number by an integer and get an integer result,) Once a
variable has been assigned a data type, we have automatically defined the
operations that can be applied to that variable, the type of values it can
assume, and the standard procedures and functions that can he used on it,

Several data types have been predefined for you by AiphaPascal; these are
called "standard data types," The AlphaPascal standard data types are:
INTEGER, REAL, BOOLEAN, CHAR, STRING, and TEXT,

Data types are grouped into two categories: simple and structured, A simple
data type is a "scalar" type, A scalar data type is one that contains a set
of elements, and those elements are ordered, For example, the INTEGER data
type contains the set of whole numbers, These elements are ordered; for
instance, "2 is less than "1 which is less than 0 which is less than 1 which
is less than 2, and so on,

DATA TYPES
Page 7—2

Structured data types are more sophisticated than the simple, scalar data

types. If you were to create your own structured types, they would be made

up of simple data types. Pascal supplies a set of keywords (SET, ARRAY,

RECORD, and FILE) that you can use to build str(jctured types.

7.1 SIMPLE DATA TYPES

Simple data types can either be the pre—declared simple data types (INTEGER,

REAL, BOOLEAN, and CHAR), or they may be types defined by you. If defined

by you, a simple data type is either a scatar type or a subranqe of another,

already defined scal.ar data type.

7.1.1 INTEGER

Integers are whole numbers (that is, numbers with no fractional part).

Alphapascal allows you to use integers in the range of —32767 through 32767.

They are stored by the computer as one—word, signed 2's complement binary

numbers. These are integers:

32000

!450
MAXINT
+56

(Remember that the pre—declared constaflMAXINT is the largest integer that

AtphaPascat can represent, 32767.)

The standard identifier INTEGER designates the integer data type. For

example:
VAR Ellipse, Counter, Control : INTEGER;

The operators that have been defined for Integers are: addition (+);

subtraction or sign inversion, C—); multiplication (*); integer division——

that is, divide and truncate—— CDIV); modulus (MQD); the set membership

operator IN; and, the relational operators. Using other operators (for

example, the real division operator, I) on integers causes the compiler to

generate an error message.

There are many functions that accept INTEGER arguments. (See Chapter 12,

"Mathematical Functions," for a list of the trigonometric, hyperbolic

trigonometric, and mathematical functions.)

Two other functions often used on INTEGER data are the PRED and SUCC

functions. PRED returns the predecessor element of the data type; SUCC

returns the successor element of the data type. For example, given three

variables, ONE, TWO, THREE of type INTEGER, and ONE = 1, TWO 2, and THREE

3: PRED(TWO) returns 1; $IJCC(TWO) returns 3. (See Sections 11.1.6 and

DATA TYPES Page 7—3

11.1.8 for information on PRED and 5(4cc.)

7.1.2 REAL

Real numbers are deciunat numbers that may contain a fractional, part. As
noted in Section 5.6, "Notation," we can represent rest numbers either in
decimaL notation or In scientific notation. These are reaL numbers:

9.3
—56.7812
7.03E+5
+45.0
1 .03E—3

The computer stores real numbers as three—word fLoating point numbers
significant to 11 digits (12 for reaL numbers in which the fractional part
is zero or less than 1E12), with an exponent range of roughLy 1E—37 to 1E37.

The standard identifier REAL designates the reaL number data type. For

example:

VAR Mean, Median, Variance : REAL;

The operators defined for real numbers are: addition (+); subtraction and
sign Inversion (—); muLtipLication (*); real division (I); and, the

reLationaL operators. Many functions accept REAL numbers as arguments.
Note that you may riot use the PRED and, SUCC functions or the set membership
operator IN on REAL data.

7.1.3 BOOLEAN

The Bootean data type contains two elements: TRUE and FALSE. These elements
are ordered so that FALSE < TRUE. (And, SUCC(FALSE) returns TRUE.) FALSE and
TRUE are pre—dectaréd constants. A Boolean variable represents a LogicaL
true or faLse vatue. For example:

IF Month = ApriL THEN Spring : TRUE

In the statement above, Spring is a Boolean variable that can assume the

vaLues TRUE or FALSE.

To designate a Boolean data type, use the standard identifier BOOLEAN. For

example:

VAR Query, Female, Employee BOOLEAN;

The operators defined for Boolean data are; AND, OR, and NOT. These are

called Boolean operators, and produce a Boolean result. For exampLe:

D'ATA TYPES
Page 7—4

xtY .
gives a result of TRUE if both X and V are TRUE, or FALSE if either X or V

(or both)? are FALSE.

When we use the relational operators on INTEGER, REAL, CHAR, or STRING data

types, the result is always of type BOOLEAN.

You may use the PRED. and SUCC functions on data of type BOOLEAN, and you may

use the set membership operator, IN. You may also use the ORD function:

ORD(FALSE) = 0
ORD(TRUE) = 1

7.1.4 CHAR

The computer recognizes a specific set of characters that it can represent.

The elements of this set are ordered; for example, A < B C C... In the case

of the Alpha Micro computer, this ordering, is :tttd the "ASCII coltatig

sequence," and the set of characters is called the "ASCII character set."

(For a list of the ASCII characters, see Appendix B, "The ASCII Character

Set .")

A CHAR variable contains one ASCII character. To indicate an element of

CHAR data type, enclose it in single quotes... For example:

VAR MenuChoice : CHAR;

MenuChoice : 'A';

The relational operators have been defined for use on CHAR data. Remember

that A < B because of their position in the ASCII collating sequence. You

may also use the set membership operator, IN on data of type CHAR.

To designate data as type CHAR, use the CHAR standard identifier.

VAR Initial : CHAR;

or:
TYPE Character CHAR;

VAR Item Character;

Because CHAR is a non—REAL scatar type, you can use the SUCC and PRED

functions to identify predecessor and successor eleaents of the type. For

example:

PRED('B')

returns an 'A'. You can also use the ORD function to determine the position
of the character In the ASCII character set. (For more information on PRED,

SUCC, and ORb, see Chapter 11, "Miscellaneous Functions and Procedures.")

DATA TYPES Page 7—5

NOTE: Remember that CHAR data is only one ASCII character. Another standard
data type exists, STRING, which reprsents a coLlection of CHAR data. For
example: 'A' is CHAR data, but 'ABCD' is STRING data. For information on
STRING, see Section 7.2.3, "STRING."

7.1.5 User—Defined Scàlar

Pascal allows you to define your own scatar types. To do so, use the type
declaration statement. You will supply the name of the data type, and the
elements of which It is composed. For example:

TYPE Spectrum = (Violet,Blue,Green,Yellow,Orange,Red);

Just like any other scalar type, your data type consists of ordered
elements. This ordering is reflected by the order in which you list the
elements in the type declaration statement. For exampLe, Qiven the
statement above, Violet < Blue < Green, and so on. ?ou can then declare and
use a variable of the data type you have defined. For example:

VAR Colors : Spectrum

IF Colors = Red THEN WarmColor : TRUE;

The relational operators have been defined for user—defined scalar types,
and return a Boolean result. Internally, the computer stores each of these

elements as an integer value. (For example, in the example above Violet is
0, Blue is 1, and so on.)

You may not use scatar types In I/O operations. For example, this statement
is illegal:

WRITE (Yet low)

if Yellow is an element of a user—defined scalar type. However, you could
say something like:

IF Colors = Yellow THEN WRITE('Yellow');

Note that Colors is a variable, but Yellow is a constant of the scalar type
Spectrum (just as the number 2 is a constant of the scalar type INTEGER).

You may only use relational operators and the set membership operator, IN,
on an element of a user—defined scatar type.

NOTE: Rather than using a type declaration followed by a variable
declaration, you may combine both statements into one variable declaration
when defining your own data types. For example:

VAR WaveLengths,Colors : (Violet,Blue,Green,Yellow,Orange,Red);

DATA TYPES
Page 7—6

However, If you are going to have more than one variabLe declaration that

declares variables of that type, you must have a Separate type declaration

statement :lnstead.

You may use the ORD, PRED and SUCC functions on user—defined scalar types.

For example, given our example above:

ORD(Violet) = 0
ORDCBIue) = 1

SUCC(Vtotet) = Blue
PREeCorange) = Yellow

7.1.6 user—Defined Subrange

Pascal allows you to define a subrange of a previously defined data type.

For example, given the data type Spectrum above, suppose you want a variable

to only access the first three colors elements of that type, Viotet, Blue,

and Green. You could define a subrange scatar type:

TYPE Coldcolors = Violet .. Green;

You may define a subrange of any user—definedor standard scatar type except

type REAL. Use the type declaration statement in this format:

TYPE Type—name = lowerlimit .. uppertimit;

The symbols '.." tell Pascal that you are establishing a sthrange.

Upperlimit and Lowerlimit are the beginning and ending elements of the

subrange. For exampte:

TYPE Decimal = '0' .. '9';

tells Pascal that we want to define a type named Decimal that can assume

values in the range of O' through '9' of the standard data type CHAR. We

can then declare a variable of that type:

VAR Number : Decimal;

NOTE: You may also directly declare a variable to of a subrange without

using a type declaration statement. For example:

VAR Number : '0' .. '9';

7.2 STRUCTURED DATA TYPES

Structured data types are built up of simple scatar data types. Several

keywords can be used to define structured data types: ARRAY, RECORD, SET,

and FILE.

DATA TYPES Page 7—7

You may define your own structured data types in much the same way that you
were able to define simple scalart"pes. (SeeSection 7.1.5, "User—defined
Scalar.') Two structur'éd types have been pre—dectared for you: STRING and
TEXT.

7.21 Packed Data Types

Before we discuss the various structured data types available to you, we'd
like to digress for a moment and talk bout how the computer represents data
types in memory.

Structured data types sometimes require quite a bit of room in memory. For
example, consider how many memory locations must be at located for a
structure such as:

ARRAY CQ..1O,0..10,0..1O,0..10] OF CHAR;

where more than 10,000 elements must be handled. (NOTE: We discuss the
ARRAY data type in Section 7.2.2, "ARRAY.') It is often the case that only
one element of such a structure is stored in one memory location, even
though there physically may be room for more. To hep minimize memory use,
Pascal allows you to create "packed' data structures, in which the data in

the structure are packed together in a minimum amount of space. To create a
packed data type, include the keyword PACKED in your type declaration
statement:

TYPE Type—name = PACKED data. type

For example:

TYPE CustomerlD = PACKED ARRAY C1..50] OF CHAR;

You may also pack records by preceding the keyword RECORD, with the word
PACKED. Only the array or record immediately following the PACKED keyword
is affected, and any nested arrays or records must be explicitly packed. As

one example of the efficiency you can sometimes gain in packing data,
consider the following data structure of type RECORDi

TYPE Date =
RECORD

Month : (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sept,Oct,Nov,Dec);
Day 1..31;
Year : 0..99

END;

Unpacked, the data above takes up three words of memory; packed, it takes up
only one word.

NOTE: Some types of data cannot be packed (e.g., real numbers), and the
keyword PACKED in the type declaration for such data types has no effect.

D*TA TYPES
Page 7—8

Your program does not need to handle a packed data type differently than any

other data type. (NOTE: Standard Pascal requires that you use the, UNPAcK

and PACK. standard procedures to convert between packed format and a format
that your program can read and write. AlphaPascal performs this conversion

for you automatically. In fact, AlphaPascal does not support the PACK and

UNPACK procedures.)

Although you do save memory space by packing a data type,, be aware of the

fact that your program wit.I. run slower when it handles such a data

structure, because of the time required to unpack and repack data.

7.2.2 ARRAY

An array has a fixed number of components which may be accessed In any order

by referencing the location of the element within the array. To reference

an element of the array, you give the name of the array, and the array index

(sometimes called a subscript) which selects the location within the array

whose contents you want to access. The subscript appears after the array

name in square brackets:

Array—namet mdcxi, Index2, ... 'thdexN 3

where each index is a simple type. For example, suppose the array PartNos
contains thirty part numbers, and you want to see what the twentieth one is.

You would access the twentieth location in the array by saying:

WRITELN(PartNosC2O]);

or perhaps:

WRITELN(PartNost2 + Offset);

Alt elements of an array must be of the same data type. Your declaration of
the array must include the data type of' the etements of the array, and the

data type of the subscripts by which' yout 'witi access eLements of that array.

(Declaring the type of the subscript tet:ls Pascal how many elements the

array wilt contain.) For example:

TYPE MonthTotats = ARRAYC1..2O] OF REAL;

The statement above tells Pascal that you are defining an array type named

NonthTotals whose elements wilt be real numbers, and that the locations in

that array will be accessed by refering to the numbers 1' through 20 (e.g.,

MonthTotals(1], MonthTotalsC2], ... MonthTotalsC20]).

The subscript data type can be any scatar type except REAL. Although this

field will often be of type INTEGER, it doesn't have to be. For example;

TYPE ComplaintNum = ARRAY Esobsoffice .. PaulsOffice] OF INTEGER;

S

DATA TYPES Page 79

where BobsOffice, PaulsOffice is a subrange of a userdefined scalar type,
such as (RohinsOffice, BobsOffice, PaulsOffice, BilLsOftice),

After you have declared an array type, you may now declare a variabLe of
that type. For example:

VAR Problems : ComplaintNum;

Pascal also allows a shorthand form that permits you to combine the type and
van able declarations:

VAR Problems : ARRAY [BobsOffice PaulsOffice] OF INTEGER;

One of the features that help make arrays so useful is the fact that
subscripts may be expressions. This allows you to access elements of the
array using variables for the subscripts For example

PROGRAM Squareit;

VAR Square : ARRAYE11O] OF INTEGER;
Counter : INTEGER;

BEGIN { Squarelt)öflnter : 1;
WRITELNCSquares of the integers 1 to 10 are:
FOR Counter : 1 TO 10 DO

BEGIN
SquarelCounter] : = Counter*Counter;
WRITELN (SquareiCounter])

END;
END {Squarelt }

The small program above creates array Square of ten elements. The FORDO
loop increments the variable Counter from 1 to 10, accesses the array
location indexed by Counter, and writes the square of Counter into that
location of the arrayS (For example, location SquareES] contains the number
5*5, or 25) You can use a similar type of loop to retrieve data from an
array. NOTE: Sometimes you can fill an array without using loops For
example:

InvoiceNumflAfl := InvoiceNum[B];

accomplishes the same thing as:

FOR I := I TO 5 DO InvoiceNumCAv,I] : InvoiceNumVB,I];

DATA TYPES Page 71O

7221 MultidimensionaL Arrays UntiL now our discussion has been of
"onedimensional" arrays; that is, arrays with just one index Pascal also
allows you to constrUct arrays with an unlimited number of dimensions (You

might consider a multidimensional array as an "array of an array") To
declare such a structure, include additional subscripts in the declaration
Suppose you want to keep track of a fiv&element array, each element of
which is in turn a fiveelement array:

TYPE InvoiceNums ARRAYPAiEt] OF ARRAYE15J OF INTEGER;

Pascal also allows a shorthand form:

TYPE InvoiceNums ARRAY[AiE,15J OF INTEGER;

The statements above create a two-dimensional array of 25 elements Each

element is referenced by a pair of subscripts If we wanted to make a
pictorial representation of our array InvoiceNums, it might look something
like this, with the Xs representing integer numbers contained in the array:

I
A X X X K X

X X X X X

C X X X C?] X

D X X X X X

X X X X X

If we wanted to access any number in the array, we would have to specify the
subscripts that designate the proper 1ocation (In the example above,
tAE designate array "rows"; 15 designate array "columns") The

subscripts for a twodimensionai array must identify the elemenUs row and
columnS For example, to identify the element marked with a question mark in
the table above, we would ask for Row C, Column 4:

Invoi ceNumsl C ,4]

The number of dimensions an array may contain is limited only by the room in
memory.

723 STRING

We have already mentioned the data type CHAR. A variable of type CHAR

contains a single ASCII character However, we often need to refer to
collections of characters (such as words, names, or addresses) rather than
just single characters

DATA TYPES Page 7—11

The standard data type STRING allows you to declare variables that contain a
group (or "string") of ASCII characters. For example:

VAR Accountlp : STRING;

The default maximum
string length maximum
length, follow the
brackets, For example:

string length is 80 characters, but you can set the
to from 1 to 255 characters, To set maximum string
identifier STRING with an integer constant in square

TYPE OrderlD = STRING[25J;

The STRING data type is approximately equivalent to:

TYPE STRINGCNJ = PACKED RECORD
LEN: 0, ,255;
TXT : ARRAY C1,,N] OF CHAR;

END;

If N above is
given above
purposes; you
The computer
front of the

7,2,4 TEXT

omitted, STRING defaults to size 80, (NOTE: The structure
for STRING is approximate, and is only given for illustrative
cannot access the length of string X by referring to X,LEN,)
stores strings with one character per byte, and one byte at the
string which tells Pascal how long the string is,

The standard data type TEXT is equivalent to the type FILE OF CHAR, For
example, suppose you want to declare and open a text file, you could say:

PROGRAM ReadListing;

TYPE ListFile = TEXT;

VAR ProgramList : ListFile;

BEGIN { ReadLi sting }

OPEN (ProgramLi st, ACCNT1 ,DAT

{ read data from file }

END { ReadListing 3-,

,OUTPUT);

to say:

AlphaPas
Replace

front of
TEXT),)

VAR

any
your
(For

NOTE: In the example above, it would also have been valid just
ProgramList : TEXT, (Note to users of previous versions of
the file type INTERACTIVE is no longer needed or supported,
occurrences of the identifier INTERACTIVE with TEXT, or at the
program re—define INTERACTIVE (eg,, TYPE INTERACTIVE
information on type FILE, see Section 7,2,6, below,)

DATA TYPES Page ?—1Z

7,2,5 SET

Sets give you a very-.! efficient y of handLing certain kinds of information,
Although, they are not exactLy analogous, you might think of sets as a kind
of packed Boolean array, The use of sets allos complex logical expressions
to be written concisely, and also gives a more flexible way of performing
logical tests, For example, instead of the cumbersome statement:

IF (Character = A) OR (Character = B') OR
(Character = t') OR (Character =

OR (Character E')
THEN Flag : TRUE;

using sets, you can simply say:

IF Character IN [A,EJ THEN Flag : TRUE;

To define a set type, use the type declaration statement, Every element of
the set must be of the same type, and that type may not be structured, You

must specify the name of the set data type, and the base type of that set:

IYPE Identifier = SET OF hase"type;

For example:

TYPE Player = SET OF 1,,5;

Once you have defined the set, you can now declare a variable of that type:

VAR Piece : Player;

which can assume one or more of the values of that set, Pascal also allows
a shorthand declaration:

VAR Piece : SET OF 15;

The symbol £ J is the set constructor operator, It takes a list of
expressions of the form:

[expressi on]

or:

[expression ,, expression]

For example, given that Y is of type SET, the following is a valid
assignment statement:

Y : [X, X+5 , , X+7J;

It assigns the element X and the elements X+5 through Xi-7 to the set Y, You
may mix sets of the same base type, For example:

DATA TYPES Page 7—13

VAR— X : SET OF 'A'.. 'X';
: 1Ff 5V

BEGIN
Y:Y+X;

END.

You may use modifying assignment operators on sets. (So, for example, you
could rewrite the statement above to: Y +)Q.)

The operations that you can perform on a set are those defined by set
theory: set union (+); set difference ()r; set Intersection (*); set
equality (); set inequality (0); set inclusion (< and >); and, set
membership (IN). The empty set, "E)', is a valid set.

If we define a type Newset that is a set of integers:

TYPE NewSet ai2L1 .. 10;

VAR Seti : Newset;
Set2 : Newset;

Result : Newset

and then assign values to the sets Seti and SetZ:

Seti :

Set2 : [5,6,7,8,9);

We can use the sets Seti, Set2, and Result to talk about the operations you
can perform on sets:

+ Set Union. An element is contained In the union of SETI and SETZ if
and only if it is an element of SET1 or SET? or both. For example:

Result : Seti + Set? { Result is the set C1..9))

— Set Difference. An element is contained in the difference of two sets
if and only if it is an element of SEll but not an element of SET?.
For example:

Result : Setl — Set? { Result is the set C1..4] }

* Set Intersection. An element is contained in the intersection of two
sets if and only if it is an element of both SETI and SET?. For
example:

Result : Seti * Set? C Result is the set [5) }

= Set Equality. Seti = Set2 is TRUE if and only If every member of
Seti is also a member of Set?, and every member of Set? is also a
member of Setl.

DATA TYPES S

Page 7—14

Result :s Seti = SetZ C Result is FALSE)

0 Set Inequality. Seti 0 SetZ is TRUE if and only if Seti Set2 is

FALSE.

Result := Seti 0 $et2 'C Result is TRUE)

<n Set Inclusion. The relation Seti <= SetZ is TRUE if and only if every
member of Seti Is also a member of Set2. In other wOrds, Seti <

SetZ is TRUE"tf Seti Is included In Set2.

Result := Setl < SetZ C Result is FALSE)

C6,93 <= Set2 is TRUE.

> Set Inclusion. The relation Set I >= SetZ is TRUE If and only if

every member of Set2 is also a member ofSetI. In other words, SetI

>= Set2 is TRUE if Set2 is Included In Seti. If X <= V is TRUE, then
V > X is TRUE.

IN Set Membership. If X is of the type declared as the base—type of
SetI, then XIN Seti is TRUE if and only if 1 is contained in SetI.

For example:

Result ; S IN Seti C Result is TRUE)

Result 26 IN Seti 'C Result is FALSE)

The IN operator takes as aJft argument a simple data type variable
or constant (e.g., CHAR or INTEGER); the right argument must be a

set of that data type (e.g., set of CHAR or set of INTEGER).

Below is a small sample program that uses sets:

.

DATA TYPES
. Page 7—15

PROGRAM;

VAR Y1,Y2,V3,N1,N2,N3 CHAR;
Query : CHAR;
Yes,No : SET OF CHAR;

BEGIN ——
Yes : E'Y']; No := ('N'];
WRITELN('The only valid response to a YeslNo question is Y or N.');
WRITELN('We''l$. let you add yout own answers.'); WRITELN;
WRITELN('Entef' three one—character symboLs that can stand for YES ');
WRITE('(separate them with a space, not a comma): ');
READLN (Yl ,Y2,Y3);

Yes := CY1,Y2,Y3] + Yes; C Add user—defined symbols to Yes)
WRITE('Now, enter three symbols for NO: ');.

READLN(N1,N2,N3);
No : CN1,N2,N33 + No; C Add user—defined symbols to No }
WRITELN;
WRITE('Let''s test this out. Enter a Yes or No answer: ');

READL.N(Query);
WRITELN;

IF Query IN Yes THEN WRITEt.N('Yes!')
ELSE iT Query IN No THEN WRITELN('No!')
ELSE WRITELNT'I didn''t understand you.')

END.

7.2.6 FILE

A file is a structured data type that contains a sequence of elements of the
same type. Since you can only access one element at a time, files might
seem much like an array. The important difference is that file are
associated with AMOS disk files, and so can store data permanently beween
program runs. Files are the means of communicating with devices such as
terminals and printers.

In addition, unlike other structured types, the size of a file does not have
to be declared, and may be of any size supported by the AMOS file structure.
Files typically hold data of type CHAR or they contain records (see Section
7.2.7, "RECORDS").

Use the type declaration to declare the data type:

TYPE identifier = FILE OF base—type:;

where Identifier is the name you want to assign to that type of file, and
base—type is the data type of the data in the ttle.

To use this type of file, you wilt have to define a variable of that type:

VAR file—identifier identifter;

DATA TYPES Page 7—16

The file—identifier acts as a communication channel. Using commands such as
OPEN (see Section 10.2.12, "OPEN'), you can associate the file—identifier
with an attual AMOS file, and transfer data between your program and the
disk file.
Rather than using a type declaration followed by a variable declaration,
AlphaPascal also permits you to use a shorthand method of combining type and
variable declaration statements:

VAR NewData : FILE OF INTEGER;

Remember that you must use one of the functions or procedures discussed in
Chapter 10, "I/O Functions and Procedures," to tell AlphaPascat which AMOS
file you want to associate with the tile variable that you have declared.

NOTE: The chapters in this book, especially Chapter 10, frequently use the
term "file—identifer." Other books that describe Pascal may just call this
identifier "file." The file—Identifier is not the same thing as a fite
specification. The file specification icThiWifies the actual AMOS disk file
that you want to read data from or write data to. The file-Identifier
identifies the Pascal file variable. Think of the file—identifier as
specifying the Pascal data structure with which the actual file wilt be
associated. Several of the functions: you can use to handle files accept a
file—identifier and a file specification. Por example, the FSPEC procedure
accepts three arguments: the file—identifier, an AMOS fitespec, and a
default extension. For instance:

FSPEC(Filel,'ACCNTS,''DAT');

where Filel is the file—identifier, and ACCNTS.DAT is the AMOS file we want
to associated with that file variable.)

The standard identifier TEXT has been pre—dec:lared for you; this Identifier
is equivalent to FILE OF CHAR. (See SectIon 7.2.4, above, for information
on TEXT.)

7.2.7 RECORD

A record is a data structure that consists of a number of components (called
"fields"). Unlike arrays, the record elements do not have to be of the same
type, and you access the elements by name, not by subscript. You can use
records to develop very sophisticated data structures (e.g., array of
records, file of records, pointers to records).

When you declare a record type, you are defining a template for a: group of
variables that contain related information, but which do. not have to be of
the same type. To define a record, use the type declaration. You will
provide the name of the record, and names and types of the fields within
that record:

S

DATA TYPES Page 717

TYPE identifier =
RECORD fieidname, , ,,fieid"nameN ; fiel&'typel;

fieLdname,,fieldnameN ; field—type2;

fieLdname, ,field'nameN ; fieldtypeN;
END.;

For example, a record to represent a date could be defined as:

TYPE Date =
RECORD

(Jan, Feb,Mar,Apr,May,Jun,Jul,Aug,sept,oct,Nov,Dec);
Day ; 1,31;
Year ; INTEGER

END;

You may then declare a variable of type Date;

VAR Deadline ; Date;

Such a variable would contain three pieces of information; the month, the
day, and the year. However, alL the information may be treated as a unit if
you want to do so.

if several fields share the same type, you may list them on one line,
separated by commas, You may also nest record definitions, For example;

TYPE Credit =
RECORD

Finances ; RECORD

Checking, Savings, Loans ; INTEGER;
END;

Name ; STRINGC5OJ;
Birth ; Date

END;

After defining a record, you may then declare a variable of that type. For
example;

VAR Customer ; Credit;

To select a fieLd of a record, use both the name of the record variable and
the name ot the field, separated by a period, For example;

It Customer,Name = Smith, John C, THEN CheckCredit;

You may assign the value of record to another, For example, given;

VAR Customer, Employee ; Credit;

you may assign the contents of record Customer to record Employee;

DATA TYPES Page 7—18

Employee : Customer S
which is equivatenVto:

Emptoyee.Finances Customer.,Finances;
Emptoyee.Name := Customer.Name;
Employee.Birth : Customer.Birth;

7.2.7.1 variant Parts — Records of the same type do not necessarily have
to contain the same fields. Suppose, for example, that you are maintaining
a record of customer information in which one of the fields tells you
whether or not the customer has a car.

Car : Boolean;

If, in fact, the customer does have a car, you might want to maintain
another set of information (such as ticénse number, model, year of make,
etc.), but it doesn't make sense to fill In that information for a customer
who doesn't have a car. Pascal allows you toattocate fields which may or
may not exist, depending on the value of another field. These fields, which
act as variations to the basic record structure, are called "variant"
fields. The variant field definition takes this form:

CASE field—type OF
Case—liffel...,Case—labetN : (fleld—tisti);
Case—tabel...,Case—tabelN: (fleld—tist2);

Case—label.. .,Case—labelN: (fietd—listPl)

or:

CASE case—field—Identifier : field—type OF
Case—label...,Case—labelN : iTield—tisti);
Case—label...,Case—labelN : <field—list2);

Case—label...,Case—labetN : (fietd—listN)

Several case Labels may be written on one line, separated by commas. The
list of variant fields must be enclosed with parentheses. (If no variant
fields are to be used in the case of a certain value, empty parentheses may
be used or the value may be omitted.) If you create a variant part, the
variant fields must appear at the end of the record definition. For
example:

.

DATA TYPES Page 7—19

TYPE Customer = RECORD

Name STRINGC5Q];
Number : tNTEGER;
CASE Car BOOLEAN OF

TRUE : (LicenseNo : STRINfI[7];
Model : STRINGrIS];

Year : INTEGER);
FALSE : U C You may omit this line)

VAR Query : ARRAY Cl. .200] OF Customer;

7.2.8 Pointer Type

Pascal recognizes two categories of variables: static and dynamic.

Static Variables — Static variables are declared in variable declarations
which determine their types and identifiers. You use
these identifiers to refer to the variables. Static
variables are created when the block in which they are
declared is executed, and remain in effect until your
program leaves that block. Most of the variables shown
in this book are static variables. They can only be
used when you know ahead of tiffie what the storage
requtrements of your program is going to be.

Dynamic Variables —. Dynamic variables are created on demand. They do not
appear in variable declarations, and so cannot be
referenced by variable identifiers. Instead, each
dynamic variable of type X has associated with it a
value of type X which Is cat led the pointer to X. The
pointer to x is used to access the corresponding dynamic
variable, and contains the value of the address of the
value.

The pointer type is declared via the type declaration statement:

TYPE Identifier = base—type;

(The symbol identifies a pointer.) For example:

TYPE Location = 'INTEGER;

The declaration above establishes a pointer type Location whose pointer
variables will point to variables of type RECORD. To use the pointer type,
we must declare variables:

VAR NewNumber : Location;

NewNumber is a pointer variable that Is associated with an integer value.
An identifier followed by the pointer symbol, designates the actual value
being pointed to. Therefore, NewNumber Is the actual integer value being
pointed to by NewNumber.

DATA TYPES Page 7—20

Now, to actually •use the data types we have defined, we must use the NEW

function to allocate the dynamic variable:

NEW(NewNumber);

creates an unnamed variable of type INTEGER, and stores the pointer to it in

NewNumber. To access the new pointer, we reference it as NewNumber'. (See

Section 11.1.4, 'NEW," for information on NEW. AtphaPascat also uses two

functions called MARK and RELEASE for manipulating pointer data; see

Sections 11.1.3, "MARK," and 11.1.7, "RELEASE.)

Pascal contains a special pointer constant that indicates that a pointer is

not pointing to anything: NIL. This is useful for indicating special

conditions, such as the end of a list. For example:

EndingNode : NIL;

The use of pointers gives the Pascal programmer an extremely powerful tool
for developing sophisticated structures (for example, Linked Lists). There

are many examples of usefuL applications for pointers. As one simple

example, suppose you want to sort an array of records:

TYPE Rec REcoRD
Name : STRING;
Data : ARRAY tl..5O] OF INTEGER

END;

VAR X : ARRAY C1..20] OF Rec;

you would have to perform a great many record moves; a stow and Inefficient

process. If you instead use pointers:

VARX : ARRAY (1.020] OF Rec;

you only need to sort pointers, which is much faster. Here is a very
small sample of the use of pointers:

VAR X, V : INTEGER;

BEGIN
NEW(X);
Y :

C : 5; WRITE(X);
6; WRITE(Y);

WRITEOC)
{ Note, X and V are pointing to the same

location, so output will be 5,6,6)
END.

A linked list is one example of a useful data structure you can build with

pointers. (You might also consider building doubly linked lists, trees,
queues, etc.) Let's take a took at the linked list and see why it is so

useful, and how to build one.

DATA TYPES Page 7"21

Each element of a linked list contains: 1) data; and 2) a pointer to the
next element of the list, To change the order of the elements in the list,
therefore, you only have to change the pointers, not the elements
themselves,

Lets say that you have a sorted array of integers. If you add another
number to the array, you must sort the entire array to get the elements back
into the oroper order, If, however, the numbers are stored as a linked
list, adding a new number just entails changing two pointers in the list,
For example:

Listi etc,

NewList (23) (32)—"—*(67)-—"—"+' etc.

(40)

To delete an element of the list, you only need to link around it,

Declare a linked list as follows:

TYPE Node = RECORD
Data : INTEGER;
Next : Node

END;

Notice that we said that the data portion of the list element will hold
integer data; you can use whatever data type you want,

Lets build a simple linked list, and then display it in reverse:

(Changed 30 April 1981)

DATA TYPES

PROGRAM LinkedList;

TYPE Pointer = 'Element;

Page 7"22

Element = RECORD
Dat a
Next

END;

INTEGER;
Pointer

VAR I,X : INTEGER;
P,List : Pointer;

BEGIN C LinkedList }
WRITEVEnter integer: fl;
READLN(X);
List : NIL; C Initialize list }
WHILE X <> 0 DO C End list when X 0 }

BEGIN
NEW(P);
P ,Data :

P',Next : List;
List : P;
WRITE(Enter integer; fl;
READLN(X)

END;
P : List;
WHILE P <> NIL DO

BEGIN
WRITELN(P',Data);
P : P',Next

END

END CLinkedList },

If you enter the numbers: 1 2 3 4
Other useful examples would involve
deleting elements from a list by upd

5 6 7, you see displayed: 7
inserting elements into

ating the list pointers,

6 5 4 3 2 1,
a list and

NOTE; AlphaPascal contains the orocedures MARK and RELEASE which you use in
combination with NEW to make use of a stack'like structure called the
"heap," (See Chapter 11 for information on MARK and RELEASE,) MARK and
RELEASE allow you to oerform very powerful operations with dynamic
variables, However, they can be dangerous if used unwisely; you should be
an experienced Pascal programmer before using MARK and RELEASE,

(Changed 30 April 1981)

C Get first number of list)

C Allocate dynamic variable }
C Put number into list)
C Set list pointer to next element)

CHAPTER 8

EXPRESSIONS

An expression is any combination of operators, constants, function calls,
and variables. For example:

(238.6 * Invoice + SQRT(TaxBilt))/365

This chapter discusses the legal AlphaPascal. operators, and gives the rules
of operator precedence. We also talk about some special expression handling
abilities of AlphaPascal.

8.1 OPERATORS

An operator is a symbol that directs Pascal to perform an action on the
elements of an expression. For example, the addition operator, +, in the
expression 34+123 tells Pascal to add the numbers 34 and 123. The operator
types in Pascal are: arithmetic, Boolean, relational, logical, and set.
Another special operator, the assignment operator, is used to assign values
to variables.

8.1.1 Operator Precedence

When Pascal sees the various operators in an expression, it evaluates the
elements in the expression in resporse to those operators. When more than
one type of operator appears in one expression, Pascal follows a set of
rules called "operator precedence" in determining which operators to act
upon first, If the precedence of all operators in the expression is the
same, Pascal evaluates the expression from left to right. For example,
Pascal evaluates the expression:

312 + 34 — 20

as:

(312 + 34) — 20

EXPRESSIONS
Page 8—2

evaluating the value 312+34 first, and then subtracting 20 from it. If the

precedence of the operators differs, Pascal evaluates the elements connected

by the operator of highest precedence first, and then evaluates the elements

connected by the operator of the next highest precedence, and so on. For

example, multiplication has a higher precedence than addition, so the

expression:

76 * 54 + 2

tells Pascal to multiply 76 by 54, and then add 2 to that value. The

expression evaluates to (76 * 54) + 2, or 4106.

You can change the order in which Pascal processes operators by using

parentheses. Pascal always evaluates elements in the innermost set of

parentheses first, and then works outward. For example, if you want Pascal

to act upon the addition operator first in the previous example, you must

use parentheses to tell Pascal to apply that operator first:

76 * (54 + 2)

This expression tells Pascal to add 54 and 2, and then multiply that value

by 76. The expression thus evaluates to 4256.

NOTE: The operator precedence used by AlphaPascal differs slightly from that

used by standard Pascal. We have changed the precedence to be compatible

with that of other language processors on the Alpha Micro system.

Specifically, in AlphaPascal the Boolean operators are of lower precedence

than the relational operators. The only time you will need to worry about

this is if you use expressions that compare unparenthesized Boolean

expressions with relational operators (e.g., NOT A = B).

If your programs must be written to be compatible with standard Pascal (for

instance, if you want to be able to transfer your programs to another

computer system that uses standard Pascal) use parenthese to make sure that

your expressions are evaluated in accord with standard Pascal's rules of

operator precedence. For example, the expression:

NOT A = B

is evaluated by AlphaPascal as: NOT (A = B).

If you want the expression to work for either standard Pascal or

AlphaPascal, you should either write it as:

(NOT A) = B

or:

NOT (A = B)

to indicate how you wish the expression to be evaluated.

The table below gives the rules of operator precedence for AlphaPascal:

EXPRESSIONS
Page 83

Highest Precedence

Parenthesized
expressions

Sign inversion: — (unary)

MultipLying operators: * I DIV MOD

Adding operators: +

RelationaL operators: < > < > IN

BooLean operators: NOT
A ND

OR

Lowest Precedence

SL2 Assignment Operator

The assignment operator, :=, assigns the vaLue of an expression to a
variahle (See Section 91, Assignment Statement," for information on its
use in a program statementS)

Pascal evaluates the expression on the right side of the assignment operator
symbol, The variable on the left side of the assignment operator then
assumes the value of that expression Note that all variables to which
values are assigned must have been previously declareth For example:

CardValue : 9S6

assigns the value 95ó to the variable CardValue The expression above must
have been preceded in the program by a statement such as:

1Y!J. CardValue : REAL

which declares that the variable CardvaLue may only assume real number
values.

Most languages (including standard Pascal) only allow the value of a

variable to be changed by an assignment statement, ALphapascaL allows the
value of a variable to be changed within an expression For example:

ZOO + Sum/Total : 365

Pascal reads the expression above as:

(ZOO + (Sum/(Total : 365))

That is, Pascal assigns the value 365 to the variable Total, and then
divides the value Sum by Total (which is now 365), and adds ZOO to it

EXPRESSIONS
Page 8—4

Remember that the assignment operator has the highest precedence, and that

Pascal evaluates exp'ressions from left to right when operator precedence is

equal. The Assignment operator has extremely high "left precedence," and

very low "right precedence." That means that it "binds" Itself strongly to

the nearest element on the left, but loosely to the remaining elements on

the right. To make this Idea clearer, consider the following expression:

Result : 10 + Score — Cards : 32 + Pairs — Singles

The second assignment operator binds strongly to the variable Cards, but

"swallows up" all of the expression to the right of itself. This means that

AlphaPascat evaluates the expression above as:

Result := (10 + Score — (Cards := (32 + Pairs) — Singles))

That is, Cards Is set to (32 + Pairs) minus the value of Singles. Then, the

value of Cards is subtracted from 10 + Score. That value is assigned to the

variable Result.

As another example of the use of the assignment operator in an expression,

consider a situation where you want to initialize a group of variables by

setting their values to zero. Pascal does not have a multiple assignment

statement. However, the expression;

Averages : Total : Sum : Median 0

causes Pascal to perform a multiple assignment as a side effect of

evaluating the expression.

8.1.2.1 Modifying Assignment Operators — AlphaPascal contains a set of

special operators called "modifying assignment operators." These operators

allow you to assign values to variables by modifying the value of the

variable instead of replacing that value. For example, the assignment

expression:

RecordCount : 120

tells Pascal to replace the value of RecordCount with the number 120. A

modifying assignment expression of the form:

RecordCount + 120

tells Pascal to take the value of RecordCount and modify it by adding 120 to

it. Pascal then assigns this new value to RecordCount. We thus modify,

rather than replace, the value of RecordCount. In effect, the expression

above is equivalent to:

RecordCount RecordCount + 120

.

EXPRESSIONS .

Page 8—5

The modifying assignment operators. are:

Adding modifying assignment operator

—= Subtracting modifying assignment operator
Multiplying modifying assignment operator

It Dividing modifying assignment operator

As another example, the statements:

Number :s 1;
FOR I = 1 TO 5 DO
Number n 2 CSame as 'Number : Number * 2')

compute two to the fifth power. So, Number takes on the values 2, 4, 8, 16

and 32.

8.1.3 Arithmetic Operators

The arithmetic operators are:

+ (unary) Identity Takes INTEGER or REAL operands; result is

same type as operands.

— (unary) Sign Takes INTEGER or REAL operands; result is

inversion same type as operands.

+ Addition Takes INTEGER or REAL operands; result is

same type as operands.

Subtraction Takes INTEGER or REAL operands; result is

same type as operands.

* Mutti— Takes INTEGER or REAL operands; result is

plication same type as operands.

DIV Integer Takes INTEGER operands; result is INTEGER.

division

I Real division Takes INTEGER or REAL operands; result is

INGEGER or REAL.

!1Q2.
Modulus Takes INTEGER operands; result is INTEGER.

NOTE: If you wish to use the sign inversion symbol, —, you must enclose the

number in parentheses if another operator precedes the number. For example,

the expression 3 * —5 is illegal, but the expression:

3 * (—5)

is valid, and evaluates to —15.

EXPRESSIONS
Page 8—6

8.1.4 Relational Operators

Equality Scalar, STRING, SET, or pointer operands.

BOOLEAN result.

C> Inequality Scalar, STRING, SET, or pointer operands;

BOOLEAN result.

C Less than Scalar or STRING operands; BOOLEAN result.

> Greater than Scatar or STRING operands; BOOLEAN result.

Ct Less than or Scalar or STRING operands; BOOLEAN result.

equal

(or set SET operands; BOOLEAN result.

inc I us ion

(subset))

> Greater than Scalar or STRING operands; BOOLEAN result.

or equal

(or set SET operands; BOOLEAN result.
inclusion
(superset))

IN Set First operand is any scalar, second. is its

membership SET type. BOOLEAN result.

8.1.5 Logical Operators

NOT Negation BOOLEAN operands; BOOLEAN result.

AND Conjunction BOOLEAN operands; BOOLEAN result.

OR Disjunction BOOLEAN operands; BOOLEAN result.

.

EXPRESSiONS
Page 87

8.1.6 Set Operators

+ Union Given sets of type X, result is of

type X.

Set difference Given sets of type X, result is of

typeX.

* jntersection Given sets o. ype X, result is of

type X.

8.2 CONSTANTS

A constant is a value that doesn't change. For example, the number 34.5 is

a constant, because it can assume no other value. Certain constants have

been pre—defined by Pascal for your use. They are:

MAXINT the maximum integer AiphaPascal. can represent.

FALSE Boolean false

TRUE Boolean true

You can use these constants as you would any others. For example;

{ Find the minimum of a list of numbers. Initialize CurrentMin to

targestpossible number.)

CurrentMin : MAXINT;
REPEAT

READ(DataFi le,NewNumber);
IF NewNumber < CurrentMin THEN CurrentMin : NewNumber

UNTIL EOF C Continue tiLt end of file is reached);

WRITELN('Smallest number is: ',CurrentMin);

Pascal allows you to assign a name to a constant so that you can identify It

by name within a program, rather than including the constant itself. For

example, It would be rather cumbersome)f you had to include the numeric

constant 3.14159 throughout a program. Once ygu use a constant definition

statement to assign 3.14159 a name (such as P1), you can refer to that

constant by name. For example:

WRITELN('The Circumference = ',Pi * 234);

You may also assign a name to a string constant. For information on naming

constants, see Section 6.3, "Constant Definitions." For information on the

form string and numeric constants may take, see Section 5.6, "Notation."

NOTE: Of course, constants are not variables; that is, you may not assign a

constant a new value within the program block.

EXPRESSIONS
Page 8—8

8.3 VARIABLES

A variable is a named symbol that represents a value. For example, the

variable named StudentlD might assume a range of student identification

numbers. Variables allow a program to operate on a variety of data.

Each variable in a program may assume only one type of value (e.g., integer

values, real values, Boolean values, etc.). Pascal requires that you

declare the data type of each variable before that variable Is used. (See

Section 6.5, "Variable Declarations," and Chapter 7, "Data Types." for

information on data types and declaring variables.)

For information on choosing a valid name for a variable, see Section 5.4,

"Legal Identifiers." A variable identifer may be In the form of an

expression. For example, consider the case where we want to refer to an

element in an array:

NewArrayt2,43 : 99;

8.4 IF—THEN—ELSE EXPRESSIONS

Wherever an expression is legal, AlphaPascal allows you to include an

IF—THEN—ELSE expression. This allows you to conditionally evaluate one of

two alternative expressions. The construct takes the form:

IF condition THEN expression ELSE expression

Note that you must include the ELSE clause if you use the IFTHEN

construct in this way. For example:

IF Credit > (IF $1 llAmt > 1000 THEN 2000 ELSE 0)
THEN WRITELN('OK, charge it.')
ELSE WRITELN('Sorry, send it C.0.D.');

The statement above contains this expression: IF BillAmt > 1000 THEN 2000

ELSE 0. This evaluates either to 2000 or to 0, depending on whether or
not the variable BlllAmt has a value greater than 1000. Therefore the
statement above either evaluates to:

IF Credit > 2000
THEN WRITELN('OK, charge it.')
ELSE WRITELN('Sorry, send it C.O.D.');

or:

IF Credit) 0
THEN WRITELN('OK, charge it.')
ELSE WRITELN ('Sorry, send it C.O.D.');

S

EXPRESSIONS
Page S9

Remember that expressions can also contain string constants or \,ariables
Consider the folLowing small program that conditionally assigns a value to

ErrorReport:

PROGRAM Recoverfl

VAR ErrorFLag : BOOLEAN;
ErrorReport : STRING;

BEGIN C Recovery)
ErrorFiag : FALSE;
ErrorReport : (IF ErrorFlag

THEN An error occurredV ELSE No errorfl
WRITELN(ErrorRePOrt)

END C Recovery).

NOTE: IncLuding an IFTHENELSE construct in an expression is not a feature
of standard Pascal. Note that IFTHENELSE may not be used in a variable
expression For exampLe:

(IF X THEN Y ELSE 1) : 1

is iLlegaL

B5 CASE EXPRESSIONS

Wherever an expression may appear, AlphaPascai allows you to include a CASE
expression. This allows you to conditionally evaluate one of several
aLternative expressions (NOTE: This is not a feature of standard PascaL)
The expression must take the form:

CASE value OF
valuel : expression;
vaLue2 : expression;

ELSE expression

For example:

WRITE(CASE ErrorCode OF
1 : IlLegaL inpuU;
2 : Number too Large;
3 : Number too smalL;
ELSE undefined errorfl;

EXPRESSIONS
Page SHO

The statement above chooses one string to write, depending on the vaLue of

the variable ErrorCode For example, if ErrorCode contains a value of 3,

the statement above evaluates to:

WRITECNumber too smaLL);

If ErrorCode contains a value that is not 1, 2, or 3, the statement

evaluates to:

WRlTEVUndefined error);

S

CHAPTER 9

STATEMENTS

9.1 ASSIGNMENT STATEMENT

The assignment statement assigns a value to a variable. It takes this form:

variable expression

Pascal evaluates the expression on the right side of the assignment operator

symbol, :=. The variable on the left side of the assignment operator then

assumes the value of that expressionp Note that all variables to which

values are assigned must have been previously declared.

For example, given that your program previously contatned the statement:

VAR AccountNum : INTEGER;

the statement:

AccountNum : 1024+1

assigns the integer value 10Z5 to the variable AccountNum. For more

information on the assignment operator, see Section 8.2, "Assignment

Operator." That section also discusses the use of the assignment operator

in expressions, discusses the precedence of the assignment operator, and

describes the AtphaPascal modifying assignment operators.

9.2 PROCEDURE CALLS

Procedure invocations may appear as program statements. (For information on

procedure parameters, see Section 6.6.1, "Formal Parameters.") Liberal use

of procedure calls in your programs illustrates one of the important

features of Pascal—— modularity. Given the appropriate procedure

definitions, a main program can be extremely easy to read. For example:

STATEMENTS
Page 9—2

BEGIN C Main Invetitory }
Open#iles(ReceiVng,MaIlutaCt) C Input filespecs for data from Receiving,

Manufacturing departments. Open files.)

ftata(ReceiVng,ManUfaCt) C Read inventory parts lists);

FindLow(LOwFile) C Compute which parts we are tow on

and write to file.);

PrintReport(Date,LOWFile) C Print list of parts we need more of)

END C Main Inventory }.

We can tell just by looking approximately what the program does. The

procedures OpenFites, ReadData, FindLow, and PrintReport do the actual work.

9.3 EXIT

EXIT allows you to exit from the program to the monitor or from a procedure

or function to a calling orogram or routine. EXIT takes one argument—— the

keyword PROGRAM or the name of the procedure or function you want to exit

from. For example:

EXIT (PROGRAM);

EXIT (Eva tErr);

(You may not supply EXIT with the program identifier; use the PROGRAM S
keyword to exit a program.)

9.4 GOTO STATEMENT

The GOTO statement takes the form:

GOTO label;

where "label has previously been defined in a label declaration statement.

The label may not lie out qf the current pracedure or fuflction block. For

example:

.

STATEMENTS
Page 9—3

(*6+)
PROGRAM Tip;

VAR Cost, Percent, Tip : REAL;
— Query : CHAR;

LABEL 100;

BEGIN. .(Program Tip)
WRITELN('Let''S calculate the waiter''s tip');
WRITEYWaS it good service (Y or N)?: ');
READLN (Query);
IF Query = 'N' THEN 6010 100;

WRITE('How much did you pay for dinner? ');
READLN(Cost);
WRITE('What pe:rcentage do you want to tip? ');
READLN(Percent);
Percent *= 0.01;
Tip Percent * Cost;
WRITELN('The tip is: ',Tip);

100: END (Program Tip).

NOTE: The AlphaPascal- compiler is initially set so that it does not
recognize GOTO statements; that is, It gives the error message "Illegal.
symbol." if it encounters a 6010 statement in your program. To tell the
compiler that you want to use 6010 statements in a particular program, the

compiler option $G+ must appear at the fropt of that program. (For

information on the $6 compiler option, see Section 4.3.2.1, "The 6010

Options (*6+ and $6—).")

9.5 NULL STATEMENT

One of the features that make Pascal programs especially flexible is the
fact that you may include a null statement within your programs. A null
statement allows you to include extra semicolons within compound statements,
and to omit statements in certain program constructs. For example, consider
the CASE expression below:

CASE expression OF
I : statementi;
2 : statement2;
3 : ; C Null statement)
4 : statement3;

ELSE statement4

By including just a semicolon after value 3, we tell the CASE expression to
perform no statement if the expression evaluates to 3.

STATEMENT'S
Page 9—4

As another example:

IF A = B THEN

— IF C = D THEN Flag : TRUE

ELSE { Null statement after ELSE)

ELSE NewFlag : True;

The use of the null statement above aLlows us to attach the second ELSE to

the first IF—THEN construct. (Otherwise, the second else woutd be performed

when C <> 0, rather than when A <> B.)

9.6 COMPOUND STATEMENT

The body of a Pascal program is a compound statement; that is, It is marked

with the BEGIN and END keywords, and contains one or more statements between

those keywords (even if the enclosed statement(s) is a nutt statement—— see

the paragraph above, Section 9.5, "The Null Statement").

Each individual statement may also consist of a compound statement. The use

of compound statements is what gives a Pascal program its nested, block

structure. Many sample programs In this book contain severaL BEGIN—END

blocks.

(See Section 6.2, "LabeL DecLarations," for information on labeling

BEGIN—END keyword pairs. Labeling these keywords tells the compiler to

report back to you with an error messageif the BEGIN—END keywords are not

matched as your Labels have indicated they should be.)

9.7 CONDITIONAL STATEMENTS

Conditional statements allow you to execute certain sections of code onLy if

specific conditions are satisfied. This section. discusses the IFTHEN,

IF—THEN—ELSE, CASE—OF, and CASE—OF—ELSE statements.

9.7.1 IF—THEN

The IF—THEN statement takes the form:

IF Boolean expression THEN statement;

where statement may, of course, consist of a compound statement. A Boolean

expression is one which evaluates to a BooLean value. For example: 1>5 Is

evaluated as FALSE, since I is not greater than 5. For example:

IF TestScore) 90 THEN WRITELN('Congratulations! An A+');

STATEMENTS
Page 9—5

The statement(s) following the THEN clause are, carried out If the Boolean

expression evaluates- to TRUE; if it evaluates to FALSE, control Is

transferred to the next statement after the IF—THEN statement.

Note that the statement following the THEN keyword may itself be an INTHEN

statement. For example:

IF Single THEN
IFWlthqJ.diflg > .36 THEN Dependents : 1;

(Which is the same as: IF Single AND (Witholdiag > .36) THEN...) If
Single evaluates to TRUE, everything after the first THEN keyword is

executed; otherwise, control passes to the next program statement.

NOTE: You may include the keywords IF—THEN in an expression to conditionally
evaluate one of two alternative expressions. See Section 8.4, "IF—THEN—ELSE

Expressions."

9.7.1.1 IF—THEN—ELSE — The addition of an ELSE clause to an IF—THEN

statement gives us a way to select one of two statements as a result of
evaluating an expression. The IF—THEN—ELSE statement takes the form:

IF Boolean expression THEN statement—I ELSE statement2

If the Soolean expression is TRUE, the first statement is executed;

otherwise, the second statement is executed. As in the case of the simpte
IF—THEN statement above, a compound tatement may appear in place of a

single statement. One of the two statements will always be executed. For

example:

IF Margin > LineWidth THEN Error : PGWDTH ELSE LineWidth —= Margin;

The line above Is from a program that formats documents. If the value for
Margin is greater than the current Linewldth, then we set an error code into
the Error flag; otherwise, we reset the LineWidth to the old value minus the
Margin.

What happens if an IF—THEN—ELSE statement contains multiple INTHEN

statements? To which IF—THEN statement does the ELSE apply? For example:

A = B THEN jf B = C THEN Flag := 0 ELSE Flag : 1;

Does Flag get set to 1 if A>B or if B>C? AlphaPascal nests ELSE5. That

means that in the case above, the ELSE applis to the last IFTHEN
statement; if 8C is FALSE, Flag 'is set to 1. As another example:

STATEMENTS
Page 9—6

PROGRAM DoubleElse;

VAR A,B,.C,D : REAL;

BEGIN 'C DoubteEtse }
WRITE('Enter A, B, C, D:);
READLN(A,B,C,D) 'C Enter values for A,B,C,D 1;

IF A = B
THEN IF C = 0

TIEN WRITELN('NO Else')
ELSE WRITELN('Elsel')

ELSE WRITELN('Else2')

END 'C DoubleElse).

As we said, ELSE5 are nested. That means that the second ELSE is applied if
the first IF clause (A8) is false; the first ELSE is applied If the second

IF clause (CD) is false. So, the output from the program above is as
follows:

AB CD Output

True True No Else
False True ElseZ
True False Elsel
False False Else2

9.7.2 CASE—OF

The CASE statement allows you to select one out of a group of statements for
execution. The CASE statement takes this form:

CASE expression OF
Case—label. ..,Case—label : statementi;
Case—label.. .,Case—label : statement2;

Case—label.. .,Case—tabel : statementN
END

The expression (called the "selector") is evaluated, and its value must be

the same as one of the case—labels. A selector must not be of type REAL,
and it must be of the same type as the case—labels. You may have as many

case—labels as you like, but each case—label may appear only once In any one
CASE statement. When a matching case—label is found, the statement
following that case—label is executed. For example:

STATEMENTS
Page 9—7

BEGIN 'C MainMenu)
WRflE('En'ter your choice from the menu above :');
READLN (MenuChOi ce);
CASE Menuchoice OF

Computelax
'B' : UpdateAceOUnt
'C' : PrintReport
'0' : DoBilling

END{ End-of CASE);
END 'C MainMenu).

The program block above performs the proper procedure based on the user

selection from the main menu.

NOTE: What happens if none of the case—labels match the selector? Standard

Pascal. says that such an event is undefined. AAphaPasc&l simply says that

If none of the case—labels are matched, then control passes to the next
program statement. (See the next paragraph fcr Information on using an ELSE

clause to catch a situation where no match occurs.)

9.7.2.1 CASE—OF—ELSE — AIphaPascat. allows a unique variant to the CASE

statement; the CASE—OF—ELSE statement. This statement takes the form:

CASE expression OF
Case—label.. .,Case—label : statementi;
Case—label.. .,case—late,l : statement2;

S

Case—label...,Casetabet : statementN
ELSE statement;

For example:

BEGIN 'C MainMenu)
WRITE('Enter your choice: ');
READLN (MenuChoi ce);
CASE MenuChoice OF

'A' : ComputeTax;
'B' : Update-Account;
'C' PrintReport;

DoBilling
ELSE WRITELN('No valid choice') 'C Didn't enter A,B,C, or 0

END C MainMenu).

Notice that the ELSE clause takes the place of the final CASE statement END

keyword.

NOTE: See Section 8.5, "CASE Expressions," for information on using the CASE

construct to conditionally evaluate one of several alternative expressions.

STATEMENTS Page 9—8

9.8 REPETITIVE STATEMENTS

It is often the case that one section of a program must be performed

repetitively, based on a certain condition. AtphaPascal provides a number

of repetitive statements: WHILE—DO, REPEAT—UNTIL, and FOR—DO. It is

important that you decide which of these statements Is exactly correct for

your application, since each differs somewhat in the way that it handles

final values.

9.8.1 WHILE—DO

The WHILE—DO statement takes the form:

WHILE Boolean expression DO statement

where the Bootean expression evaluates to a TRUE or FALSE, and the statement

may consist of a compound statement. For example:

PROGRAM;

VAR Counter, Number, Average, Sum : REAL;

BEGIN C Main Program }
Number 1 C Initialize Number to > 0. 3

Average : Counter : 0;

WHILE Number > 0 DO

BEGIN
WRITELN('Average: ',Average);
Counter i- 1;
WRITE('Enter number: ');
READLN (Number);
Sum + Number;
Average := Sum/Counter;

END;
END TWain Program 3.

In effect, you tell Pascal, "While the following condition is TRUE, execute

the following statements." As soon as the condition becomes FALSE, the

program finishes executing the entire WHILE loop, and then goes on to the
next program statement. It is possible that a WHILE loop will never be

executed if the initial condition is not true and never becomes true.

9.8.2 REPEAT—UNTIL

The REPEAT—UNTIL statement takes this form:

REPEAT statement—list UNTIL Boolean expression

STATEMENTS
Page 9—9

where statement-List may be seriis of statements separated by semicolons,

and expression evaluates to TRUE or FALSE. For exampLe

PROGRAM,

VAR Number : INTEGER;

Error : BOOLEAN;

BEGIN C Mai,p. program)

Error : FALSE;
REPEAT

WRITE('Enter an integer divisible by 3: ');

READLN (Number);

IF (Number MOD 3) = 0 THEN

— WRITELN('Correct. Try another.') ELSE Error ; TRUE

UNTIL Error
WRITELN('Incorrect. End of exercise.')

END C Main Program}.

Because the REPEAT—UNTIL keywords appar at the beginning, and end of the

Loop (making it cIear where the beginning and end of the Loop are), we do

not have to include the BEGIN—END keywords after the REPEAT keyword

(however, you may do so if you wish). A REPEAT looP will always be executed

at Least once.

9.8.3 FOR—DO

The FOR—DO statement allows you to execute a given statement or group of

statements a specific number of times. A FOR—DO .tOop is executed for every

value of the "control variable" from some starting value up to and including

some terminal value. A control variaIlé must not be of type REM.. The

FOR—DO statement takes this form:

FOR Variable—identifier : expression ?exPression DO statement

For example:

PROGRAM;

VAR Counter : INTEGER;

BEGIN C Main Program 3
WRITELN('The square roots of the integers 1 to 10 are

WRITELN;
FOR Counter : 1 TO 10 DO WRITELN('Square root: ',SQRT(Counter))

END C Main Program 3T —

Each time the statement after the DO keyword is executed, Counter is

incremented by one. The program above prints the square roots of the

integers from '1 to 10.

STATEMENTS
Page 9—10

A variant of the FOR4O loop exists that allows you to decrement the

control variable. It takes the form:

FOR Variable—identifier :
expression DOWNTO expression DO statement

Each time the statement after the DO keyword is executed, the cottrot

variable is decremented by one. Note that it is possible that a FOR—DO Loop

may not be executed at alt, if the initial and terminaL values of the

control variable are not in the proper range. (For example, the statement

FOR I := S TO 1... wilt not be executed, but FOR I : 5 DOWNTO 1... wilt be

executed.)

9.9 WITH—DO

The WITH—DO statement aLlows you to access fields of a record as If they

were simple variables. The WITH—DO statement takes the form:

WITH Variable_identifier1...,V8riableidentifit DO statement

The WITH—DO statement simply gives you a shorthand way of accessing record

fields without specifying the name of the record structure for each access.

(See Section 7.2.7, "RECORDS,' for information on records.) For example,

suppose you have a record made up of the following fields:

Carlnfo.Model
Carlnfo.Year
Carlnfo.Color
Carlnfo. Seria lNumber

You have 100 cars on your car lot, and you want to know how many of them are

red. The records may be set up this way:

TYPE Carlnfo = RECORD
Model : STRINGC3];
Year : INTEGER;
Color : $TRING(3];

SerialNumber INTEGER;
END C record)-;

VAR Counter,CarNumber : INTEGER;
CarLot ARRAY E1..100] OF Carlnfo;

Now you can process them. Without using a WITH—DO statement, you would have

to do something like this:

STATEMENTS
Page 9—11

Counter : 0;
FOR CarNumbçj' : 1 TO 100 DO

BEGIN
IF (CarLotCCarNUmber).M0tXZO')
AND (CarLotuCarNumber] .Color' red')

THEN Counter 4= 1;
WRITELN('Number of red XZOs is: ',Counter)

A more convenient way"is to use the WITH—DO statement:

Counter : 0;
FOR CarNumber : 1 TO 100 DO

BEGIN
WITH CarLotiCarNumber] DO

IF (Modet'XZO') AND (Color'red') THEN Counter + 1;
WRITELN('Number of reTT2Os ii: ',CountiFY

By specifying more than one variable—identifier, you can use the WITHDO

statement to access fields that occur within record fields. For example, to

access data in the reàord CarL.ot.MakE.MOdet, you could write something like

this:

WITH CarLot,Make DO
Model : 'HatchBack';

This is equivalent to:

WITH CarLot DO
WITH Make DO
Model :i'HatchBack';

.

44

CHAPTER 10

INPUT/OUTPUT FUNCTIONS AND PROCEDURES

The functions and procedures discussed in this chapter are used to transfer
data between your programs and the users of those programs, and between
programs and files. The routines we describe in the first part of the
chapter, "Basic Functions and Procedures,' are routines that users of
standard Pascal wiUl probably be familiar with. The last part of the
chapter, "Special Functions and Procedures for File I/O," contains
descriptions of functions and procedures that are particularly for use with
the AMOS file structure.

NOTE: You wiLl notice that we use the term "file—identifier" when discussing
a file variable, rather than the, simple term "file" (sometimes qsed by other
Pascal books). This is to help avoid confusing the file—identifier with the
"file specification," which is the specification oi the actual AMOS disk
file that is associated with the file variable. Using an AMOS file requires
that you first declare the file—identifier and then associate it with the
file specification of an AMOS disk file. 'See Section 10.2, "Special
Functions and Procedures for File I/O," for more information on using AMOS
disk files, especially Section 10.2.12, "OPEN.")

10.1 BASIC FUNCTIONS AND PROCEDURES

These are the Input/Output functions and procedures that users of standard
Pascal will be most familiar with. Later sections in this chapter discuss
special input/output functions and procedures that allow your programs to
access the AMOS file structure.

You will often use the procedures GET, PUT, READ, READLN, WRITE, and WRITELN
for transferring data between your program and the users of your program.
These procedures are also used to transfer data between your program and
special storage areas called "files." The other procedures discussed in
this section, PAGE, RESET, and REWRITE, are used only with files. Remember
that when we talk about "files," we are referring to the special data type
FILE that in AlphaPascal can be associated with AMOS disk files.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—2

Three special pre—dectared file—identifiers exist that you should be aware
of:

INPUT Specifying INPUT tells AlphaPascal that you want to use the
terminal as an input file. For example, when you use READLN to
get data from the terminal keyboard:

READLN (EmptoyeeNumber,Dept);

you have implicitly said:

READIN (INPUT,EmployeeNumber,r,ept);

(In other words, if you omit a file—identifier from the arguments
given to the READLN procedure, READLN assumes you want to use
INPUT.) INPUT is a TEXT file.

OUTPUT Specifying OUTPUT tells AlphaPascal to use the terminal as an
output file. For example, when you write data to the terminal
display via the WRITELN procedure:

WRITELN('Enter your Employee Number:);

you have implicitly said:

WRITEU4(OUTPIJT,'Enter your Employee Number: ');

OUTPUT is a TEXT file.

KEYBOARD The KEYBOARD file—identifier acts much the same as INPUT, except
that if the terminal is in Charmode, the characters typed by the
user of your program will not echo on the terminal display. For
example:

CHARMODE;
WRITELN('Enter password: ');
READ(KEYBOARD,password);

Asks the user of your program for a password, but does not display
the characters of the password as they are entered. When your
terminal is not in Charmode and you are using INPUT, the monitor
processes and filters your input. (For example, it appends a
line—feed to the end of a carriage return.) KEYBOARD and Charmode
give you a way to examine the input exactly as it is entered; the
monitor does no processing of the characters. That means that for
the example above to work, after typing the password, the user
must type a carriage return AND a line—feed. KEYBOARD is a TEXT
file. (For information on Charmode, see Section 11.2.1,
"Charmode.")

INPUT, OUTPUT, and KEYBOARD are associated with the special AMOS file
specifications TTY:, TTY:, and KBD:. See Section 10.2.1 for information on
these special devices.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—5

If you are using READ to input data, remember that you wilt have to do a
READLN after end—of—line has been readhed to make It read past the tine—feed
at the end of the carriage return in order to reset EOLN to FALSE. For
example:

PROGRAM TestEOLN 'C Count how many characters are in input };

VAR Source : CHAR 'C Input.);
CouDter : INTEGER;

BEGIN 'C TestEOLN)
WRXTE('Enter a line of characters: ');
READ(Source);
Counter : 0;
WHILE NOT EOLN DO

BEGIN
WRITE(Source);
Counter += 1;
READ(Source)

END;
WRI't!rN;
WRITELN('—— number of characters = ',Counter);
READLN 'C Restore EOLN)

END 'C TestEOLN).

The program above keeps reading characters until the user enters a RETURN
(that is, until EOLP is TRUE). Then it prints the number of characters in
the input string. For example, a sample run of the program might look like
this:

Enter a line of characters: NOW IS THE TIME
NOW IS THE TIME
—— number of characters = 15

10.1.4 GET and PUT

GET and PUT are the two basic file I/O procedures. You may use GET and PUT

on files of any type, not just TEXT files.

10.1.4.1 GET — GET advances the buffer variable to the next file
component, in doing so, it assigns the value of that file component to the
buffer variable. The invocation takes the form:

GET(fi It—identifier);

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page lO6

where fileidentifièr is a fiLe variabLe, If doing a GET moves the buffervariable past the end of the file, then the EOF function returns TRUE, andthe contents of the buffer variable is undefined. So, save the contents of
the buffer variable into another variable before doing a GET, if you need toaccess the very last item in the file,

10,1,4,2 PUT PUT writes the value of the buffer variable into the
component at the current file position, The procedure invocation takes the
form:

PUT(fileidentifier);

where fiLe"identifier is a file variable. The EOF function remains TRUE,

10,1,4,3 Sample Program Using GET and PUT " Below is a very simple
program using GET and PUT, Notice that we use the OPEN statement (described
in Section 10,2,12) to associate the file-'identifier DataFi Ic with an AMOS
disk file, NUMBER,DAT, The RESET procedure closes the file and re'opens it
for input,

PROGRAM Fi leAccess;

VAR DataFile : FILE OF CHAR;
Entry : CHAR;

Counter : INTEGER;

BEGIN { Fl leAccess }
"WN(DataFiie/NUMBER,DAT,OUTPUT); C Open NUMBER,DAT for output }

FOR Counter : 1 TO 5 DO

BEGIN
WRITEVEnter data:); C Get data from terminal }
READLN(Ent ry);
DataFiie := Entry; C Assign data to buffer var)
PUT(DataFjle) C Write to file }

END;

RESET(DataFi le); C Close file and re-'open for input }
WHILE NOT EOF(DataFi Ic) DO

C Get data till file is empty }
BEGIN

Entry := DataFile';
WRITELN(Entry);
GET(DataFi Le) C Get data from file }

END;
END C Fl LeAccess :i,

NOTE: If you use OPEN to open a fiLe for input, or if you use RESET, the
first tiLe component is placed into the buffer variable for you,

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 107

1Ol,S READ, READLN, WRITE, and WRITELN

The READ and READLN procedures are elaborations of the GET procedure
(discussed above), You should use them only for TEXT files and terminal
input, WRITE and WRITELN are elaborations of the PUT procedure (also
discussed above); they are for use only with TEXT files and terminal output,

Although we say that these procedures are for use with TEXT files, you will
notice throughout this book that we have made wide use of them for
transferring data between programs and the terminal, Remember that your
terminal is a TEXT file, Two TEXT files have been pre"declared for use
with the terminal: INPUT and OUTPUT, If you omit the file"identifier from
the list of arguments given to READ and READLN, the procedures assume that
you want to use the fiLe INPUT, No file"identifier in the list of arguments
given to WRITE and WRITELN indicates that you want to use the file OUTPUT,

One last note on these procedures" they convert REAL or INTEGER data to
type CHAR, For example, when you say:

WRITE(Result);

where Result is an INTEGER variable containing the number 12, WRITE displays
the characters "12" on your terminal, This is what you want to do when
you "?a'"d''ta to a terminal, but be careful in using READs and WRITEs on
actual disk files, Consider performing file operations on a large file of
INTEGER data, It would be very inefficient to handle that data in character
form, since every time you manipulated it, you would have to re"convert it,
It would be far better to use GETs and PUTs rather than READs and WRITEs to
handle the numeric data, since GETs and PUTs do no conversion,

10,1,5,1 READ " The READ procedure inputs a list of variables from the
terminal or a fiLe, You should only use READ for TEXT files, NOTE: READ

does not read an entire line of data up to a carriage return/line"feed,

Given the file variable Data, the procedure READ(Data,Character) performs
these actions:

1, Scans over and ignores line"feed characters;

2, Character := Data';

3. GET(Data);

The procedure invocation takes the form:

READ(fi le"identifier, list"of"variables);

If you omit the file"identifier:

READ (Ii st"of"variahLes);

INPUT/OIJ'rpuT FUNCTIONS AND PROCEDURES Page 10—8

READ assumes that you want to use the file INPUT (that is, that you want to
input from the terminal keyboard).

The READ arguments must be separated by commas. For example:

READ(DataFl le,CustomerlD,CustomerName);

where Datarile is a file variable, and CustomerlD and CustomerName are
variable identifiers. Or:

READ (Linesi ze,Pagesl ze,PageNumber);

where Linesize, Pagesize, and PageNumber are varlabtes to be input from the
terminal.

NOTE: If you input more than one variable via the READ or READLN procedure,
those values should not be input separated by commas. For example, given:

READ(A,B,C);

The r!sponse:

123

is legal, but the response:

1,2,3

is not valid. If you respond with an illegal number (for example, you input
an "A" for a variable of type INTEGER), AlphaPascal assigns a zero to that
variable, instead of generating an error. It is the responsibility of your
program to check the validity of data input by the READ procedure.

10.1.5.2 READLN — READLN inputs a list of variables from a file or the
terminal keyboard. You should only use READIN on TEXT files. It differs
from READ in that it reads an entire line of data up to a carriage
return/line—feed pair. Given READLN(Data,Line), where Data is a file
variable, READLN performs the following actions:

Line : Data';
WHILE NOT EOLN(Data) DO

GET(Data);
GET(Data)

In other words, until we reach the end of the line (a carriage
return/line—feed pair), read data into the variable Line. The invocation
takes the form:

READLN(fi le—ldentifier,list—of—varjables);

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—9

where file—identifier is a file variable associated with the file you want
to read from, If you-omit the file—identifier:

READLN(list—of—variables);

READLN reads from the pre—declared file INPUT; that is, it reads from the
terminal.

Separate READLN argunents with commas.

10.1.5.3 WRITE — The WRITE procedure writes a list of expressions to afile or a terminal display. To print a string, encLose it within single
quotation marks. You must only use WRITE for TEXT files. WRITE does not
write an end—of—line marker (carriage return/line—feed pair) after writing
the specified data. To begin a new line, use the WRITELN procedure. The
invocation takes the form:

WRITE(fi le—identifier,expression—Iist),;

where file—identifier is a file variable associated with the AMOS file you
want to write the data to, and expression—list Is the data to be written.
The expression list may contain string lAterals, constants, variables of
type INTEGER, REAL, CHAR, PACKED ARRAYC1..n) OF CHAR, and STRING. For
example:

WRITE(NewFi le,'Two INTEGERs followed by STRING: ',INT,12,'IsaString');

If you omit the file—identifier:

WRITE(expression— list);

WRITE assumes you want to write to the pre—declared file OUTPUT (the
terminal display).

10.1.5.4 WRITELN — WRITELN outputs a list of expr!ssions to a file or
terminal. To print a string literal, enclqse it within single quotation
marks. You must only use WRITELN with TEXT files. WRITELN differs from
WRITE in that it writes an end—of—line marker (carriage return/line—feed
pair) after writing the specified data. The invocation takes the form:

WRITELN(fi le—identifier,expression—list);

where file—identifier is a file variable, and expression—list is a list of
expressions to be written. Separate the WRITELNarguments with commas. If
you omit the file—identifier:

WRITELN (expression—I ist);

4.

INPIJT/OIJtplJT FUNCTIONS AND PROCEDURES Page 10—10

WRITELN assumes thaf you want to write to OUTPUT (the terminal display).
You may write just a carriage return/tine—feed to a file or terminal, by
omitting the expression—list:

WRITELN(file—identifier);

or:

WRITELN;

10.1.5.5 Formatting Output — AtphaPascal uses certain conventions for
outputting data. SIRING data and data of type CHAR are displayed with no
leading spaces. Numbers are written differently, depending on whether they
are REAL or INTEGER.

AlphaPascal wilt always print REAL and INTEGER numbers In decimal notation
if the number is less than 12 digits. (if the number is larger than 12
digits, the number will be printed in scientific notation.) If the
fractional part of a REAL number is greater than 11 digits, that number wilt
be printed in scientific notation.

INTEGER numbers are printed as a sequence of digits, possibly preceded by a
minus sign. INTEGER numbers are not printed with a leading space. REAL
numbers are printed with a leading space, unless the number is negative, in
which case the minus sign takes up that space. REAL numbers are accurate to
nearly 12 digits. They are always rounded to 11 digits before being
displayed to avoid annoying output such as 4.9999... instead of 5.

Both WRITE and WRITELN allow you to include optional arguments that give
additional formatting instructions to AtphaPascat. The form of these
arguments is (for both WRITE and WRITELN):

WRITE(expressionl : X : Y,expression2 : X Y);

where X specifies a minimum field width, and V specifies the number of
digits to write after the decimal point. X and V must both be of type
INTEGER, and may be constants or variables. If you are not printing a REAL
number, you may not specify the V argument.

The minimum field width specifies the minimum number of spaces in which the
number is to be printed. For example, if you want AtphaPascal to print the
number right—justified in a field of ten spaces, use the value 10 for X.
This gives the minimum field in which to print the number; if the number
is larger than the specified field (for example, it is 11 digits),
AlphaPascal will not truncate the number, but will use the necessary number
of spaces.

If the number is a REAL number, you may also specify Y, the number of digits
to be printed to the right of the decimal point. (For example, for dollar
values, you would probably want to specify 2.) AlphaPascal rounds the REAL
number to the specified number of places; it does not truncate it.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—11

Although you will probably find the optional formatting arguments to be of
most use in printing numbers, you may also print data of type CHAR or STRING
specifying a minimum field width. By combining formatting of numbers and

strings, you can construct tables and charts in whlch titles and numbers are
neatly lined up. See the output of the sampLe program below for a simple
exampLe.

Here are some sample outputs (the "V' symbol indicates a blank):

WRITE(1, —1, 1.0, —1.0);

1-mi—i

WRITE(O.O, 1.0, 100.010, 0.0012, IE1Z, i.1E12, —1.23E—12);

0i$i00.01$.0012b1E12$1 .1E12—1 .23E—12

WRITE(O.0:6:2, 1.0:6:2, 100.010:6:2, 0.0012:6:2, —1.23E—12:6:2);

$$0.00$b1 .0O$100.Olab.OOb—0.00

Below we give a sample program that demonstrates both formatted output and
the use of files:

INPUT/OUTpuT FUNCTIONS AND PROCEDURES Page 10—12

PROGRAM FormItOutput;

VAR Report : FILE OF REAL;
Year,Profit : REAL;

I : INTEGER

BEGIN C FormatOutput }
OFEN(Report,'YTD.DAT',oUTpIj); C Put data In fiLe. 3
FOR I := I TO 5 DO

BEGIN C Loop 3
WRITE('Enter Year: ');READLN(Year);
Report:=Year;
PUT(Report);
WRITE('Enter Profit: l);REA:OLN(profjt);
Report :*rofit;
PUT(Report)

END C Loop 3;

RESET(Report); C Open file again—— for input 3

WRITELN('Year': 6 ,'Profit' : 18); C Print header 3
WRITELN('
WRITELN;

WHILE NOT EOF(Report) DO 'C Print contents untiL End of fiLe)
erGrFrC While—loop V

Year : Report;
GET(Report);
Profit := Report;
GET (Report);
WRITELN(Year : 6,Proflt : 20 : 2); C Format output 3-

END C While—Loop 3;
END C FormatOutput 3.

The program above prints a neat table of the form:

Year Profit

1971 650000.56
1973 1205600.34
1975 1865030.89
1977 100450677.34
1979 82380000.90

.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—13

10,1,6 PAGE

The Page procedure writes a form—feed to the specified file, The invocation
takes this form:

PAGE(fi le"identifier)

where file—identifier is a file variable.

10,1,7 RESET

The RESET procedure "rewinds' your file to the beginning, In effect, it
performs a CLOSE and then OPENs the file for input, The invocation takes
the form:

RESET(fi Ic—identifier);

where file—identifier is a file variable that is associated with the file
you want to reset, As does OPEN, RESET inputs the first file component into
the buffer variable for you.

10,1,8 REWRITE

The REWRITE procedure opens a file for output, In effect, it performs a

CLOSE followed by an ERASE; then it opens the file for output, The
invocation takes the form:

REWRITE(fi Ic—identifier);

where file—identifier is a file variable that is associated with the file
you want to rewrite, REWRITE has the ability to generate file names if no
file specification is associated with the specified file—identifier, These
file names begin with TEMPAA,TMP, and go on to TEMPAB,TMP, TEMPAC,TMP,
TEMPZZ,TMP, For example, the program:

PROGRAM TestRewrite;

VAR NewFile : FILE OF CHAR;

BEGIN { Testkewrite }
REWRITE(NewFile) No file specification associated with

NewFile 3';
PFILE(NewFile) C Print filespec now associated with NewFile 3'

END C TestRewrite 3',

prints:

TEMPAA,TMP

INPUT/Output FUNCTIONS AND PROCEDURES Page 10—14

10.2 SPECIAL FUNCTIONS AND PROCEDURES FOR FILE I/O

Standard Iascal gives you several functions and procedures that allow you toread and write data from a file (e.g., GET, PUT, READ, etc.). We talkedabout these routines in the sections above. Although you will often usemost of the functions and procedures discussed in those earlier sectiorn totransfer data between the terminal and your programs, Alphapascal also
provides a number of additional functions and procedures that allow you to
work with AMOS disk files.

Using the functions and procedures we discuss below, you can search for,
define, open and close sequential and random AMOS files. The functions and
procedures we discuss in the following sections are,:

LOOKIJP Searches for specified file; returns Boolean value.
OPEN Opens file In input, output, or random mode.
OPENI Opens file In Input mode.
OPENO Opens file in output mode.
OPENR Opens file in random mode.
CLOSE Closes file associated with specified file—Identifier.
FSPEC Returns number of charactei's in filespec; associates

filespec with file—identifier.
EXTENSION Forces specified extension into file specification.
GETFILE Reads information in file specification.
SEflILE Places information into file specification.
CREATE Allocates random file blocks
SEEK Positions random file to specified file record.

ERASE Erases specified file from disk.
FILESIZE Returns number of disk blocks used by file.
JOBDEV Returns device user is logged into.
JOBUSER Returns account user Is logged into.
flILE Prints name of file associated with specified channel
RADSO Converts three—character string to RADSO format.
RENAME Renames specified file.

10.2.1 Information on AMOS Files

The AMOS file system recognizes two major types of files: random and
sequential. Creating, opening, and performing I/O for the two types of
files differs somewhat, so It is important to understand the differences
between them.

Before we discuss AMOS disk files, we would like to mention again that the
pre—declared file—identifiers INPUT, OUTPUT, and KEYBOARD have associated
with them special AMOS file specifications: TTY:, TTY:, and KBD:.

TTY: specifies your terminal. (For example, If you give TTY: as the file
specification to the compiler listing option, $L, the compiler sends the
listing to your terminal display.) The KBD: specification is equivalent to
the TTY: specification except that it prevents input from being echoed to

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—15

the terminal display if the terminat is in Charmode. (See Section 11.2.1,
'Charmode," for information on charmode.)

NOTE: The normal end—of—line separator is a carriage return. Normally, the
monitor appends a line—feed character onto the end of a carriage return. If
you are in Charmode and are using the KBD: device, the monitor does not
automatically append a line—feed onto the end Of a carriage return.
Therefore, If you are using KDD: in Charmode you should use GETs and PUTs to
retrieve data, since. READ has a one—character lokahead buffer which wilt
cause it to wait on the tine—feed when it encounters a carriage return.

10.2.1.1 Random Files — Random file blocks are allocated contiguously on
the disk, and access to such a file Is random; that is, by computing an
offset, the system can access any one record in that file without accessing
any other record. Random file blocks are 512 bytes. To create a random
file, you will use the CREATE procedure.

One advantage in using a random file is that access to that file is very
efficient; using the SEEK procedure, you may randomly position to any record
in that file without stepping through prior records. In addition, a random
file is the only file which you may read from and write to without ctosing
and opening It again.

Do not use READ and WRITE to get data from a random file; use GETs and PUTs.
You should be aware that the order in which you do GET and PUT procedures
makes a difference. If you do a GET, and then a PUT: to update information in
a random file, the Last record retrieved via aET will be updated; if you
do a PUT, and then do a GET, you will get the record after the one you just
updated. A series of GETs will retrieve successive records in a random file
just as it wilt a sequential file. A series of PUTs will write to
successive records.

The EOF function does not return TRUE after the end of a random file has
been reached; instead, an error is generated. This error wilt also be
generated if you SEEK a record beyond the end of the file and then attempt a
GET or PUT.

10.2.1.2 Sequential Files — Sequential file blocks are allocated in a
linked list on the surface of the disk, with one word at the front of each
block containing the disk address of the next block in the file. Access to
such a file is sequential, since the system has to read each block in order
to find out where a specific block is on the disk. Sequential file blocks
are 510 bytes. The EOF function returns TRUE after the end of a sequential
file has been reached.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—16

10,2,1,3 Logical Records Within each disk block of a file, you can haveone or more '!iogical records, The size of a logical record is determined byyour programs, For example, if a grouping of data in your data file isCustomerName, 30 bytes; CustomerAddress, 50 bytes; and, SocialSecurity, 9bytes, your tile logical records might be 89 bytes, (For information onblocking logical records into disk bLocks, see Section 12,2,3, "CREATE,")
A random file record may not be larger than 512 bytes, and maximum randomfile size is 65535 records, A sequentiaL file logical record can crossblock boundaries, and so may be Larger than 512 bytes,

10,2,1,4 Opening and Setting Up Files The usual sequence of events foropen i n g and usi a file g6'es this way'"
1, Declare a file variable, For example:

VAR DataFi Ic : FILE OF CHAR;

This variable establishes the tile channel; the communication
line over which your program will transfer data in and out of the
file associated with that channel, In our discussions below, the
term "ti Ic—identifier" refers to the file variable associated with
the actual AMOS file,

2. Before you can use an AMOS file, you have to associate the
specification of that file with the file—identifier you have
declared, and you must open the file, This tells AMOS what AMOS
file you will be accessing via the file—identifier,

An AMOS file specification consists of:

Device Unit Filename Extension Project—number Programmer—number

For example:

DSKO: CUSTID, DATC1 00,3]

where DSK is the Device, 0 is the Unit, CUSTID is the Filename, DAT
is the Extension, 100 is the Project—number, and 3 is the
Programmer—number, You can use several procedures to associate the
file specification with the file—identifier (e,g,, FSPEC, SETFILE,
EXTENSION), You can then use OPENI, OPENO, OPENR, RESET, or
REWRITE to open the file, Or, you can combine these two steps by
using OPEN, which takes the form:

OPEN(file—identifier, filespec, mode);

where fi Ic—identifier is a file variable; fi lespec is the file
specification in string literal or variable form, and mode (INPUT,
OUTPUT, or RANDOM) tells AlphaPascal whether the file is going tobe used for input, output, or (in the case of random files), random

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—17

update. With INPUT and RANDOM modes, besides associating the
file—identifier with a file specification, OPEN also tnputs the
first record of the file for you.

3. Once you have set a file up to start doing I/O, you can use GETs
and PUTS or READs and WRITEs to transfer data between your program
and the file.

4. The final stage in using an AMOS file: is to close it, using the
CLO$E procedure. Closing the file makes sure that the last record
updated in the file gets written out to the file, and makes the
file available for being opened again. (You can't open an open
file.) It also makes the file—identifier available for association
with a possibly different AMOS file. Files are automatically
closed when you leave the procedure in which they were declared.

A simple case of opening and reading a file might look something like this:

PROGRAM TestFile;

VAR CustID FILE OF STRING 'C Declare file—identifier };
Userrile : STRING;

BEGIN 'C TestFite }
WRITE('Ptease enter name of your data file: ');
READLN(Userri le);

OPEN(CustID,UserFile,INPUT) 'C Open the file; get the data);
WRITE(CustID) 'C Display data in buffer 3;
CLOSE(CustID) C Close the file 3-

END C TestFite 3.

The small program above asks the user for a file specification and opens
that file. The actual process of using the OPEN procedure inputs the first
record of that file into the buffer variable automatically assigned to the
file—identifier, CustID.

10.2.2 CLOSE

You will use the CLOSE procedure to close a sequential file that is opin for
output. Closing the file ensures that the last record will get written to
the file; it also enters the file into the disk directory.

You may not OPEN a file that is already open, so if you have been using a
sequential file for output, and you want to use it for input, you must first
close it and then re—open it for input. The invocation takes the form:

CLOSE(fl le—identifler);

wflere file—identifier is the file variable associated with the AMOS file you
want to close. For example, given:

S

INPUT/OUTpIfl FUNCTIONS AND PROCEDURES Page 10—18

VAR TaxRbcs : FILE OF CHAR;

once we have opened and used the AMOS file associated with TaxRecs, we must
close it:

CLOSE (TaxRecs);

As your program leaves each procedure or function, any files declared in
those routines are .automaticatly closed for you. However, using the CLOSE
procedure ensures that if you are forced to do a hasty and untidy exit from
your program (for example, if a system error occurs), the last record of the
file wilt be written when the CLOSE procedure is executed. Closing a fite
also makes its file—identifier available for use with another file.

10.2.3 CREATE

Alt random files must be pre—allocated on the disk before you can use them.
(That means that their maximum size must be established before you use them.
You can copy rando files to sequential files and vice versa, so if you are
in doubt about the ultimate size of a file that you are building, it Is a
good idea to write the data to a sequential file first, then copy the file
to a random file after you know how many records have to be copied.)

The CREATE procedure allocates a random file. The invocation takes the
form:

CREATE(fi le—identifier,sThi);

where file—identifier is a file variable associated with the AMOS file you
want to create, and size Is a variable of type INTEGER that designates the
number of disk blocks you want the file to contala.

NOTE: You must associate an AMOS file specification with the file—Identifier
before using CREATE. (You may use FSPEC, SEflILE, or OPEN (with the RANDOM
mode) to do so.) For example:

PROGRAM RandomFi le;

VAR Ranrile : FILE OF STRING;
Counter : INTEGER;

BEGIN C RandomFile 3
Counter : FSPEC(RanFile,'NEWFIL','DAT');
CREATE(RanFi le,20)

END 'C Randomrite 3.

The program above creates the 20—block random file NEWFIL..DAT. The FSPEC
function assigns the filespec NEWFIL.DAT to the file variable FILE RanFile.

NOTE: CREATE causes an error If the file you are creating already exists or
if there are not enough contiguous blocks available for it to be allocated

INPUT/OUTpUT FUNCTIONS AND PROCEDURES Page 10—19

on the disk.

If you wish to create a random file capable of holding X records of type 1,
then the number of blocks it wilt require is:

1 + X DIV (512 DIV SIZEOF(T))

10.2.4 ERASE

The ERASE procedure erases a tile from the disk. The invocation takes the

form:

ERASE(fj Ic—identifier);

where tile—identifier is the tiLe variable associated with the AMOS file you
want to erase.

ERASE does not return an error if the specified file is not there. This
makes it very useful for ensuring that the creat+onof new files will be
successfully carried out. For example, since CREATE (see above) and OPENO
return an error if the file you want to create already exists, you can use
ERASE before using OPENO or CREATE to make sure that the file you want to
open does not already exist. If the file doesn't exist, ERASE can't erase
it, but no error is generated and no harm is done. If the file does exist,
ERASE erases it, and leaves the way clear for OPENO and CREATE.

We've rewritten the small program in Sectton 10.2.3, "CREATE," to include

the ERASE procedure:

PROGRAM TestErase;

VAR RanFile : FILE OF CHAR;
Counter : INTEGER;

BEGIN C TestErase)
Counter : FSPEC(RanFi le,'NEWFLL','DAT');
ERASE(RanFile); 'C Make sure file doesn't already exist)
CREATE (RanFi le,20)

END C TestErase).

10.2.5 EXTENSION

The EXTENSION procedure forces the specifi:ed extension in the specification
of the AMOS file associated with the specified file variable. The
invocation takes the form:

EXTENSION(fi le—identifler,,ext);

INPUT/OpjyptJT FUNCTIONS AND PROCEDURES Page 10—20

where file—identifier is the file variable associated with the AMOS file, Sand ext is a strlngtiterat or variable that designates the extension youwant to force to the file specification. For example:

PROGRAM TestExtension;

VAR ThePite : FILE OF CHAR;
Counter : INTEGER;

BEGIN 'C TestExtension }
Counter : FSPEC(TheFi le,'NEWFIL','DAT');
EXTENSION(TheFi te,'LST');
PFILE(TheFj Ic)

END 'C TestExtenstion).

The program above associates the AMOS file NEWFIL.DAT with thefile—identifier TheFile. Then it uses the EXTENSION procedure to change the
extension from DAT to LST. (Notice the use of the PFILE procedure to print
the AMOS file specification.) NOTE: EXTENSION does not change theextension of the file on the disk, it only changes the extension of the
file specification associatecfVffh the file—identifier.

10.2.6 FILESIZE

The FILESIZE function returns the number of disk blocks taken up by the AMOSfile associated with the specifie4, file variable. You must have prevIously
used the OPEN or LOOKUP procedure on the AMOSf1le. The invocation takes
the form:

FILESIZE(fi Ic—identifier);

where file—identifier is a file variable. For example:

PROGRAM Testfi leSize;

VAR Thefile : FILE OF CHAR;
Counter : INTEGER;

BEGIN 'C TestFile$ize)
Counter : FSPEC(Theri le,'BIGFIL','DAT');
CREATE (TheM te,50);
WRITELN(The number of disk blocks is: 5FILESIZE(TheFil,e))

END 'C TestFjle5ize).

First the program above creates the random file BIGFIL.DAT, then it prints:

The number of disk blocks is: SO .

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—21

10.2.7 ESPEC

The FSPEC lunction performs two main functions: It associates the specified
file variabLe with the specified AMOS file, and It returns the number of
characters in the specified variable or string literal that make up the file
specification part. The invocation takes the form:

FSPEC(fi Ic—identifier, filename, default—extension);

where file—identifier is a file variable with which you want to associate
the AMOS filespec, filename gives the name of, the AMOS file, and
default—extension gives the extension you want to use if no extension is
supplied. For example:

PROGRAM TestFspec;

VAR Datarile : FILE OF CHAR;
UserFite : STRING,
Counter : INTEGER;

BEGIN 'C TestFspec)
WRITE('Please enter file specificaton: ');
READLN(UserFl Ic);
Counter : FSPEC(DataFile,UserFile,'DAT');
WRITELN('Number of characters: ',Counter);
WRITE('File spec is: ');
PFILE(DataFi Ic)

END 'C TestFspec 3.

You can use FSPEC to input an entire command line, not just a file
specification. If the user of the program enters:

NEW,OLD

the program prints:

Number of characters: 3
File spec is: NEW.DAT

Then we can use the DELETE procedure:

DELETE (UserFi le,1,Counter)

to Leave the remainder of the user input ('OLD') in Userrile.

(Note that we used PFILE to print the name of the file associated with the
file variable DataFile, and that the FSPEC function added the default
extension of .DAT.)

C

INPLJT/OUVPJT FUNCTIONS AND PROCEDURES

*

Page 10—22

10.2.8 GETFILE

The GETFILE procedure allows you to find out exactly what file specification
is associated with a specific file—identifier. The invocation takes theform:

GETFILE(file—identifier, 0ev, Unit, Fuel, Fite2, Ext, Proj, Prog);

The arguments are declared INTEGER variables. The data is returned as
integers, because file specifications are stored internally by AMOS in a
special numeric form called 'RADSO." RADSO format compresses thr!e bytes of
ASCII data into two bytes of numeric data. (In other words, GETFILE returns
the file specification In RAD5O form.) Fuel and FiteZ are the first three
and second three*RAD5Q characters of the filename.

Although GETFILE may not sound too useful by itself, by doing GETFILEs onmore than one file you can compare elements of the specifications for those
files, and by using SETFILE (described in Settlon 10.2.20, below), you can
actually change those elements. For example, consider the program below.
It asks for the specifications of two data files needed for input; if those
two files do not exist on the same device and untt, the program moves the
files to the System Device, 051(0:, so that they are Oh the same disk
device and unit.

.

.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—23

PROGRAM;

TYPE Datafi Ic = FILE. OF CHAR;

VAR Dev, Unit, F1LeA, Files, Ext, Proj, Prog: INTEGER;
Devi, Uniti, FiteAl, FiteBi, Exti, Proji, Progi : INTEGER;
MaitLabel, Addresses : Datarile

BEGIN 'C Main Program 3'
WRITELN('Enter the specifications of your two data files');
WRITELN;
WRITE('File #1: ');READLN(Userspec);
WRITE('File #2: ');READLN(Userspecl);

OPEN(MailLabet,Userspec,OijTpUT); C Open the user —specified fiLes 3
OPEN (Addresses,user$pecl ,OUTPUT);
GETFILE(Mai lLabet,Dev,Unit,Fi leA,Fi LeB,Ext,Proj,Prog);
GETFILE(Addresses,Devl,Unitl,Fj leAl,Fi leBi,Exti,.Projl,Progl);

C See If files are on the same disk 3'
IF (Dcv C> Dcvi) OR (Unit <> Uniti) THEN.

BEGIN
WRITE('You have asked for files: '); PFLLE(Userspec);
WRITE(' and '); PFILE(Userspecl); WRITELN; WRLTELN;

WRITELN('Both of your data files must be on the same');
WRITELN('device and unit; we are moving them both to DSKO:.');

SETFILE(Mai lLabel,RAD5O('DSK'),RADSO('O'),Fi teA,Fl teB,Ext,Proj,Prog);
SETFILE(Addresses,RAD5O('D$K'),RADSO('Q'),Fl LeAl,FI teal,

Extl,Proji,Progl)a;
WRITE('Your files are: ');PFILE(Userspec);
WRITE(' and ');PFILE(Userspeci);

END C Main Program 3.

10.2.9 JOBDEV

The JOBDEV function takes two INTEGER variable arguments. The invocation
takes the form:

JOBDEV(Dev,Uni t);

JOBDEV returns In Dcv the device you are currently logged into (in RADSO
form), and returns in Unit the device unit you are currently Logged into (In
INTEGER form).

INPUT/QUTPtJT FUNCTIONS AND PROCEDURES Page 10—24

10.2.10 JOBUSER

The JOBUSER functi,n takes two INTEGER variabLe arguments. The invocationtakes the form:

JOBUSER (Proj ect,Programmer);

It returns in Project the project number (in decimal) you are logged into,
and returns in Programmer the programmer number (in decimal) you are logged
into.

10.2.11 LOOKUP

The LOOKUP function returns a TRUE or a FALSE depending on whether the
specified file exists. The Invocation takes the form:

LOOKUP(fi le—identifler);

where fite—identifier is the file variable associated with the AMOS file you
are looking for. Since several file procedures generate an error if the
file specified to them already exists (e.g., OPENO, CREATE), white other
procedures generate an error if the file doesn't exist, doing a LOOKUP
before one of these procedures is a good idea. For example:

PROGRAM LookForlt;

VAR FILeID : FILE Of CHAR;
Target : STRING;
Query : CHAR;
X INTEGER;

BEGIN C LookFortt }
WRITE('Enter the file you want to write to: '); READLN(Target);
X : FSPEC(FiteID,Target,'DAT');
IF LOOKUP(FiteID)

THEN
BEGIN

WRITE('That file already exists. Destroy it? Ct or N): ');
READLN (Query);
IF Query = 'N' THEN EXIT(PROGRAM);
ERASE(Fi LeID);
WRITELN('Fite erased.')

OPENO(Fi leID);

WRITELN('Fite ',Target,' opened for output.)
END C LookForlt 3.

The program above checks to see if the tile specified by the user already
exists. If the file exists, the user is asked to decide whether or not to
save the file, or get rid of It and start a new one of that name.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—25

10.2.12 OPEN

The OPEN procedure opens a sequential file for :snput or output, or opens a

random file for both input and output. The invocation takes the form:

OPEN (file—identifier, filespec, mode);

where file—identifier is a file variable, and filespec is a valid AMOS file
specification. Mode may be INPUT, OUTPUT, or RANDOM, and specifies whether
the file is to be a sequential file used for input or output, or (in the
case of RANDOM), whether it is to be a random file used for input and output
both. If you are using OPEN in. OUTPUT mode, it deletes the specified file
if it already exists. Default extension is .DAT. For example:

OPEN (INP, 'TEST', RANDOM);

associates the AMOS file TEST.DAT with the file—identifier INP, and opens
the random file for input and output. Most of the sampLe programs in this

chapter use the OPEN procedure.

NOTE: OPEN in INPUT or RANDOM mode inputs the first record into the buffer
variable.

10.2.13 OPENI

OPENI is a variation of the OPEN procedure; It opens a sequential file for

input. The invocation takes the form:

OPENI(fi Ic—identifier);

where file—identifier Is a file variable associatethwith the AMOS file you
want to open. If the file does not exist or if the fiteidentifier has not
been associated with an AMOS file (via an ESPEC or SETFILE) OPENI generates
an error. OPENI inputs the first record of the file into the buffer
variable.

10.2.14 OPENO

OPENO is a variation of the OPEN procedure; it opens a seAuential file for
output. The invocation takes the form:

OPENO(fi Ic—identifier);

where file—Identifier is the file variable associated with the AMOS file you
want to open. If the file already exists or if the file—identifier has not
been associated with an AMOS file (via FSPEC or SETFILE), OPENO generates an
error.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES
Page 10—26

10.2.15 OPENR

SOPENR is a variatton-of the OPEN proâedure; it opens a random file for inputand output. The file must exist, and may not already be open. Theinvocation takes the form:

OPENR(fj le—identifier);

where f1te—idntjfjer is the file variable associated with the AMOS file youwant to open.

NOTE: OPENR inputs the first record of the file into the buffer variable.

10.2.16 PERt

The PFILE procedure displays on your terminal the AMOS file specificationassociated with the specified file—identifier. The Invocation takes theform:

PFftE(fi Ic—identifier);

where file—identifier is a file variable associated with the AMOS file whosespecification you want to see. (Several of the sample programs in thischapter use PFILE.)

10.2.17 RADSO

The AMOS system stoces much of the information used by the file system in aspecial form, called "RADSO." RADSO compresses three bytes of ASCII datainto two bytes of numeric data. The RAD5O procedure converts a string intoRADSO form. This is necessary if you are going to use the SETFILEprocedure, since SETFILE expects several of its arguments in RAD5O form.For example, if you are planning to use SETFILE to change the filename of anAMOS file specification, you wilt do a GETFILE to get that specification:

GETFILE(Theri le,Dev,Unit,pi lnaml,Fi lnam2,Ext,Proj,Prog);
The elements 0ev, Filnaml, Filenam2, and Ext are returned in RADSO form.Now, you will do a SETFILE to change the Filename:

SETFILE(TheFj leFDevUnit;RAD5O(sNEws) RADSO('NAM1) Ext Proj prog);

leaving the rest of the elements as they were.

.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—27

10.2.18 RENAME

The RENAME? procedure auows you to rename an AMOS tilt. The invocation
takes the form:

RENAME(f I le—identifier,newname);,

where file—identifier is a file variable assoctated with the AMOS file you
want to rename, and newname is a string variable or a string literal. For
example, if the AMOS fiLe CURRNT.DAT is associated with the tile—identifier
Accountsri Ic:

RENAME(AccountsFi Ie,'BACKUP.LST');

renames the AMOS file CURRNT.DAT to BACKUP.LST. By varying the fields you
supply to RENAME, you can rename just the extension, just the filename, or
both. For example, if the AMOS tile OLDDAT.DAT is associated with the
tile—identifier MailBox:

RENAME(Mai IBox,' .BAK');

renames OLDDAT.DAT to OLDDAT.BAK, and

RENAME(Mai IBox, 'ARCHly');

renames OLDDAT.,DAT to ARCHIV.DAT.

10.2.19 SEEK

The SEEK procedure allows you to position a file pointer to a specific
record in a random file for file I/O. The invocation takes the form:

SEEK(fi le—identifier,recordnu&;

where file—identifier is a file variable associated with the random file we
want to access, and recordnum is an integer variable or constant that
specifies the number of the record to access. (The first record is record
#0.)

REMEMBER: SEEK does not input a record into the buffer variable; it just
positions the tile pointer.

10.2.20 SETFILE

SETFILE takes the same arguments as GETFILE, but it puts information into
the file specification. It also associates the specified file—Identifier
with the specified AMOS file. The invocation takes the form:

SETFILE(fite—ldentlfier, Dcv, Unit, Filel, File2, Ext, Proj, Prog);

INPUT/OLJTpIJT FUNCTIONS AND PROCEDURES

For exampLe:

SETFILE(NeH La 00 Fl F2 RADSO(LSTa) 0 O)

Page lO-'28

The sampLe above is changing the extensi
NewFiie to LST, NOTE: Specifying a zero
programmer number teLls AMOS to use the
number (the account you are Logged into),
device AND the unit number forcesspecification (the device and unit you
device (eg, RAD5OVD5Kfl), you can
specifying a negative 1 for the unit,
of SETFILE, see Section 1O,28, "GETFILE"

on of the AMOS fiLe associated with
for both the project AND the

current defauLt proj ect"prog rammer
Specifying a zero for both the

AMOS to use the defauLt device
are Logged into), If you specify a
teLL AMOS to use the default unit, by
For a more Lengthy exampLe of the use

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—29

103 SAMPLE PROGRAM TO DEMONSTRATE FILE HANDLING

The program: he Low
business problem:
and maintaining empl
file techniques to
number of employees: name, age, and
maintained in alphabetical order by name
change, List, or display employee records,

10,3,1 Sample Run

very common
organi z i ng,

uses random
user"deffned
records are
add, delete,

A sample run looks like this (We will underline the information that the
user of the program types in):

PRUN DEMO Jfl

C The screen clears >

AlphaPascal Random File Demonstration

Do you wish to (re'Dcreate employee file? y
How many records to you wish to use? 20

C The screen clears >

Enter option EA)dd, C)hange,
Last Name = ZUCKER RET
First Name = SUE ELLEN
Middle Initial =
How old is SUE ELLEN? 23
Is SUE ELLEN male? Y

Enter option LA)dd, C)hange,
Last Name = ARROWSMITH JO
First Name
Middle 1nitiaL=C
How old is JACK? 51
Is JACK male? Y

D)eiete, I)nquire, L)ist, Q)uitj:

D)elete, I)nquire, L)ist, Q)uitj: ACED

Enter option CA)dd, C)hange, D)elete, I)nquire, L)ist, Q)uit]: A
Last Name = ALLEN
First Name EDNA
Middle Initial
How old is EDNA? 35
Is EDNA male? N

is an example of a programming solution to a
the need for an efficient way of reading in,
oyee information, Our sample program below

maintain the following information for a
sex. The employee
of employee. You may

INPUT/OUu'y FUNCTIONS AND PROCEDURES Page 10—30

Enter option CA)dcj, C)hange, D)etete, I)nqujre, 1)1st, Q)ult]: L@!
ALLEN, EDNA N: 35 years old, sex: female
ARROWSMITH, JACK C; 51 years old, sex: male
ZUCKER, SUE ELLEN R: 23 years old, sex: mate

Total of 3 employee(s)

Enter option CA)dd, C)hange, D)etete, E)nqulr,, L)lst, Cult); C@DLast Name = ZUCKER@
First Name = SUU[LLENffi
Middle Initial = R liED

How old Is SUE ELaN? 23 JD
Is SUE ELLEN male? !th

Enter option (A)dd, C)hange, D)elete, I)nqulre, L)ist, Q)ult): L!±D

ALLEN, EDNA N: 35 years old, sex: female
ARROWSMITH, JACK C: 51 years old, sex: mate
ZUCKER, SUE ELLEN R: 23 years old, sex; female

Enter option EA)dd, *C)hange, D)elete, I)nqulre, 1)1st, Q)uit): !lE

< The screen clears >

Leaving AlphaPascat Random File Demonstration

.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—31

10.3.2 The Program

PROGRAM Empl.oyeeMaintenance;

TYPE -

NameRecord = RECORD
First: STRINGEI1];
Middle: CHAR;
Last: STRINGCI5];

END CNameRecord) ;

EmpRecType

(Control,Data,Unused);
EmpRecord = RECORD

CASE EmpRecType OF
Data: C

Name: NameRecord;
Age: INTEGER;
Sex: (Mate, Female);.
NextDataRecord: INtEGER);

Control: C

FirstDataRecord: ARRAY C'A'.'Z') OF INTEGER;
Fi rstUnusedRecord: INTEGER);

Unused: C

NextUnusedRecord: INTEGER);
END CEmpRecord) ;

EmpFileType = FILE OF EmpRecord;

(Global Variables)
VAR EmpFile: EmpFiteType;

RecNum, PreviousRecNum: INTEGER;
ControtRecord: EmpRecord:

FUNCTION SameNames(Namel ,Name2: NameRecord): BOOLEAN;
(Returns TRUE if Namel = Name2)
BEGIN

SameNames : (t4amei.First = Name2-.First)
AND (Namel.Middle = Name2.Middte)
AND (Namel.Last = Name2.Last)

END (SameNames) ;

(Changed 30 April 1981)

INPUT/osjTptJy FUNCTIONS AND PROCEDURES Page 10—32

FUNCTION Fir,d(Name: NameRecord): 800LEAN;
<Searches for specified record in EmpFl I.e
Returns true If found, leaving fiLe positioned at desired record.)BEGIN

RecNum := ControlRecord.Fj rstDataRecord(wame.Lastcl)];
PrevlousRecN 0;
WHILE RecNum <> 0 DO

BEGIN SEEK (EmpFl le,RecNum);
GET(EmpFite);
IF
THEN BEGIN Find:TRUE; EXIT(Fjnd) END;

Pre',iousRecNum : RecNum;
ReeNijo : EmpFlle.NextDataRecord;

END;
Find : FALSE;

END (Find) ;

FUNCTION Remove(Name: NameRecord): BOOLEAN;
(Deletes specified record in EmpFlle.
Returns false if nt found.)

VAR NextRecNuqn: INTEGER;
BEGIN

Remove : TRUE;
IF Find(Name) THEN
BEGIN

NextRecNum : EmpFile.NextDataRecord;
Empri te.NextunusedRecord : ControtRecord.Fi rstUnusedRecord:
ControtRecord.FjrstUnusedRecord := RecNum;
PUT(EmpF.i.Le);
IF PreviousRecNum = 0
THEN ControtRecord.Fjr*tDataRecor.d(Name.LastCl)]

NextRecNum
ELSE

BEGIN
SEEK(EmpFl le,PreviousRecNum);
GET(EmpFi te);
EmpFi 1e .NextDataRecord : NextRecNuqn;
PUT(EmiFi Ic);

END;
SEEK(EmpFl le,O);
Empri te :=ControlRecord;
PUT(Empri Ic);

END

ELSE (Name not found) Remove : False:
END (Remove) ;

.
(Changed 30 April 1981)

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—33

FUNCTION NamePrecedesName(Namel,Name2: NameRecord>: BOOLEAN;
(Returns TRUE if Namel < Name2)
BEGIN

NamePrecedesName
IF Namel.Last <= Name2.Last
THEN TRUE
ELSE IF Namel.Last = Name2.Last

THEN IF Namel.First < Name2.First
THEN TRUE
ELSE IF Namel.First = NameZ.Ftrst

THEN Namel.Middle Ct Name2.MlddLe-
ELSE FALSE

ELSE FALSE;
END CNamePrecedesName) ;

FUNCTION Add(Emptoyee: EmpRecord): 800LEAN;
(Adds specified employee record to EmpFlte.
Returns false If no room remains to add record.)

VAR InsertionPolntFound: BOOLEAN; NewRecNum: INTEGER;
BEGIN

Add TRUE;
RecNum := ControiRecord.FirstDataRecordCEmptoyee.Name.LastEl]];
PreviousRecNum := 0;
InsertionPointEound : (RecNum = 0);
WHILE NOT InsertionPointFound DO
BEGIN SEEK (Empfi le,RecNum);

GET (EmpFi te);
IF NameprecedesName(Emptoyee.4lame,EmpFi 1e .Name)
THEN InsertlonPointFound TRUE
ELSE BEGIN PreviousRecNum : ReeNum;

RecNum : = EmpFi Le .NextDataRecord;
InsertlonPointFound : (RecHum 0);

END;
END (Search for insertion point) ;
IF RecNum <> 0 THEN
IF SameNames(Emptoyee.Name,EmpFi 1e.Name) THEN
BEGIN Employee.NextDataRecord : EmpFi te.NextDataRecord;

EmpFi 1e : Employee;
PUT (EmpFi te);

EXIT(Add);
END;

IF 0 = (NewRecNum : ControtRecord.FirstUnusedRecord) THEN
BEGIN Add : False 'CEmpFite is full);

EXIT(Add);
END;

SEEK (EmpFl le,NewRecNum);
GET (EmpFi te);
ControtRecord.Fj rstUnusedRecord :=EmpFi le'.NextUnusedRecord;
EmpFi 1e :EmployeeRecord;
EmpFjle.NextDataRecord RecNum;
PUT(EmpFi Ic);

INPIJT/OuyptJT FUNCTIONS AND PROCEDURES Page 10—34

IF PrevlousRecNum = 0 THEN
BEGIN SEK(EmpFfle,o);

ControlRecord.Fj rstDataRecordrEmptoyee Name Last (1)]
: NewRecNum;

EmpFite : ControtRecord;
PUT (EmpFl te);

END
ELSE

BEGIN SEEK(EmpFi te,Prev'iouiRecNum);
GETtEmpFI le);
EmpFi te.NextDataRecord :2 NewRecNum;
PUT (EmpFi te);

END;
END (Add) ;

PROCEDURE CreateEmptoyeej te(Size: INTEGER);
(Create/Recreate Employee File with specified number of empLoyee records)
VAR X,Slzelnetocks: INTEGER; CH: CHAR;
BEGIN

Sizelnstocks := 1 + (Size+1) DIV (512 DIV SIZEOF(EmpRecord));
X := FSPEC(EmpFlte,'EPIPFIL','DAT');
CLOSE(Emprite); (Close fite If it is open)
ERASE(EmpFile); (Erase tHe if it already exists)
CREATE (EmpFi Le.SizelnBtocks);
OPENR(EmpFi Ic);
ControlRecord.F1 rstUnusedRecord : 1;
FOR CH :2 'A' TO '1' DO ControLRecord.PlrstDatReCOr(Ij] : 0;
EmpFl Le := Control.Record;
PUT(EmpFite);
FOR X : 1 TO Size—i DO
BEGIN EmpFlle.NextUnusedRecord : X+1;

PUT (EmpFi Le);
END;

EmpFiLe.NextunusedRecord : 0;
PUT (EmpFi Le);
CLOSE (EmpFI Ic);

END 'CCreateEmptoyeeFji.e) ;

PROCEDURE OpenEmpFi le;
BEGIN OPEN(EmpFi Le,'EMPFIL',RANDOpfl;

ControtRecord : EmpFile;
END;

FUNCTION Yes(Message: STRING): BOOLEAN;
VAR Answer: STRING;
BEGIN

WRITE(Message,' '); READLN(Answer); LCS(Answer);
IF Answer = 5" OR Answer = 'yes' THEN Yes : TRUE
ELSE IF Answer = 'ii' OR Answer = 'no' THEN Yes : FALSE
ELSE Yes : Yes('?Please answer yes or no:');

END (Yes) ;

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—35

PROCEDURE Introduction;
VAR Quantity: INTEGER;
BEGIN -

CRT(—1,.O); (Clear Screen)
WRITELN(' AlphaPascal Random Pile Demonstration');
WRITELN;
WRITELN;
IF Yes('Do you wish to (re—)create empLoyee fiLe?') THEN
BEGIN WRITE('How many records to yout wish to use?);

READLN(Quantity);
WHILE Quantity < 1 OR Quantity > 100 DO

BEGIN WRITE('?Ptease enter a number between 1 and 100: ');
READLN(Quantity);

END;
CreateEmpLoyeeFl le(Quantlty);

END;
OpenEmpFi Ic;
CRT(—1,0); (CLear screen)

END (Introduction) ;

PROCEDURE GetName(VAR Name: NameRecord);
(Note: UCS onLy works on strings, and MiddLe is of type CHAR)
VAR S;STRINGC1];
BEGIN

WITH Name DO
BEGIN WRITE('Last Name = '); READLN(Last); UCS(Last);

WRITE('First Name = '); READLN(First); UCS(Plrst);
WRITE('Middtetnitial = '); READLN(S); UCS(S);
Middle : IF S'' THEN ' ' ELSE Sri];

END;
END;

PROCEDURE GetEmployeeln-fo(VAR Employee: EmpRecord);
BEGIN

WITH EmpLoyee DO
BEGIN

WRITE('How old is ',Name.First,'? ');
READLN (Age);
WRITE('Is ',Name.First);
Sex := IF Ves(' male?')

THEN Male ELSE FemaLe;
END;

END (GetEmptoyeelnfo) ;

INPUT/outpuT FUNCTIONS AND PROCEDURES
Page 10—36

PROCEDURE ShowEmPtoyeeInfo(Effiptoyee.
EmpRecord); IBEGIN

WITH EmpI.oyee,Nj DO
BEGIN

WRITE(Last,', ',First,' ',Middle,': ');WRITE(Age,' years old, 9;
WRITELN('sex: ',CASE Sex OF

Male: 'mate;
Female: 'female';

ELSE '');
END;

END;

PROCEDURE ProcessRequests;
VAR Option: CHAR;

PROCEDURE ListEmployees;
VAR CH: CHAR; Count: INTEGER;
BEGIN

Count : 0;
WRITELN;

FOR CH := 'A' TO 'V DO
BEGIN RecNum : Control,Record.FjrstDataRecordccH];

WHILE RecNum <> 0 DO

BEGIN SEEK(EmpFi le,RecNum);
GET (EmpFi te);

ShowEmptoyeeIflfo(EmpFj 1e);
RecNum : EmpFi 1e.NextDataRecord;
Count += 1;

END;
END;

WRITELN; WRITELN('Totat of ',Count,' employee(s)');
END CListEmployees}

;

PROCEDURE AddEmployee;
VAR Employee: EmpRecord;
BEGIN

GetName(Employee.Name);
IF Flnd(Emptoyee.Name) THEN
BEGIN WRITELN('?Emptoyee already on file');

EXIT(AddEmployee);
END;

GetEmployeelnfo(Emptoyee);
IF NOT Add(Emptoyee) THEN WRITELN('Thot enough room to add');

END {AddEmployee}
;

.

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Pege 10—37

PROCEDURE ChangeEmptoyee;
VAR Name: NameRecord;
B EGI N

GetName(Name);
IF Find(Name) THEN

BEGIN ShowEmptoyeelnfoCEmpFi te);
GetEmptoyeelnfo(EmpFi Led');
PUT(EmpFlte);

END

ELSE WRITELN('?Not fgund');
END <ChanqeEmployee> ;

PROCEDURE DeleteEmployee;
VAR Name: NameRecord;
BEGIN

Get Name(Name);
IF NOT Remove(Name) THEN WRITELN('?Not found');

END {DeLeteEmptoyee> ;

PROCEDURE Inquire;
VAR Name: NameRecord;
BEGIN

GetName(Name);
tF Find(Name) THEN ShowEmptoyeelnfo(EmOFILC)

ELSE WRITELN('?Not found');
END (Inquire) ;

BEGIN CProcessRequests)
REPEAT
WRITE(
'Enter option CA)dd, C)hange, D)eIete, I)nquire, L)lst, Eult): ');
READLN (Option);
CASE Option OF
'a','A': AddEmptoyee;
'c','C': ChangeEmptoyee;
'd','D': DeleteEmptoyee;'i','I': Inquire;
'L','L': ListEmptoyees;
'q' /0': EXIT(ProcessRequests);
ELSE WRITEL.N('flnvalid option');

WRITELN;
UNTIL FALSE (I.e., until EXIT)

END (ProcessRequests) ;

(Changed 30 Aorll 1981)

INPUTFOUTPUT FUNCTIONS AND PROCEDURES
Page 10—33

PROCEDURE TerminationS
BEGiN

CRT(l,0); Clear screen}
WRITELNYLe4v1ng ALphaPascal Random File Demonstration);END (Termination> ;

BEGIN (Program)
Introduction;
P ro C es $ Re ques t 5;
Terminat ion;

END (Program)

10,3,3 Program Organization

We would just like to point out that the program above could have beenbroken up into modules and linked as separate files. In fact, it would havebeen a good idea to do so, if we were going to break it up, we mightconsider taking the first two global type declarations and putting them intoinclude files (see below), (For information on include files, see Section43,2,2, The Include Ootion ($1),) Then we might have made the FINDfunction a module, FIND,PAS,

10,3,3,1 The AMOS file NAMREC,INC
TYPE NameRecord RECORD

First: STRINGEI1];
Middle: CHAR;
Last: STRtNGC1S];

END C NameRecord);

10,3,3,2 The AMOS file EMPREC,INC
TYPE EmpRecType = (Control, Data, Unused);

EmpRecord RECORD

CASE EmpRecType OF
Data:

Name; NameRecord;
Age: INTEGER;
Sex: (Male, Female);
NextDataRecord: INTEGER);

Control:
FirstDataRecord: ARRAY OF INTEGER;
FirstUnusedRecord: INTEGER);

Unused:
NextUnusedRecord: INTEGER);

END (EmpRecord) ;

EmpFi leType = FILE OF EmpRecord; .
(Changed 30 April 1981)

INPUT/OUTPUT FUNCTIONS AND PROCEDURES Page 10—39

10.3.3.3 Ttie AMOS fite FIND.PAS —

MODULE FIND;
CS! NAMREC.INC)
'CS! EMPREC.INC}

EXTERNAL FUNCTION SameNames
(Namel, Name2: NameRecord): BOOLEAN;

EXTERNAL VAR
EmpFite : EmpFiteType;
RecNum, PrevlousRecNum: INTEGER;

FUNCTION Find(Name: NameRecord): BOOLEAN;
(Searches for specified record in EmpFlle.
Returns true if found, leaving file positioned at desired record.)

BEGIN
RecNum : ControlRecord.Fi rstDataRecord(Name.LastCl]];
PreviousRecNum :z 0;
WHILE RecNum <> 0 DO
BEGIN SEEK(EmpFl le,RecNum);

GET(Empfi Ic);
IF SameNamesCName,EmpFiIe.Name)
THEN BEGIN Find:TRUE; EXIT(Find) END;
PreviousRecNum RecNum;
RecNum := EmpFlte.NextDataRecord;

END;
Find : FALSE;

END (Find) ;

.

CHAPTER 11

MISCELLANEOUS FUNCTIONS AND PROCEDURES

The functions and procedures described in this chapter perform a variety of
functions such as allowing your programs to position the cursor on the
terminal screen and manipulating dynamic variables. The functions and
procedures discussed in this chapter are:

CHR Convert ASCII value to its character representation
ORD Returns ordinal number of element in scalar type
PRED Returns predecessor (i.e., previous item) of scatar type
SUCC Returns sucessor (i.e., next item) of scalar type

KILCMD Abort command file execution
NEW Creates new dynamic variable
MARK Marks element en the heap
RELEASE Releases element on the heap

CRT Position screen cursor, and enable certain terminal
display options

CHARMODE Sets terminal Into Charmode; suppresses echoing
LINEMODE Returns terminal from Charmode to line mode
INCHARMODE Returns Boolean value telling you whether you are

in Charmode or not

11.1 BASIC FUNCTIONS AND PROCEDURES

11.1.1 CHR

Alt characters displayed by the computer are members of the ASCII character
set, and have a number (áalled the ASCII value) associated with them. The
CHR function returns the ASCII character associated with a specified ASCII
value. It accepts a positive, decimal INTEGER argument and returns a CHAR
result. The function invocation takes this form:

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11—2

CHR (number);

For example:

WRITELN(CHR(65));

prints the character A. (65 is the decimal ASCII value of the ASCIIcharacter "A".)

11.1.2 KILCMD

It is often convenient to set up command files that automaticatly Invoke a
series of system commands and Pascal. programs. (Remember that a commandfile is a text file; each tine contains data or a valid AMOS filespecification. To execute the entire set of thmmand and program invocationscontained ,n the command file, supply just the name of the command file at
AMOS command level.)

The KILCMD procedure tells PRUN to abort any command file execution. You
probably will. use KILCMD if an error occurs that woutd make continuing the
execution of the commmand file awkward. The Invocation takes this form:

KILCMD;

As an example of the use of KILCMD, consider the command file PCL that
accompanies this release of Alphapascal. The PCL command file compiles and
links a Pascal source file. Suppose you suppty to PCL the name of a source
file that does not exist. If the compiler can't compite your program, then
PLINK can't link it. So, CMPILR itself contains a KILCMD procedure call
that is executed if a compilation fails; the system stops any command file
being executed and returns you to AMOS command leveL.

For Information on error handling and writing your own errortrap routine,
see Chapter 14, "Systems Functions and Procedures."

11.1.3 MARK

MARK is used in combination with RELEASE to store and release dynamic
variables allocated via NEW (see below) in a stack—like structure called the
"heap." The invocation of MARK takes this form:

MARK(vari able—identifier);

where variable—identifier specifies a pointer variable that points to any
type (typically, INTEGER). MARK returns the current state of the heap.
That is, It returns the current address of the top of the heap.

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11—3

A "heap" or "stack" can be considered as a sequential list in which items
may only be inserted or deleted from one end oi the list. Itens are deleted
In the reverse of the order in which they were entered on the stack.

The NEW procedure allocates dynamic variables on the heap. For exampLe, if• you use MARK, then perform a NEW, then use MARK again, MARK will return two
different values, since the top of the heap changes when you allocate the
dynamic variable.

By doing a MARK followed by a NEW, you have a: value that tells you where on
the heap the variable allocated by NEW is Located. The way to free up
heap—space used by the dynamic variables allocated via NEW is to use RELEASE
(see Section 11.1.7, below).

NOTE: Be very careful when using MARK andRELEASE; unwise use of these
procedures can Leave you pointing to areas of memory that are not oert of
the heap, thus causing unpleasant and unpredictable results.

11.1.4 NEW

The NEW procedure allocates a dynamic variable. The invocation takes the
form:

NEW(vari able—identifier);

where variable—identifier is the pointer to the variable allocated by NEW.
To access the variable allocated via NEW, use the pointer variable
variable—ider,tifier. (For more information on NEW and dynamic variables,
see Section 7.2.8, "Pointer Type.") The sections on MARK and RELEASE In this
chapter give information on using MARK, NEW, and. RELEASE to allocate and
dc—allocate dynamic variables on the "heap."

11.1.5 ORD

The ORD(X) function returns the ordinal nisnber of the argument in the scalar
data type of which X is a member. Accepts arguments of type CHAR or
user—defined scalar types. Returns an INTEGER result. The function
invocation takes this form:

ORD(variable—identifjer or constants);

For example, each character displayed by the computer has a numeric value
associated with it (called the ASCII value), which specifies its position in
the set of ASCII characters. If you use the ORD function on an ASCII
character, ORD will return to you the ASCII value of that character (that
is, its ordinal number in the ASCII character set). For example:

WRITELN(ORD('A'));

(Changed 30 April 1981)

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 114

returns the decimal number 65, the ASCII value of the character You
may also include an identifier for a user"defined scalar type, For example:

PROGRAM TestOrd;

TYPE DAYSOFTHEWEEK = (MON,TUE,WED,THUR,FRI);

BEGIN { Testord }
WRITELN(Ordinal number of THUR is: ,ORD(THURfl;
WRITELNYOrdinaI number of D is: ,ORDVDfl)

END { TestOrd },

The program above prints the ordinal number of the character "D" in the
ASCII character set, and the ordinal number of "THUR" in the userdefined
scalar type DAYSOFTHEWEEK, (NOTE: The ordinal numbers for the elements of
DAYSOFTHEWEEK are: MON = 0, TUE = 1, WED = 2, THUR = 3, FRI = 4,)

11,16 PRED

The PRED function returns the predecessor of the specified scalar argument,
The invocation of the PRED function takes this form:

For example, let°s say that we defined the scalar type Cardinal to contain
the elements: First, Second, and Third:

TYPE Cardinal = (First, Second, Third);

Since the elements of a scalar data type are ordered, we can find out what
element is previous to the specified item by using the PRED function, For
cx amp l e:

IF PRED(Second) First THEN WRITELNCC0rrect! ');

The value returned by PRED is not a variable or an expression; therefore,
trying to use WRITE or WRITELN to display that value causes an error, (That
is, you may not say: WRITELN(PRED(Second)),)

PROGRAM TestPred;

TYPE Daysoftheweek = (Mon,Tue,Wed,Thu9Fri);
VAR Day : Daysoftheweek;

BEGIN { TestPred }
: Tue;

IF PRED(Day) = Mon THEN WRITELN('Today is Tuesday');
Day : PRED(Day);
IF Day = Mon THEN WRITELN('It''s Blue Mondayl')

END C TestPred }, .
(Changed 30 4pril 1981)

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11—5

When you run the program above, it prints:

Today is Tuesday
It's Blue Monday!

11.1.7 RELEASE

The RELEASE procedure is used with MARK and NEW to use dynamic variables
with a stack—Like structure catted the "heap." (See Section 11.1.3, "MARK,"
for information on the heap.) It deallocates the dynamic variabte at the
specified heap location. The RELEASE invocation takes the form:

RELEASE (variable—identifier);

where variable—identifier is the same argument as that supptied to MARK.
For example, If you use MARK to get the current state of the heap, use NEW
to attocate a dynamic variable (which advances the top of the heap past the
value returned by the previous MARK), and then use RELEASE with the value
returned by the previous MARK, RELEASE de—attocates the dynamic varlabte
from the heap. A picture might hetp to clarify:

Procedure The Heap

NEW(VO) VO
MARK(LocationVl)
NEW(V1) Vi
MARK(Locat ionV2)
NEW(V2) V2

Then:
Use RELEA5E(Locationv2)
Use RELEA$E(LocationVl)

RELEA$E(Locatjonv2) de—attocates v2; RELEASE(Locatlonvl) dc—allocates VI.
Va is left on the stack in the example above. You cannot RELEASE a dynamic
variable in the middle of the heap; you may only release variables from the
bottom of the list.

NOTE: Be very careful when using MARK and RELEASE; unwise use of these
procedures can leave you pointing to areas of memory that are not part of
the heap, which can cause severe problems.

11.1.8 SUCC

The SUCC procedure allows you to determine the successor element tQ the
sepcifjed scalar constant. The invocation takes the form:

SUCC(element);

PROGRAM;

VAR mt : INTEGER;
bat : (YES, NO, Y, N);

BEGIN

WRITEYEnter integer:); READLN(Int);
WRITELN(SUCC (Intfl;
bat : YES;
IF SUCC(Dat) = NO THEN WRITELNYYES)

END,

If you enter the number 11 to the program above, it prints:

12
YES

(See also Section 11,6, "PRED," for more information on manipulating scalar
types,)

11,2 SPECIAL TERMINAL DISPLAY PROCEDURES

11,2,1 CHARMODE

The CHARMODE procedure allows you to set the terminal of the user of your
program into character mode, When a terminal is in character mode, your
program is able to read keyboard input a character at a time, even before a
terminating carriage return is typed, (Assembly language programmers on the
AMOS system may recognize this input mode as "image mode,") The invocation
of this procedure takes this form:

CHARMODE;

Character mode is useful for checking special input such as passwords, since
the characters are not echoed at the time they are input, but when read (via
a GET or READ). To inhibit echoing, use the predeclared KEYBOARD file
identifier,

NOTE: Character editing the
terminal is in character use
the LINEMODE procedure your
program exits to monitor back
into LINEMODE,

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 11"ó

where element is a variable"identifier or constant of a scalar type, For
example: .

(such as RUBs or Controi"Us) doesn't work when
mode, To return a terminal to the normal mode,

(discussed in Section 11,2,3, below). When
level, AMOS automatically puts the terminal

MISCELLANEOUS FUNCTIONS AND PROCEDURES Page 117

11,22 C.RT

The CR1 function alLows you to position the cursor on the terminal screen,
In addition, you can aLso select certain terminaHhandLing options (such asclear screen, delete character, etcj,
The function invocation takes this form:

where Argi
assumes that
negative,
screenhandl

C PT (A rgl , A rg2) ;

function
Arg2 is
ext ended

11 22,1
positive,
coordinates
positioned,
coordinates

CR1 (12, 35)

CR1 is
/ column
cursor
by the

positions the cursor at the 12th row and 35th column of the screen,

NOTE: If you supply row and column coordinates that are out of range for
your terminal, unpredictable results éould occur,

11,2,2,2 Extended Screen
to CR1 is negative, the CR1
extended terminaHhandling
example, the function:

CRT L"l ,O);

Display Options " If the first argument supplied
function assumes that you want to use the
options specified by the second argument, For

tells CRT to select option #0, the clear"screen option.

and Arg2 are integers,
you want to position the

CR1 assumes that you
ing options,

If Arg1 is positive, the CR1
cursor on the screen; if

want to use one of the

Cursor Positioning " If the first argument you supply to
then the CR1 function reads both arguments as the X,Y row
specifying the screen position where you want the

(The top lefthand corner of the screen is specified
1,1,) For example, the function:

MtSCELLANEOUS FUNCTIONS AND PROCEDURES Page 11—3

The screen—handling-options provided are:

Code Function

o Clear screen
1 Cursor home (upper left corner)
2 Cursor return (coLumn 0 wIthout line—feed)
3 Cursor up one row
4 Cursor down one row
5 Cursor left one column
6 Cursor right one column
7 Lock keyboard
8 Unlock keyboard
9 Erase to end of line

10 Erase to end of screen
11 Protect field (reduced intensity)
12 Unprotect field (normal intensity)
13 Enable protected fields
14 Disable protected fields
15 Delete line
16 Insert line
17 Delete character
18 Insert character
19 Read cursor address
20 Read character at current cursor address
21 Start blinking field
22 End blinking field
23 Start line drawing mode (enable alternate

character Set)
24 End line drawing mode (disable alternate

character set)
25 Set horizontal position
26 Set vertical position
27 Set terminal attributes

NOTE: You should be aware that these options can be selected only if your
particular terminal and terminal driver program are capable of carryinq them
out. (For example, not all terminals can perform an erase—to—end—of—screen
function.) Note that most terminals do not support all of the options listed
above; unsupported options wilt be ignored by your terminal driver.

11.2.3 INCHARMODE

The INCHARMODE function returns a Boolean result. If it returns a TRUE,
then you are in charmode; a FALSE indicates that you are in linemode. (See
the paragraph below.)

.

MISCELtANEOUS FUNCTIONS AND PROCEDURES Page 11—9

1L24 LINEMODE

The LINEMODE procedure returns a terminal to the normal input mode after it
has been set into character mode via the CHARMODE procedure (discussed in
Section 1h21, above), The invocation takes this form;

LINEMODE;

While in line mode, all input is ended by a carriage return, and character
editing is enabled, Character echoing occurs as you type the characters,
not when they are read,

CHAPTER 12

MATHEMATICAt FUNCTIONS

The

following functions accept one or more numeric arguments. Forinformation on invoking functions and on writing your own functions, see
Section 6.6, "Function and Procedure Declarations."

12.1 TRIGONOMETRIC FUNCTIONS

12.1.1 COS(X)

Cosine trigonometric function. Accepts a REAL or INTEGER argument and
returns a REAL result. Argument must be in radians.

12.1.2 SIN(X)

Sine trigonometric function. Accepts a REAL or INTEGER argument and returns
a REAL result.

12.1.3 TAN(X)

Tangent trigonometric function. Accepts a REAL or INTEGER argument and
returns a REAL result.

(Changed 30 April 1981)

MATHEMATICAL FUNCTIONS
Page 12—2

12.1.4 ARCCOS(X)

Arc cosine trigonometric function. Computes the inverse cosine function.
(See COS above,) Accepts a REAL or INTEGER argument and returns a REAL
result. X mUst be greater than or equal to —1, and tess than br equat to 1.

12.1.5 ARCSIN(X)

Arc sine function. Computes the inverse sine function. (See SIN above.)
Accepts a REAL or INTEGER argument and returns a REAL result. X must be
greater than or equal to —1, and less than or equal to 1.

12.1.6 ARCTAN(X)

Arc tangent trigonometric function. Computes the inverse tangent function.
(See TAN above.) Accepts a REAL or INTEGER argument and returns a REAL
result.

12.2 HYPERBOLIC TRIGONOMETRIC FUNCTIONS

12.2.1 COSH(X)

Hyperbolic cosine trigonometric function. Accepts a REAL or INTEGER
argument and returns a REAL result. Argument must be in radians.

12.2.2 SINH(X)

Hyperbolic sine trigonometric function. Accepts a REAL or INTEGER argument
and returns a REAL result.

12.2.3 TANH(X)

Hyperbolic tangent trigonometric function. Accepts a REAL or INTEGER
argument and returns a REAL result.

.
(Changed 30 April 1981)

MATHEMATICAL FUNCTIONS
Page 12—3

12.2.4 ARCCOSH(X)

Hyperbolic arc cosine trigonometrjc function. Accepts a REAL or INTEGERargument and returns a REAL result. (See ARCCOS above.) X must be greaterthan or equal to 1.

12.2.5 ARCSINH(x.)

Hyperbolic arc sine ,trigonometric function. Accepts a REAL or INTEGER
argument and returns a REAL result. (See ARCSIN above.)

12.2.6 ARCTANH(X)

Hyperbolic arc tangent trigonometric function. Accepts a REAL or INTEGER
argument and returns a REAL result. (See ARCTAN above.) The absolute vatue
of X must be less than 1.

12.3 MISCELLANEOUS MATHEMATICAL FUNCTIONS

12.3.1 ABS(X)

Computes the absolute value of tte argument. Accepts one INTEGER or REAL
argument, and returns an INTEGER or REAL result. For example:

displays the answer:

32.123

12.3.2 EXP(X)

Exponential function. Computes e to the X power, where e is the base of
natural logarithms. Accepts a REAL or INTEGER argument; returns REAL
result.

(Changed 30 April 1981)

MATHEMATICAL FUNCTIONS Page 12—4

12.3,3 EXPONENT(X)

Computes K such that X = .1 * 2K, where J is greater than or equaL to .5,
and less than 1. Accepts a REAL argument.

12.3.4 FACTORIAL(x)

Computes the factoriaL of X. Accepts a REAL argument; returns a REAL
result. For exampLe:

FACTORIAL(6.O)

returns 720. (720 = 6*5*4*3*2*1.')

12.3.5 LN(X)

Computes the natural (Naplerian) logarithm. Accepts a REAL or iNTEGER
argument; returns a REAL result. Computes logarithm to the base e. (e s
2.71828....)

12.3.6 LOG(X)

Computes the log base ten of the argument. Accepts a REAL or INTEGER
argument; returns a REAL result.

12.3.7 ODD(X)

Tests for odd value. Accepts INTEGER argument; returns a BOOLEAN resuLt.
If X is odd, ODD returns TRUE; if X Is even, ODD returns FALSE.

12.3.8 POWER(X,Y)

Computes X to the V power. Accepts two REAL numbers; returns a REAL result.
For example:

POWER(2.0,3.O)

returns 8. You can also use POWER to compute the Pith root of a number——
POWER(X,1.0/N).

For example, to find the ctte root (third root) of 256.12:

POWER(256.12,1.O/3.O)

(Changed 30 ApriL 1981)

MATHEMATICAL FUNCTIONS
Q• 12—5

12,3,9 PWROFTEN(x)

Returns the value of ten raised to the power of X, Accepts an INTEGER orREAL value; returns a REAL value, Accepts fractions and negative numbers.For example:

PWROFTEN (3)

returns 10 to the third, or 1000.

12,3,10 PWROFTWO(x)

Returns the value of two raised to the power of X, Accepts an INTEGER value
and returns a REAL value. Number must be greater than zero, For example:

PWROFTWO(3)

returns 2 to the third power, or 8,

12,3,11 RANDOMIZE

Randomizes the starting seed of the RND function (see below), It takes no
arguments, For example:

RANDOMIZE;

12,3,12 RND

Returns a random REAL number between 0 and 1, It takes no arguments, For
cx amp Ic:

PROGRAM TestRND;
C Generate 20 random integers between 1 and 10 1'

VAR I : INTEGER;
BEGIN

RANDOMIZE;
WRITELN7Random numbers between 1 and 1O:fl;
FOR I 1 TO 20 DO

BEGIN
WRITELN(TRUNC((RND*IO)+1))

END

END,

(Changed 30 April 1981)

MATHEMATICAL FUNCTIONS Page 12—6

12.3.13 ROUND(X)

Rounds—off X. Accepts a REAL argument; returns an INTEGER result. For
example, ROUND(2378) returns 24; ROUND(23.45) returns 23.

12.3.14 SHIFT(X,Y)

Performs binary multiplication by shifting Left the binary representation of
the number specified by the first argument the number of places specified by
the second argument. For example:

SHIFT(7,2);

returns the answer 28. (The binary number 111 (7 deâimal) shifted Left two,
places is the binary number 11100 (28 decimal).) X and V must be of type
INTEGER.

12.3.15 SQR(X)

Computes the square of X. For example, SQR(8) returns 64. Accepts REAL or
INTEGER argument and returns an INTEGER or REAL result.

12.3.16 SQRT(X)

Computes non—negative square root of argument. Argument may be INTEGER or
REAL; result is REAL. X must be greater than or equal to zero. Accepts a

REAL or INTEGER argument; returns a REAL result.

12.3.17 STR(X) and STR(X,a,b)

Converts numeric values to STRING. Accepts a REAL or INTEGER number, and
returns a STRING.

You may optionally supply SIR with two INTEGER arguments that tell STR how
to format a converted number:

STR(Number,X,Y);
or:

SIR (Number,X);

where X specifies a minimum field width and V specifies the number of digits
to write after the decimal point. If the number is larger than the fieLd
specified by X, PASCAL does not truncate the number, but prints the number
using the necessary number of digit positions.

.
(Changed 30 April 1981)

MATHEMATICAL FUNCTIONS
I Paqe 12—7

(If Number" is INTEGER, you may not specify Y,) These two variations ofSTR perform formatting in exactly the same way as WRITE and WRITELN, except
that they do not generate a leading space for positive numbers, For
example? given the SEAL data 123,44:

WRITELN(5TR(123,44,1O,4fl;

returns the string:

123,4400

where the number is rightjustified in a fieLd of ten blanks, and four
digits are written to the right of the decimal point,

12,3,18 TRUNC(X)

Truncates X, ccepts REAL argument; returns INTEGER result, (For example,
TRUNC(24,3) returns the integer 24,)

12,4 SAMPLE PROGRAM TO PAD A NUMBER WITH LEADING ZEROS

Below is a useful procedure to pad a number with leading zeros along with a

sample program that makes use of it:

PROGRAM Format;
\/AR STRING;

{ The procedure call Format(String,Left,Right,Number) formats
the number with Left zero"filled digits before the decimal
point and Right zero"filled digits after the decimal point,
A trailing space Or minus sign is added to indicate the sign
of the number, Illegal arguments generate an error to
ERRORTRAP,)

PROCEDURE Format(VAR X : STRING; Left,Right INTEGER; Num : REAL);
VAR Pow : REAL;
BEGIN { Procedure Format)

IF Left > 11 OR Left < 0 THEN ERROR(i);
Pow : PWROFTEN(Left);
IF ABS(Num) > Pow THEN ERROR(1) { Value range error
X: STR(Pow + ABS(NumT,O,Right);

C Force leading zeros by adding power of ten and converting
to STRING, }

DELETE(X,1,1); C Remove leading 1)
X : IF Num C 0 THEN CONCAT(X,) ELSE CONCAT(X/ fl

END C Format };
BEGIN C Main program }

Format(S,S,2,—12,7); C Return answer in S)
WRITELN(° Format 5,2r127 = ,S)
WRITELN(Result should be OOO12,7O")

END C Main program),

(Changed 30 April 1981)

.

CHAPTER 13

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES

This chapter contains descriptions of the standard functions and procedures
you can use on data that have been declared as type STRING or packed arrays
of type CHAR. These functions and procedures have been pre—dectared for you
by AlphaPascat. For a full tist of alt functions and procedures, refer to
Appendix A, "Quick Reference to AtphaPascat."

These are the functions and procedures described in this chapter:

For data of type STRING:

CONCAT Concatenates specified strings
COPY Copies specified string (or parttal string) Into

another string
DELETE DeLetes specified nunber of characters from string
INSERT Inserts specified string (or partial string) Into

another string
LENGTH Returns ninber of characters In string
LCS Converts upper case string to lower case
P05 Returns position of specified character in string
STRIP Removes trailing spaces from string
UCS Converts tower case string to upper case
VAL Converts a string to a REAL nunber.

For data of type PACKED ARRAY OF CHAR:

FILLCHAR Fills specified string with specified character
MOVELEFT Copies specified nunber of characters beginning

with Left of array over to specified array
NOVERIGHT Copies specified nunber of characters beginning

with right of array over to specified array
SCAN Returns position of specified character in array

(Changed 30 April 1981)

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Psqs 13—P

13,1 STRING INTRINSICS

Below are the functions and procedures that you can use on data of typeSTRING.

131,i CONCAT

The CONCAT function returns a string that contains the contents of aLl ofthe specified string(s), The function invocation takes this form:

CONCAT(Stringl ,String2,, , ,St ringN);

where you may specify one or more strings to be concatenated,

For example:

PROGRAM Testconcat;

VAR Destination, Sourcel, Source2, Source3 : STRING;

BEGIN { TestConcat 3'"urce1 : "Nevermorefl";
Source2 := the Raven,
Source3 : Quoth ';
Destination : CONCAT(Source3,Source2,Sourcel);
WRITELN(Dest mat ion)

END 'C TestConcat 3',

The orogram above prints:

Quoth the Raven, "Nevermore!

13, 12 COPY

The COPY function creates a new string of the specified number of characters
whose contents are taken from the specified source string, starting at the
specified index, The function invocation takes this form:

COPY (Source"string,Index,si ze"of"returnedstring);

For example:

(Changed 30 April 1981)

STRING AND CHARACTER ARRAY FUNCTIONS, AND PROCEDUR€s Page 13—3

PROGRAM TestCopy;

VAR Source, Target : STRING;
Position : INTEGER.;

BEGIN 'CTestCopy}
'urce :'Jonathan R. Smith';
Position := POS('S',Source) 'C Find position of Last name);Target : COPY (Source,Position,5);
WRITELN('The customer last name is: ',Target);
WRITELN('Last—name position in source string ts: ',Position);

END (End TestCopy}.

The program above prints:

The customer last name is: Smith

and:

Last—name position in source string is: 13

(Notice that we used the POS function, discussed below in Section 13.1.7, to
determine the position in the source string of the character 'S'.)

13.1.3 DELETE

The DELETE procedure removes the specified number of characters from the
source string, starting at the specified position. The procedure invocation
takes this form:

DELETE (Source—string, Index, Number—of—characters);

where Source—string must be a string variable.

For example:

PROGRAM TestDelete;

VAR Source : STRING;
Position, Size : INTEGER;

BEGIN 'C TestDelete)
Source : 'Now is the time for all good men!';
Position : POS('atl',Source);
DELETE (Source, Position + 3, 9);
WRITELN (Source)

END C TestDelete).

The program above prints the string:

Now is the time for all!

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13"4

131,4 INSERT

The INSERT procedure inserts the specified string into a specified
destination string. It begins the insertion at the specified position in
the destination string, The invocation of this procedure takes the form:

INSERT(Insert'string,Destinationstring,Inde);

where Destination'string must be a string variable, For example:

PROGRAM Testlnsert;

VAR Insertion,Destination : STRING;

BEGIN C Testlnsert)
Destination : Customer name is: ,;
Insertion : Robert Allen;
INSERT(Insertion,Destination,19);
WRITELN (Destination)

END C Testlnsert },

The program above prints:

Customer name is: Robert Allen,

13,1,5 LCS

The LCS procedure converts upper case characters to lower case. The
procedure invocation takes this form:

LCS (SourceString);

where SourceString is the string to be converted, For example:

PROGRAM TestLCS;

VAR CustomerlD : STRING[221;

BEGIN C TestLCS }
CustomerlD := °Alfred J, Prufrock Jr,;
LCS (CustomerlD);
WRITELN(Converted name is: 5CustomerlD)

END C Te5tLCS),

The program above prints:

Converted name is: alfred j, prufrock jr,

STRING AND CHARACTER ARRAY FUNCTIQNS,AND PROCEDURES Page 13—5

13.1.6 LENGTH

The LENGTH function' returns the number f characters. in the specifiedstring. The function invocation takes this torn
LENGTH (Source—string);

For example:

PROGRAM Teskength;

VAR State : STRING;

BEGIN C TestLength }
State := 'California';
WRITELN('Number of characters in state: ',LENGTH(State));
WRITELN('Number of characters in zlpcode: ',LENGTH('90247'));

END 'C TestLength).

The program above prints:

Number of dharacters in state: 10

and:

Number of characters in zipcode: S

13.1.7 P05

The P05 function returns the pos4tion of the first. occurrence of thespecified characters in the specified source string. If POS can't find the
specified characters, it returns a zero. The invocation of this functiontakes the form:

POS (Pattern,Source—st ring);

For example:

PROGRAM TestPos;

VAR Source : STRING;

BEGIN C Testpos 3
Source := 'The requested account number is #AA234—567—23228';
WRITELN('The account number begins at character position # ',

POS('#AA' ,Source))
END C TestPos 3.

The program above prints the message:

The account number begins at character position # 33

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13—6

13.1.8 STRIP

The STRIP-procedure strips trailing blanks from the specified string. (That
-is, STRIP removes any blanks that are at the end of the string.) The
invocation takes the form:

STRIP (Source5t ring);

where SourceString must be a string variable. For example:

PROGRAM TestStrip;

VAR Source : STRING;

BEGIN -C TestStrip)
Source := 25 characters
WRITELN('Before strlpping:(',Source,']');
STRIP (Source);
WRITEL.NC'After stripping:C',Source,']')

END -C TestStrip)-.

The program above prints:

Before stripping:C25 characters]

After stripping:C25 characters]

13.1.9 UCS

The UCS procedure converts lower case characters in a specified string to
upper case. The procedure invocation takes the form:

UCS (Sourcest ring);

where SourceString must be a string variable. For example:

PROGRAM TestUCS;

VAR Title : STRINGC3O];

BEGIN -C TestUCS)-

Title := 'fAmous comPUters i HAve known.';
UCS(Titte);

WRITELN('CQnverted title is: ',Title)
END -C TestUC5).

The program above prints:

Converted title Is: FAMOUS COMPUTERS I HAVE KNOWN.

STRING AND CHARACTER ARRAY FUNCTIONS AND PROCEDURES Page 13—6a

13.1.10 VAL

The VAL procedure converts a string to a REAL nunber. The invocation takesthe form:

VAL(SourceStrinq);

where Sourcestrinq Is a string variable that you want to convert to anunber. For example:

PROGRAM TeStVAL;

VAR Price : STRING;
Total : REAL;

8EGIN C Test VAL)
WMTE('Enter price of object: ');
READLN(Price);
IF POS('.',Price) = 0 THEN WRITELNVThe price is in whoLe dollars.');
Total : VAL(Prlce);
WRITELN('Wlth 6% tax, the price is:',Total * 1.06:8:2)

END C Te5tVAL 3.

The program above uses a string function, P05, on the string Price; it then
converts Price to a REAL nunber (Total) so that it can Derform a nuneric
operation on the value. (Notice the use of the optional parameters (":8:2")
In the Last WRITELN invocation to format the nireric answer in a field eight
characters wide with two digits to the right of the decimal point.)

A sample run of the program looks like this:

Enter price of object: 560
The price is in whole dollars.
With 6% tax, the price Is: 593.60

(Changed 30 ApriL 1981)

STRING AND CHARACTER ARRAY FUNCTIONS 'AND PROCEDURES Page 13—7

13.2 CHARACTER ARRAY INSTRINSICS

The procedures and strings listed below are for use on packed arrays of type
CHAR. You must make sure that any string literat you asstgn to the array isthe correct number of characters. For exampi.e, nssigning a string literal,to an array of 24 eLements wilt cause an error if that string Literal hasless than or more than 24 characters.

13.2.1 FILL.CHAR

The FILLCHAR procedure modifies a character arçay by filLing it with the
specified character. The invocation for the procedure takes this form:

FILLCHAR (Destination,Length,Fj llrcharacter);

where Destination must be a variable. For example:

PROGRAM TestFi ItChar;

VAR Destination : PE%ED ARRAY C1...1Q] OF CHAR;
Length : INTEGER;

Character : CHAR;
I INTEGER;

BEGIN 'C TestFillChar I
Length : 10;
Character : 'A';
FILLCHAR (Dest I nati on,Length,Character);
FOR I : I TO 10 DO

WRITE (Des'ffnatl'EtI3)
END 'C TestFllLChar I.

The program above fills the character array Destination with ten A's.

13.2.2 MOVELEFT and MOVERIGHT

The MOVELEFT and MOVERIGHT procedures move blocks of bytes in memory. They
can be dangerous if not used correctly. (For exampte, if you teLl one of
these procedures that you want to move 20 byt,, but the destination arrayonly contains 10 bytes, where do the extra, 10 bytes go? Somewhere in
memory?)

You will probably use MOVELEFT and MOVERIGHT most often to shift characterswithin a single array. You can also use them to move characters from one
array of type CHAR to another.

MOVELEFT starts at the left of the specified source array, and moves bytes
to the specified position in the destination array (also beginning at theleft). MOVERIGHT moves bytes beginning with the right of the source array,

STRING AND CHARACTER ARRAY FUNCTIONS AND. PROCEDURES Page 13—8

and beginning with the right of the specified locations in the destination
array. Yop specify the source array, the destination array, and the number
of bytes to move. (In the case of an &rray of type CHAR, one byte is one
character.) By including subscripts, you may spcify the locations in the
source and destination arrays at which to start..

Of course, MOVELEFT and MOVERIGHT do not physically "move" the bytes;
instead, they make a copy of the specified bytes from the source array Into
the specified locations of the destination array. The invocations of
MOVELEFT and MOVERIGHT take this form:

MOVELEFT(Source—array,Destination—array,Number—of—bytes);

and:

MOVERIGHT (Source—array,Destination—array,Number—of—bytes);

where Destination must be a variable.

Given the same arrays and same subscripts, the results of MOVERIGHT and
MOVELEFT will look exactly the same. For example, if Source is the packed
array of CHAR "1234567890", and Destinati9n is the packed array of CHAR

MOVELEFT (Source(6] , Destinat iont6],5);

MOVERIGHT (Sourcetó],DestlnationC6],5) ;

will produce the same packed array: *****67890. The MOVELEFT procedure
above moves the characters in this order: 6, 7, 8, 9, and 0. The MOVERIGHT
procedure above moves the characters in this order: 0, 9, 8, 7, and 6. The
only time this will become Important is when you are moving characters
within the same array.

For example:

PROGRAM TestMove;

VAR Source : PACKED ARRAY C1.23] OF CHAR;

BEGIN C TestMove >
Source := 'Days are never too long';
MOVELEFT (SourceC63,SourceCl],IO);
WRITELN (Source);
Source 'Days are never too long';
MOVERIGHT($ourcet6],SourceCl),10);
WRITELN (Source)

END C TestMove).

The program above prints:

are never ever too long

STRING AND CHARACTER ARRAY FUNCTIONS. AND PROCEDURES Page 13—9

and:

ever ever ever too long

MOVERIGHT and MOVELEFT can produce radically different results, depending onthe data you give them. You must be careful to choose the correct MOVEfunction for yourparticutar application.

13.2.3 SCAN

The SCAN function returns the number of characters In the array from the
beginning of the array until the specified character. (If the specified
characters are not found, SCAN returns the number of characters in the
entire array.) The function invocation takes this form:

SCAN (Length,Partial—expression,Source—array);

where Length gives the length of the array, Source—array specified the
packed array of type CHAR that is to be searched, and Partial—expression
takes the form:

<> character—expression
or:

= character—expression

For example:

PROGRAM Test5can;

VAR Source : PACKED ARRAY C1..25] OF CHAR;

BEGIN C TestScan)
Source := 'Error:30240 type RETURN ';
WRITELN('Error code starts after char #: ',SCAN(25,=':',Source))

END C TestScan 3.

If the searched for character—expression Is the first character of the
array, SCAN returns a zero.

By specifying a negative length, you can tell SCAN to scan the array
backward, from right to left. If the specified character appears in the
array, SCAN then returns a negative number specifying the number of
characters scanned from the right of the array before the specified
character was reached. If you supply a negative length, be sure to alsospecify the position in the array at which you wish the search to start.
For example:

WRITELN('zt starts after character #',SCAN(—25,=':',Source(25]));

.

PART III

ADVANCEDPROGRAMMING ON THE ALPHA PASCAL SYSTEM

S

S

CHAPTER 14

SYSTEMS FUNCTIONS AND PROCEDURES

The following functions and procedures will be of special use to the
experienced AtphaPascal programmer. They allow you to determine the
Location and size of data objects in memory, to determine the amount of free
memory Left, and to handle system and fileerrors.

Other functions and procedures alLow you to access system functions such as
accessing the Line printer spooler, mounting disks, reading the system
clock, and reading, setting, and releasing multi—user file locks.

14.1 LOCATION

The LOCATION function returns an integer that corresponds to the absolute
memory address of the specified variable. The invocation takes the form:

LOCATION(variabl.e—identlfier);

where variable—identifier specifies the variable whose memory address you
wish to know. LOCATION accepts a variabLe af any type as an argument.
LOCATION may not be used on packed fields.

14.2 SIZEOF

The SIZEOF function returns the size (in decimal bytes) of the specified
item. The invocation takes this form:

SIZEOF(variable—or—type—identl fier);

For example:

SYSTEMS FUNCTIONS AND PROCEDURES Page 14—2

PROGRAM TestSizeOf;

TYI!E SampleRecord = RECORD
- character: CHAR;

next: $ampleRec.ord;
END;

BEGIN (Test5izeOf)
VRITELN('$ize of SampleRecord (in bytes) is:',SIZEOF(SampleRecord))

END 'C TestSizeOf }.

The program above prints:

Size of SampleRecord (in bytes) is: 4

14.3 MEMAVAIL

MEMAVAIL returns an integer corresponding to 3/4 the number of unused words
remaining in the user partition. This number can be used to estimate how
many items can be aLlocated by NEW before memory capacity is exceeded. You
can use SIZEOF to determine how many bytes any particular object wilt
require. .14.4 MAINPROG

MAINPROG is a boolean function that returns no arguments. It returns TRUE
if the .PCF file is being used as a program, or FALSE if it is being used as
a Library.

MAINPROG can be used for debugging purposes. It can be used to write a
program which can also be used as the library of a checkout program that
makes sure that the functions and procedures defined in the original program
(now a Library to the checkout program) are impt!mented correctly. To do
this, the program would have the form:

PROGRAM;

.dectarations.,.

BEGIN
...initialization...

IF MAINPROG THEN
BEGIN
<statements)

END;

.

SYSTEMS FUNCTIONS AND PROCEDURES Page 14—3

The statements are only executed if the program is being used as a program
and not asa library.

The checkout program testing the functions and procedures in the above
program would then declare them as EXTERNAL functions and procedures in
order to call them with test arguments.

14.5 SPOOL

SPOOL is an assembly language routine that you can call from Pascal to spool
a disk file to the tine printer(s). (To "spool" a tile is to insert it frito
the printer queue, after which you can continue to do other things while
your file waits in the queue for its turn to be printed.) SPOOL allows you
to specify on which printer the file Is to be printed, the number of copies
to be printed, the form on which it is to be printed, whether the file is to
be deleted after it is printed, etc.

The current version of SPOOL (AMOS version 4.4/AtphaPascal version 2.0, and
later) is fully compatible with the current BASIC SPOOL subroutine. In

other words, the only information you must suppty to SPOOL is the
specification of the file you want to print; all other parameters are
optional. However, any unspecified arguments must be replaced by a null
value (STRING null or INTEGER 0, based on the typ of the argument). This

is because Pascal functions and procéduteé ,equlre a fixed number of
arguments.

The following definitions of switches and error codes are provided In the
include file SPOOL.INC. To use, insert (SI SPOOL}lnto the appropriate
place in your program.

14.5.1 Switches

To make life easier, switch values are available as constants. For a

description of SWITCHES, see betola. The constants wouLd be:

BANNER = 1;
NOBANNER = 2;
DELETE = 4;

NODELETE = 8;
HEADER = 16;

NOHEADER = 32;
= 64;

NOFF = 128;
WAIT = 256;

SYSTEMS FUNCTIONS AND PROCEDURES Page 14—4

14.5.2 Error Codes

The error codes reiirned by SPOOL are provided in a TYPE declaration at the
beginning of a program. The TYPE command has the form:

TYPE SPOOLERROR = (SPOOLED, NOSPOOLERALLOCATED, BADPRINTERNAME,
OUTOFQUEUEBLOCI(S, FILENOI'FOUND);

14.5.3 Function Definition

Finally, the external, function linkage definition is made as follows:

EXTERNAL FUNCTION SPOOL(F,P: STRING;
SW,CP: INTEGER;

FRM: STRING;
L,W: INTEGER): SPOOLERROR;

14.5.4 The SPOOL Subroutine

Call SPOOL via:

SPOOLCODE:SPOOL(FILENAME,PRINTER,SWITCHES,COPIES,FORMS,LPP,WIDTH);

where:

SPOOLCODE A variable of type SPOOLERROR which gets the completion code
shown in the above TYPE declaration. If SPOOLCODE is not set
to SPOOLED after the call is made, then an error of some kind
occurred and the file was not printed.

FILENAME A string variable or expression that gives the specification of
the file you want to print.

PRINTER A string variable or expression that gives the name of the
printer to which you want to send the file. If PRINTER is a

null, string, SPOOL uses the default printer.

SWITCHES An integer variable or expression that specifies various
control switches and flags that affect the printing of the
file. The control switches that SPOOL uses are exactly the
same as the switches used by the monitor PRINT command. (See
the "AMOS System Commands Reference Sheets" in the User's
Information section of the AM—100 documentation packet for
information on PRINT.)

Each switch you can use has a numeric code associated with It
(see below). For example, the BANNER switch code is 1; the
DELETE switch code is 4. Set control switches by putting the
suni of the appropriate switch codes into the SWITCHES variable.

SYSTEMS FUNCTIONS AND PROCEDURES Page 14—5

For example, if you want to use the BANNER and DELETE switches
(to tell the line printer spooler program to print a banner
page and delete the file after printing it), load SWITCHES with
5 (BANNER code + DELETE code). If you set SWITCHES toO (or do
not specify one value of a switch pair), SPOOL uses the default
switches for the seLected printer.

Switch codes:

BANNER 1

NOBANNER 2
DELETE 4
NODELETE 8
HEADER 16
NOHEADER
FF 64
NOFF 18
WAIt 256

COPIES An integer variable or expresion that specifies the number of
copies to be printed. If COPIES is 0, the line printer spooler
program prints one copy.

FORMS A string variable or expression that specifies the form on
which the file is to be printed. If FORMS is a nuLL string,
the tine printer spooler uses the NORMAL form.

LPP An integer variabte or expression that specifies the number of
tines per page. SPOOL only usel this vatue if you have
specified the HEADER switch in the SWITCHES, variable. If you
omit LPP, the spooler program uses the default value for the

specified printer.

WIDTH An integer variabLe or expression that specifies the width (In
characters) of the print tine (for header printing). If WIDTH
is 0, the spooter program uses the 4efault vatue for the
specified printer.

14.6 XLOCK AND GETLOCKS

XLQCK and GETLOCKS are two assembLy language subroutines that allow setting,
clearing, and listing of multi—user file locks, lilce the equivalent BASIC
subroutine XLOCK. In fact, the locks set by the Pascal XLOCK are the same
as those set by the BASIC XLOCK. This means that Pascal and BASIC programs
can be used to Lock each other out.

For a lengthier discussion of the concept of "file locks," refer to FLOcK —
BASIC Subroutine to Coordinate Multi—user FiLe Access, (DWM—OO100—16), and
LOCK — BASIC Subroutine for Multi—User, Locks, (DWM—OO100—11), in the
BASIC Programmer's Information section of the AM—100 documentation packet.
Briefly, however, a tile lock is merely a convenience that allows a program

1

SYSTEMS FUNCTIONS AND PROCEDURES Page 14—6

to check to see if a' current file is in use. The reason for file Locks is
that muLtiple users..itl destroy the contents of a file if they access it at
the same time. A file Lock heLps programs keep track of whether or not a
fiLe is currently being accessed. The program accessing the file "sets" a
lock on the fiLe to Let other programs know that they must wait. Then, when
the program Leaves the file, it "clears" the Lock, making the fiLe
accessibLe to other programs. it is important to stress that a fiLe Lock is
not a security device. MuLtiple programs can access the same file whether
or not file Locks.1 are set on that file; however, by checking file Locks, a
program can prevent a fiLe from being damaged by refraining from accessing
it whiLe another program is using it;

It is not necessary to Load the Pascal XLOCK routine into memory. However,
the routine does require one word of data In system memory to Link to the
system queue list, which contains the locks set by XLOCK

This link Is contained In the fiLe DSKO:XLOCK.SYSfl,4). This file should be
Loaded into system memory so that XLOCK may work.

If XLOCK.SYS is not loaded into system memory, then the AIphaBASIC
subroutine XLOCK.SBR must be. This is because the AlphaBasic XLOCK wiLL
contain within itseLf a link to the system queue blocks which contain the
Locks set by both XLOCK routines. For more information, see the XLOCK
documentation.

There is no problem if both XLOCK.$BR and XLOCK.SYS are in system memory at
the same time. The Pascal XLOCK will use XLOCK.SBR, so that BASIC and
Pascal are using the same List of locks.

The lock values defined beLow (LOCKI and LOCK2) are required for each lock.
LOCK1 is called the "MAJOR LOCK" and LOCK2 Is caLLed the "MINOR LOCK." If a
value of 0 is set in either lock, thn that lock becomes a wildcard and
matches all values in that position. For instance, a LOCKI of 3 and a LOCKZ
of 0 locks out aLL locks with a LOCK1 of 3. Any other user that tries to
use a LOCKI of 3 will be Locked out, If LOCKI Is set to 0, then aLt locks
wiLt be set. For more information, see a description of the BASIC XLOCK
subroutine.

14.6.1 The XLOCK Subroutine

XLOCK is an external function. Therefore, It must be specified as such in
the Pascal program that uses it:

EXTERNAL FUNCTION XLOCK(MD: XLOCKMODE;
LOCK1 ,LOCKZ: INTEGER): INTEGER;

The type XLOCKNODE is defined as follows:

TYPE XLOCKMODE = (SETLOCK, SETLOCKWAIT, CLEARLOCK)

SYSTEMS FUNCTIONS AND PROCEDURES Page 14—7

(These two declarations can be included ma program by using <SI XLOCK).)
The result of the XLOCI(call will be returhed in the integer variable
RETCODE:

RETCODE: XLOCK(MODE,LOCK1 ,LOCK2);

Where MODE is one of the modes specified in XLOCKMODE, and LOCK1 and LOCK2
are integers containing the locks to be set.

If RETCODE is ever set to —1, this means that a bad mode was passed to
XLOCK. This can happen if there was an error in setting up XLOCKMODE.

14.6.2 Setting a Lock

A lock is set using XLOCI(mode SETLOCK. For instance, if the user had
opened a file on channel 3 and was updating record 47, he might enter the
following code into his PascaL file:

LOCK1:=3; <locking file 3)
LOCK2:47; <locking record 47)
RETCODE : =XLOCK(SETL.OCK,LOCK1 ,LOCKZ);

If the lock was successful, then RETCODE is set to 0. If not, the job
number of the job that has that Lotk Is returned In RETCODE.

14.6.3 Setting a Lock (and Waiting Until It Is AvailabLe)

It is sometimes necessary to wait for a lock to become cLear. To do this,
mode SETLOCKWAIT is used insteadof SETLO'CK. This mode, assuming the above
example, Is used as tot lows:

RETCODE: =XLOCK (SETLOCKWAIT,LOCK1 ,LOCKZ);

If the lock is held by another user, the program will be put to sleep untiL
it becomes available. When XLOCK returnsto the user program, RETCODE wilt
contain a 0 if the lock was allocated, or the user's job number if the lock

already was allocated to him.

14.6.4 Clearing a Lock

After a lock is no longer needed (i.e. in the above example, moving to
another record) it must be cleared so that other userS have access to that
lock. To clear a lock, the CLEARLOCK mode Is used. Again, using the above
example:

RETCODE:flLOCK(CLEARLOCK,LOCK1 ,LOCK2)

SYSTEMS FUNCTIONS AND PROCEDURES Pege 14—8

RETCODE wiLL
after the c
was cLeared,
LOCKZ and muc

contain the number of Locks that
aLl, then no Locks were cLeared,
If REtCODE > 1, then a wiLdcard

ho Locks were cleared,

were cleared, If RETCODE
If RETCODE = 1, then one
was specified in LOCKI

14,6,5 The GETLOCKS Subroutine

GETLOCKS is an externaL procedure,
in the Pascal program that uses it:

EXTERNAL PROCEDURE GETLOCKS(VAR

Therefore, it must be specified as such

LOCKQTY,JOBNUM: INTEGER;
VAR LOCKARRAY: LARRAY);

Type LARRAY is an array of type LOCK, LOCK is set up as follows:

TYPE LOCK = RECORD JOB,LOCK1,LOCK2 : INTEGER END;

If X is a variable of type LOCK, then X,JOB is the job number that holds
lock, X,LOCK1 and X,LOCK2 are the lock valued of the lock, LARRAY
defined as follows:

TYPE LARRAY = ARRAY[1,,25] OF LOCK;

The variable LOCKARRAY may then be allocated for GETLOCKS to return the list
of locks in:

VAR LOCKARRAY : LARRAY;

Be sure to set up type LARRAY as an array large enough to
number of possible locks on your system, Since there is no
in external procedures or functions, LARRAY must be large
the maximum number of anticipated locks, Therefore, it is
set LARRAY to the number of queue blocks allocated in your

hold the maximum
range checking

enough to receive
a good idea to
system,

If there is a possibility that more than 25 locks may be set at a time when
GETLOCKS (see below) is called, then it is necessary that the size of LARRAY
be increased, The file DSKO:XLOCK,INC[7,5], which contains the definition
of LARRAY, may be modified,

To get a list of locks, enter into your program:

GETLOCKS(LOCKQTY,JOBNUM,LOCKARRAy);

Where LOCKOTY is an integer that receives the number of set locks, JOBNUM is
an integer that receives your job number, and LOCKARRAY is the array that
receives the list of locks,

=0
lock

or

.

the
is

One thing you might do with this List of Locks is List it,
FOR LOCKLIST:1 TO LOCKQTY DO

WITH LOCKARRAYELOCKLIST] DO
BEGIN CLIST LOCKS)
VRflELNYJOB = ,JOB);

WRITELNYLOCK1 =
WRITELNVLOCK2 =

END; CLIST LOCKS)

14,7 XMOUNT

Page 14-9

XMOUNT is an assembLy Language routine that allows you to mount a disk from
within a PascaL program without Leaving Pascal, You should call it whenever
you change a disk and your Pascal program is going to use that disk, You
must always mount a disk after you have changed it and before you write to
it, Otherwise, the system will think that the old disk is still in the
drive, and use the old disk°s bitmap to find unused disk blocks,

14,7,1 Error Codes

The error codes returned by XMOUNT are specified in a
the beginning of a program, having provided the form:

TYPE declaration at

TYPE MOUNTERROR = (MOUNTED, UNMOUNTED, DEVNOTFOUND, BADHASH, NOVOLID);

Next, some variables will have to be defined,
variable to contain the device specification and
that will contain the volume ID of the newly
return an error code in a variable that should be

Next, the function (XMOUNT) must be defined as follows

EXTERNAL FUNCTION XMOUNT(D:
VAR V: STRING):

STRING;
MOUNTER ROR;

{$I XMOUNT) will include the required TYPE and EXTERNAL FUNCTION definitions
required by XMOUNT,

XMOUNT is then called via:

RETCOOE: =XMOUNT(DEV,VOLID);

SYSTEMS FUNCTIONS AND PROCEDURES

To do this:

,LOCK1);
,LOCKE);

VAR DEV,VOLID:
P ETC ODE

STRINGE1O];
MOUNTERROR;

XMOUNT requires a string
another string variable

mounted disk, XMOUNT will
of type MOUNTERROR:

SSTENS FUNCTIONS AND PROCEDURES Page 14—10

Where 0EV is a string containing the device to be mount.ed (e,g,, SDEV:tDSK3:) and VOLID is the string variable used to receive the volumeID, if any.

14,7,2 Unmounting a Disk

A disk may be unmounted by specifying VU' after the 0EV spec (i,e,
RETCODE:XMOUNT('DSK23:/u',VOLID);), If a disk is to be unmounted, the '/U'
must contain an upper case 'U', When you unmount a disk, you prevent BASIC
and most system programs from being able to access that device. Note that
VOLID is incLuded, even though it is not needed because a volume id is not
returned when a disk is unmounted, VOLID is required at all times,

14,7,3 Error Codes

The error (or return) codes specified above have the following meanings:

14,7,3,1 MOUNTED The device was successfully mounted and the volume ID
is in VOLID (or whatever the second string was called),

14,7,3,2 UNMOUNTED The device was successfully unmounted, VOLID is
unchanged,

14,7,3,3 DEVNOTFOUND " The specified device was not defined at system
generation, and is not in the system device table, VOLID is unchanged

14J,3,4 BADEIASH " The device was mounted, but it was a storage module
device with a BADBLK,SYS, When the new BADBLK,SYS was read, it was found to
contain a bad hash total, VOLID is unchanged,

14,7,3,5 NOVOLID The disk was successfully mounted, but there was no
volume ID on the disk, Note that MOUNTED and NOVOLID specify successfuL
mounting of the disk, UNMOUNT specifies a successful UNMOUNT, DEVNOTFOUND
and BAN-lASH indicate errors occurred while attempting to mount the disk, If
either of these errors occur, you should not try to access that device! ,

SYSTEMS FUNCTIONS AND PROCEDURES Page 14—11

14.8 TIME

The TIME procedure places the contents of the system clock Into the two
specified variables. (The system clock contents increment every sixtieth of
a second on most systems, and every fiftieth of a second on other systs;
the actual amount is specified by CLKFRQ in SYSIEM.INI.) Wordl contains the
most significant part of the returned valul, Wordi and Word? must be
declared INTEGER variables. The procedure lnvoéátion takes this form:

TINE(Wordl ,Word2);

For example:

PROGRAM TestTime;

VAR First,Second : INTEGER;

BEGIN { TestTime)
TIME(Fi rst,Second);
WRITELN('The time is: ',First,',',Second)

END C TestTime).

When the program above was run at 5:30:02 Ptl, It printed:

The time is: 56,2086

NOTE: Because the clock contents are stored as a 32—bit unsigned value,
Word? may sometimes be interpreted and displayed by the computer as a
negative number.

14.9 TOO

TOO takes no arguments, and returns a real number corresponding to the
nuaber of seconds since midnight, according to tht time of day. Internally,
the time of day is converted from a two word integer to a real number, and
then divided by the clock frequency defined in SYSTEM.INI. Therefore, the
resolution on 60 cycle systems is to within .01666... seconds, and on 50
cycle systems is to within .02 seconds.

You will probably find TOO to be of most use for timing purposes or for
calculating the time of day.

SYSTEMS FUNCTIONS AND PROCEDURES Page l4-l2

14,10 ERROR HANDLING PROCEDURES AND VARIABLES

Whenever an error occurs, the AiphaPascal system prints an appropriate
message (incLuding the Location of the error) and aborts to AMOS. Whenever
a user types a Control"C whiLe his program is executing, execution is
suspended and the user is aLlowed to choose among a series of options such
as resuming his program, exiting to AMOS, or dispLaying a hacktrace of
suspended functiOn and procedure invocations,

However, it is not always desirabLe to Let the system perform error handling
for you. You may wish to alLow the user to type a Control"C in order to
exit from some mode of a program, or in order to obtain a status report on
the progress of your program in processing some task, II: may be that you
have an applications package in which the users of your package are
unfamilar with AMOS,,, if an error occurs you may simply wish to print a

message and return to the top level of your applications package, Or it may
be that you enforce security on your system, and have an unattended program
that you wish to LOGOFF automatically if an error occurs,

these reasons and more, it is desirable for you to he able to write your
routine to handle a Control"C and error conditions, AlphaPascal allows
to do so, and the remainder of this section will attempt to provide you
the necessary information to write such a routine,

141O,1 Including ERT,INC

In order to write your own error routine, you must include a special set of
definitions with {$I ERT), Doing so includes the following text:

INTEGER;
INTEGER;
'TEXT;

{Additional information for internal use only)'
END;

EXTERNAL PROCEDURE XERRORTRAP(VAR INFO: INFOREC);
EXTERNAL PROCEDURE STDERRORTRAP;

14,10,2 ERRORTRAP

To catch errors, you must write a global procedure of no arguments with the
name ERRORTRAP, Here is a very simple example of such a procedure:

For
own
you
with

TYPE
"TN'FOREC RECORD

XEQERR:
F ILERC:
ERRFIB:

SYSTEMS FUNCTIONS AND PROCEDURES Page 14'13

PROCEDURE ERRORTRAP;
BEGIN

STDERRORTRAP;
END;

In this exampLe, we simpLy call the standard system error handler
STDERRORTRAP, In order to determine the nature of the error which has
Tioked eFF5rtrap, you must use the function ERRORINFO in conjunction with a

variable declared as type INFOREC:

PROCEDURE ERRORTRAP;
VrINFOP: "INFOREC;
BEGIN

INFOP : ERRORINFO;
WRITELNV?Error ',INFOP'J(EQERR);
STDERRORTRAP;

END;

In this example, we also display the error code corresponding to the error
which occurred before calling the standard error handler, The list of error
codes is as follows;

Error
Code Meaning

Value range error
3 Exit from uncalled procedure
4 Memory capacity exceeded
5 Integer overflow
6 Divide by zero
7 Bad pointer reference
S (ControHc)

10 (I/O error)
11 Unimplemented runtime instruction
12 Floating point error
13 String overflow
14 Programmed HALT
15 Programmed breakpoint
16 ARCSIN(x) or ARCCOS(x) where abs(x)
17 LOG(x) or LN(x) where x <= 0
18 SQRT(x) where x < 0
19 TAN(PI/2 +
20 ARCCOSH(X)
21 FACTORIAL(x
22 ARCTANH(x)
23 POWER(x,y)

In the case of I/O errors, there is some additional information, namely the
type of error and the file involved, which is available:

>1

k*PI) is undefined for integer k (bad TAN argument)
where x < 1

where x is a negative integer
where abs(x) > 1

where x < 0 and y is a fraction

4

SYSTEMS FUNCTIONS AND PROCEDURES Page 14—14

PROCEDURE ERRORTRAP;
VAR INFOP:.flNFQREC; BADFILEP: TEXT;

IP4FOP : ERRORINFO;
IF INFOr.XEQERR = io cl/a Error) THEN
'BEGIN BADFILEP XNFOP .ERRFIP;

WRITE('?I/O error ',INFOP.FILERC,' has occurred in ');
PFILEtBADFXLEV);
WR1IJELN;

END;
STDERRQRTRAP;

END;

In the above example, if an I/O error has occurted, we display the file
error code (INFOP..FILERC) and the name of the file involved
(INFOP.ERRFIB). ERRFIB is a pointer to the most recently processed file,
which Is why we first save It in BADFILEP before writing to the terminal,
otherwise our message would read

?I/O error xxx has occurred in TTY:

regardless of the actual file in which the error occurred.

Here is a list of the I/O error codes. They are the standard codes used by
AMOS:

I/O
Error
Code Meaning

1 File specification error
2 Insufficient free memory for INH
3 File not found
4 File already exists
S Device not ready
6 Device full
7 Device error
$ Device in use
9 Illegal user code
10 Protection violation
11 Write protected
12 File type mismatch
13 Device does not exist
14 Illegal block number
15 Buffer not INITed
16 File not open
17 File already open
18 Bitmap kaput
19 Device not mounted
20 Invalid filename

In the examples so far, we have always been calling STDERRORTRAP to handle
our errors. STDERRORTRAP always aborts to AMOS without returning with the

SYSTEMS FUNCTIONS AND PROCEDURES Page 141S

exception of a ControHC followed by a command to resume, Thus the
ERRORTRAP procedures themseLves have aborted to AMOS in most circtsnstances,

In addition STDERRORTRAP resets INFOP',XEOERR to zero before returning if
execution is to be resumed, This is because errors MUST NOT occur in the
error handler itseLf for obvious reasons, AiphaPascal assumes it is
executing an error handler whenever XEQERR is nonzero, If an error does
occur within an error handier, the message

?Attempt to calL ERRORTRAP while in ERRORTRAP

is displayed, a direct abort to AMOS is made without closing any open files.
Thus, by reseting XEQERR to zero, STDERRORTRAP signals to AlphaPascal that
error handling is finished and further errors are again acceptable,

Should you decide not to call STDERRORTRAP at all, please keep in mind the
following points:

1, The only errors from which you may safely resume execution are S (a
ControHC) and 10 (I/O error), An attempt to resume execution by
returning from ERRORTRAP with any other errors will probably crash
the system,

2, It is acceptable to use EXIT to abort some function or procedure,
or 7our program, when any error occurs, Of course you can only
EXIT to leave a function or procedure which is currently active, so
you will probably want to have around some BOOLEAN variables to
keep track of whether or not you are currently within routines
which you might wish to EXIT from ERRORTRAP,

3. Remember to set XEOERR back to zero before leaving ERRORTRAP,
otherwise your next error will abort to AMOS without calling
ER RO PT P A P

14,10,3 XERRORTRAP

When STDERRORTRAP is called by entering a Control"C, it is possible to
request a backtrace of suspended functions and procedures This backtrace
begins with the caller of the caller of STDERRORTRAP, which is usually the
caller of ERRORTRAP, and hence the routine which was suspended Thus,
should STDERRORTRAP be called by a function or procedure local to your
ERRORTRAP procedure, the backtrace will begin in the wrong place, This can
he corrected by using XERRORTRAP, which takes a copy of the system INFOPEC

as its argument, It is used as follows:

(changed 30 April 1981)

SYSTEMS FUNCTIONS AND PROCEDURES
S Page 14—16

PROCEDURE ERRORTRAP;
VAR iNrop: aINFOREC; INFO: INFOREC;

PROCEDURE P1;
BEGIN

XERRORTRAP(INFO);
END;

BEGIN
INFOP := ERRORINFO;
INFO : INror;
P1;
INFOP,XEQERR : INFO.XEQERR;

END;

Using XERRORTRAP, the backtrace will be disptayed beginning with the catler
of the routine which Invokes ERRORINFO, thus producing a correct backtrace,
even when calLed from an Inner procedure. Begin at the caller of the
procedure which set X to ERRORINFO.

14.10.4 ERROR

The procedure ERROR(x) takes an INTEGER x as argument and generates the
corresponding system error. See the previous section for the list of error
codes.

S

.
(changed 30 April 1981)

SYSTEMS FUNCTtONS AND PROCEDURES Page 14—15

exception of a Control—C followed by a command to resume, Thus the
ERRORTRAP procedures themselves have aborted to AMOS In most circumstances.

In addition1 STDERRORTRAP resets INFOP .XEQERR to zero before returning if

execution is to be resumed. This is because, errors MUST NOT occur in the
error handler itself for obvious reasons. AtphaPascal assumes it is

executing an error handler whenever XEQERR is nonzero. If an occur does
occur within an error handler, the message

?Attempt to call ERRORTRAP while in ERRORTRAP

is displayed, a direct abort to AMOS is made without closing any open files.
Thus, by reseting XEQERR to zero, STDERRORTRAP signals to AlphaPascal that
error handling is finished and further errors are again acceptable.

Should you decide not to call STDERRORTRAP at all, please keep in mind the
following points:

1. The only errors from which you may safely resume execution are B (a
Control—C) and 10 (I/O error). An attempt to resume execution by
returning from ERRORTRAP with any other errors will probably crash
the system.

2. It is acceptable to use EXIT to abort some function or procedure,
or your program, when any error occurs. Of course you can only
EXIT to leave a function or procedure which is currently active, so
you will probably want to have around some BOOLEAN variables to
keep track of whether or not you are currently within routines
which you might wish to EXIT from ERRORTRAP.

3. Remember to set XEQERR back to zero before leaving ERRORTRAP,
otherwise your next error wilt abort to AMOS without calling
ERRORTRAP.

14.10.3 XERRORTRAP

When STDERRORTRAP is called by entering a Control—C, it is possible to
request a backtrace of suspended functions and procedures. This backtrace
begins with the caller of the caller of STDERRORTRAP, which is usually the
caller of ERRORTRAP, and hence the routine which was suspended. Thus,

should STDERRORTRAP be called by a function or procedure local to your
ERRORTRAP procedure, the backtrace wilt begin in the wrong place. This can
be corrected by using XERRORTRAP, which takes a copy of the system INFOREC
as its argument. It is used as follows:

SYSTEMS FUNCTIONS AND PROCEDURES Page 14l6

PROCEDURE ERRORTRAP;
VKR fKWOp: INFOREC; INFO: INFOREC;

PROCEDURE P1;
BEGIN

XERRORTRAP(INFO);
END;

BEGIN
INFOP : ERRORINFO;
INFO INFOP'
P1;
INFOP ,XEQERR : INFOXEQERR;

END;

Using XERRORTRAP, the backtrace wiLL be dispLayed beginning with the caLLer
of the routine which invokes ERRORINFO, thus producing a correct backtrace,
even when caLled from an inner procedure, Begin at the caLLer of the
procedure which set X to ERRORINFO,

14AO,4 ERROR

The procedure ERROR(x) takes an INTEGER x as argument and generates the
corresponding system error, See the previous section for the list of error
codes,

.

CHAPTER 15

ASSEMBLY LANGUAGE SUBROUTINES

Assembly Language subroutines are assembLy Language programs that are
caLlabLe by your ALphaPascaL programs,

Why would you want to call assembly languages routines from a Pascal
program? There are at least two good reasons, Firstly, not all the
capabilities of the operating system (AMOS) have been directly included in
AlphaPascaL. The ability to write assembly language subroutines allows you
to enrich ALphaPascaL, as need requires, with additional capabilities,
SecondLy, routines written in assembLy Language execute significantly faster
than routines written in PascaL, Thus, you may wish to identify key
functions and procedures which are bottLe necks in your programs, and
rewrite them in assembly Language.

This chapter describes how to write and use assembly Language subroutines,
It wiLL be assumed in this chapter that you are an experienced assembLy
Language programmer on the AMOS system, For more information on assembLy
Language programming, pLease refer to the AMOS AssembLy Language
Programmers Reference ManuaL (DWM"OO1OO43), the WD16 Microcomputer
ManuaL (DWM"OO100"04), and the AMOS Monitor CaLLs ManuaL (DWM-OO1OO—42),

15,1 CALLING ASSEMBLY LANGUAGE SUBROUTINES

In AiphaPascai, there is no distinction between calling an assembly Language
function or procedure, and caLLing a Pascal function or procedure which
occurs in a separately compiled moduLe, (ModuLes were discussed in Section
5,1,) Section 4,4,4 describes how to Link an assembly Language subroutine
into a program during the PLINK process, Instead of Linking output fiLes
from the compiler, you link a PRG file with an extension of ,PSB which
contains code for a single function or procedure, The name of the PSB file
must be the first six Letters of the name to be used for calling the
assembLy Language routine, When specifying the fiLe to PLINK you must, of
course, specify the fuLl name of the procedure or function contained in the
P38 fiLe, otherwise PLINK wouLd not know the fuLL name you wish to use forit,

ASSEMBLY LANGUAGE SUBROUTINES Page 152

For example, if you code in assembly language a procedure that displays a
menu, the procedure name might he MENUDISP, The disk file containing that
routine must then., be called MENUDI, When you specify the file to PLINK,
though, you use the full eight--character name of the procedure, For
example:

File 1 = MENUDISP, PSB/LINK

15,2 ARGUMENT PASSING CONVENTIONS

Your assembly language routine must work with two stacks, One of these
stacks is the familar SP stack. The other is a data stack used by
AlphaPascal for passing arguments and recieving results, The data stack is
indexed by P5, and so will also be referred to as the P5 stack, All other
registers (RO"R4) are avai lable for any purpose to your assembly routine,

Arguments are placed on the RS stack in reverse order, That is, the last
argument appears on the top of the R5 stack, For example, if we have the
following program in AlphaPascal:

File TEST1,PAS"

PROGRAM;
EXTERNAL PROCEDURE demol (x,y: INTEGER);
BEGIN

demol (10,20);
END,

then, upon entry to our assembly language subroutine, 20 will be on the top
of the PS stack (referenced as BR5) and 10 will be under it on the PS stack
(referenced as 2(R5)),

A procedure to print its two INTEGER arguments in order might then be
DEMO1 ,MAC:

File DEMO1,MAC"

COPY SYS

START: MOV 2(R5),R1 ; Get first argument
DCVT 0,2 ; Print it in decimal
CRLF
MOV &R5,R1 ; Get second argument
DCVT 0,2 ; Print it in decimal
CRLF
ADDI 4,R5 ; Remove arguments from R5 stack
RTN ; Return to pascal

DEMO1 would then be assembled with MACRO, and the resulting program tile
DEMO1,PRG would he renamed to DEMO1,PSB in order to allow it to be linked
into a code tile by PLINK,

ASSEMBLY LANGUAGE SUBROUTINES Page 153

When caLled as a function rather than as a procedure, your routine will
receive an additionaL three words containing zeros on the top of the R5
stack, These words serve no purpose when writing assembly routines and may
be immediately removed by executing an ADDI ó,R5, Their presence is
required for internal reasons by functions written in Pascal.

Assembly language functions return their result on the top of the R5 stack
after all arguments have been removed, Example:

File TEST2,PAS—

PROGRAM;
EXTERNAL FUNCTION Maximum(x,y: INTEGER): INTEGER;
BEGIN

WRITELN (Maximum (2,7));
END,

File MAXIMU,MAC"

START: ADDI 6,R5 ; Throw away unused additional words
MOV (R5)+,R2 ; Get 2nd argument
MOV (R5)+,R1 ; Get 1st argument
CMP R1,R2 ; 1st > 2nd 2

BHI USE1ST ; Yes, return 1st argument
MOV R2,(R5) ; No, return 2nd argument
R TN

USE1SI: MOV R1,"(RS) ; Return 1st argument
R TN

After producing MAXIMU,PSB, you would need to remember to refer to the file
as MAXIMUM,PSB to PLINK, otherwise it would think the function being
defined hid the name Maximu instead of taximum,

15,2,1 Argument passing

There are two methods of passing arguments in Pascal, typified by:

1, PROCEDURE(x: INTEGER);
and 2. PROCEDURE(VAR x: INTEGER);

In the first declaration, x is referred to as a value parameter, In the
second declaration, x is referred to as a reference parameter.

In general, value parameters appear directly on the R5 stack, while
reference parameters (denoting variables which can be modified) appear as an
address on the R5 stack which points to the parameter,

However, there are exceptions: arrays, records, and strings always have
their address passed on the R5 stack, even when they appear as value
parameters,

ASSEMBLY LANGUAGE SUBROUTINES Page 15"4

15,2,2 Data Formats.

This section describes the internaL format of each data type, ALL data
types are aLigned on a word boundary unless contained as a packed field,

15,2,2,1 CHAR - Characters are represented •by their ASCII code in a fulL
machine word, They are only stored within single bytes of memory when
contained in packed arrays or records,

15,2,2,2 INTEGER Integers are represented in a single machine word,

15,2,2,3 BOOLEAN " Booleans are represented by a zero (FALSE) or one
(TRUE) in'j full machine word, They are onLy stored as single bits when
contained in packed arrays or records,

15,2,2,4 Subranges and Scalar types These are represented in a full
machine word unless they appear in a packed array or record, in which case
they are stored in a field of as many bits as necessary to hold their
maximum value, User scalar types are numbered starting from zero,

15,2,2,5 REAL Reals occupy three words of memory and conform wtth the
format for reals used by the FArm, FSUB, FMUL, FDIV, and FCMP machine
instructions,

15,2,2,6 STRING — Strings are represented by a length byte containing
O"255, foLlowed by a sequence of bytes which are used to hoLd the actual
characters of the string,

15,2,2,7 Pointers " Pointers require a full machine word,

15,2,2,8 Sets " Sets require one or more words depending upon the size of
the set, Sets are represented as a bit pattern, where a one bit denotes the
presence of a set element, The bits are ordered from low order to higher
order in each word, and from first word to last word, For example, SET OF
3,,19 requires two words of memory, The first three bits corresponding to 0
thru 2 are unused, To test for the presence of the element 18, one would
perform a bit test on the second word of the set with a mask of 4,

ASSEMBLY LANGUAGE SUBROUTINES Page 15—5

15.2.2.9 Arrays — Arrays require one or more, words. the elements of an
array appearS in order in memory. In packed arrays, the eLements of an array
may each occupy on a few bits, otherwise each element, fr411.t appear on a word
boundary. Fields appear from low order to high order, in a word,, and may not
cross word boundaries.

15.2.2.10 Records — Records require one or mr# words. The elements of a
record appear in order in memory In a fashion simi tar to arrays.

15.2.2.11 Files — Files are actually an internal 'kind of record format.
The details of this format are not being made available as they will change
as versions of AlphaPascal change.

15.2.3 Error Exit

Should 'you wish to generate an error from your assembLy language subroutine,
it is preferable that you calL the Pascal' systern's ERRORTRAP procedure,
rather than display an error and exit to AMOS directly, Otherwise there Is
no guarantee that open files will be close4 côrreptty.

To signal an error, you must perform a prop!r return from your routine, but
In addition, advance your return address by ex'ec*i4lng 1W2 SSP, and Leave an
execution error code in RI. For additional information on ERRORTRAP and a

List of execution error codes, see section 14.10, "Error Handling Procedures
and Variabtes.'

15.3 CODE RESIDENCY

This section discusses the variety of ways In which your routine may appear
in memory.

15.3.1 Routines PLINKed with /LINK

Routines which have been linked into a code file with the /LINK option must
have a final P58 file which is exactly one block in size. Such routines are
dynamically paged into memory along with Pascal psuedo—code. They are
deleted from memory and reloaded as memory requirements and usage demand.
They place no burden on available memory when not being used.

ASSEMBLY LANGUAGE SUBROUTINES Page 15—6

15.3.2 Routines PLINKed without /LINK

Routines which have been linked into a code file without the /LINK option
will be searched for in memory and on disk each time they are called. What
has been linked into the code file is not the actual routine, but rather the
name of the PSB file containing that routine (see section 4.4.4).

If your routine has been loaded before. entering AlphaPascal via the LOAD
command, either intq system memory r user memory, then that copy of your
routine wilt be used.

If your routine is not present in memory, it wilt be temporarily loaded in
order for it to be executed, and then deleted from memory immediately after
execution.

15.4 OBTAINING MEMORY FOR DATA AREAS

When writing an assembly language routine, you will, probably want and need
temporary data area$. There is rio room for allocating memory modules for
this purpose. Instead, you may either allocate space for data in the SR
stack, or place your data inline in your routine (this is unacceptable for
routines which are to be loaded into system memory, since they must be
sharabte). The R5 stack is NOT available for allocating data space.

Another method for obtaining larger data areas, is to have your caller pass
them to you as arguments.

15.5 RESTRICTIONS

As mentioned above, there is no room for allocating memory modules. This
also means that you may not use INIT to create a file buffer, or perform
file operations which would require loading a device driver Into memory.

.

CHAPTER 16

WRITING AND MODIFYING AN EXTERNAL LIBRARY

When you link together your programs using PLINK, you are asked to specify a
library file. Typically, ybu specify siuctS;' The global functions,
procedures, and variables crttaihed in thts" Library are available to you
just as if you wrote them in a modute and linked them into your program.
However, using routines contatned in a library requires no additional space
in your program's code file because the routines are accessed directly from
the library file at run—time.

There are several advantages to placing commonly used routines in a library
rather than linking them directly into your Program. First, you save disk
space by only having a single copy of yOur i'otatlnes on disk, Second, the
linking process is faster if yu only need to spetify a library rather than
several files contain your modules. Finally, if It becomes necessary to
modify a routine, you need only change it iii the'lJbrary to update alt your
programs which use it.

Another possible use of libraries is to genere, multiple configurations of
a program. A single program could be lInked to a variety of Libraries each
of which define the same set of functions and procedures, but each of which
do so with different definitions. This mightl be used to configure a

generalized set of applications programs for uSe in different specific
applications.

It is not necessary to specify EXTERNAL declarations for most of the
functions and procedures in StDLIB. ThIs is NoT a feature of libraries.
Rather, the compiler has been written to', automtttcatly include EXTERNAL
declarations for these commonly uled routines.,

There is really very little difference between a program file and a library
file. Both are actually AlphaPascäl. programs. The only difference is that
if Program A uses Program B as a library, then Program B is executed with
the purpose of initializing the library (i.e.,: global variables in the
library), before Program A is executed.

It is possible for a library to itself hay! a Library. Thus Program A can
use Program B as a library, and Program B can use Program C as a library, in
which case C, then B, and finally A are executed.

WRITING AND MODIFYING AN EXTERNAL LJBRARY Page 16—2

To allow programs to be written which can serve either directly as a
program, or indirecy as a Library, a special BOOLEAN function is provided,
called MAINPROG, which takes no arguments and returns true if the program in
which It Is executing is being used as the main program, and false if the
program in which it is executing Is being used as a library to another
program. The idea is to write a program in such a way that if it is being
used as a library, all it does is initialize global variables.

16.1 STDLIB

STDLIB is a special Library which itself has no, library. It provides a
basic set of mandatory procedure and funétion definitions. It is
permissable for you to overide any of these definitions with your wn
external procedures or functions with the exception of RDC, RDI, RDR, RDS,
RLN, WLN, WRE, WRC, WRI, WRR, and WRS. Calls to these procedures are
automatically generated whenever you use READ and WRITE statements. READ
and WRITE will seriously malfunction If you redefine any of these.

The functions and procedures included in STDLXB are:

ARCCOS Arc cosine function
ARCCOSH Hyperbolic arc cosine function
ARC$IN Arc sine function
ARCSINH Hyperbolic arc sine function
ARCTAN Arc tangent function
ARCTANH Hyperbolic arc tangent function
CONCAT Function to concatenate strings
COPY Function to copy characters in string
COS Cosine function
COSH Hyperbolic cosine function
DELETE Procedure to delete characters in string
ERRORTRAP Default error handler
EXP Function to compute e to the specified power.
FACTORIAL Factorial function CX!)
GETFILE Procedure to get information in filespec
GETLOCKS Procedure to read file locks.
INCHARMODE Returns true if terminal is In Charmode.
INSERT Procedure to insert characters into a string
KILCMD Procedure to abort command file
LCS Function to convert upper case characters to lower case
LN Function to compute natural (Napierlan) log
LOG Function to compute log base ten of argument
OPEN Procedure to open an AMOS file
POS Function to compute position of character in string
POWER POWERCx,y) computes x to the y'th power
PROGRAM STDLIB initialization
PWROFTWO Function to compute powers of two
RDC Routine used by READ
RDI Routine used by READ
RDR Routine used by READ
RDS Routine used by READ

WRITING AND MODIFYING AN EXTERNAL LIBRARY Page 16—3

RESET Procedure to close a file, and then open for input
REWRITE Procedure to close, erase, and then open a file for output
RLN Routine used by READ
SETFILE Procedure to place file information in fitespec
SIN Sine function
SINH Hyperbolic sine function
Sn. Routine used by SPOOL; must not be called directly
SPOOL Procedure to spool files to tine printer
STDERRORTRAP Standard error handler
STRIP Procedure to strip trailing blanks from string
SQRT Square root function
TAN Tangent function
TANH Hyperbolic tangent function
TOD Returns time of day in seconds as a real nianber
UCS Procedure to convert upper case characters to lower case
WLN Routine used by WRITE
WRB Routine used by WRITE
WRC Routine used by WRITE
WRI Routine used by WRiTE
WRR Routine used by WRITE
WRS Routine used by WRITE
XERRORTRAP Special version of error handler.
XLOCK Procedure to set or release, tile, Locks
XMNT Routine used by XMOUNI; must not be called directly
XMOUNT Procedure to mount a disk

16.2 WRITING LIBRARY FILES

It is not likely that you would want to dispense with the standard Library

file altogether, since the compiler relies on the presence of many of the
procedures and routines in that library. If you did not use STDLIB, you

would have to duplicate for yourself all of the routines listed above that
make up that library.

However, it is possible for one library to make use of another. For

example, suppose you want to write your own Library which contains a set of
functions that are particularly useful for, the programs that you write

(e.g., you need a set of routines that construct and,dhptay screen menus),
you can write such a Library; then, when you link it, you can specify the
STDLIB external library as its library file., (The only time you ever Link
a file without specifying aTibrary, is when you are linking a root library',

such as STDLIB itself—— a very rare occurrence.) In this case, your library
file (perhaps named NEWLIB) would be linked with SIDLIB. then, when you

Link a new program, you might link It with the: NEWLIB Library. Your new
program would thus be linked with NEWLIB which in'turn has its own Library,
STDLIB. There is no limit to Library nesting.

WRITING AND MODIFYING AN EXTERNAL I4BRARY Page 16—4

There are several things you shQutd keep in mind when writing an external
library:

1. If an external procedure or function is declared both in a program
and in a library which it uses, then the definition within the
program is in effect white execution resides in the program, and
the definitions within its libraries are in effect white in its
Libraries.

2. If you char9e a procedure from pascal to assembly language, or from
assembly language to pascal, It is wise to re—create (re—link) that
program and all the programs which use it as a library. Any
references to the procedure which are not re—linked will treat it
as the wrong kind of code.

3. SimIlarly, if while updating a program, you overlde a definition in
a library which was formerly accessible, there is no garauntee that
all references to the definition will be updated unless you re—link
the program and alt the programs which use it as a library.

4. If a library is updated with PLINK, it is not necessary to update
the programs which use that library. However, if the library must
be completely re—created, all programs which use that library will
need to be re—created. Thus, It is desirable to avoid the need to
re—create a library. PLINK does not allow you to enlarge the size
of global variables with an update, thus it is wise to avoid having
global variables which you may wish to enlarge, such as records,
strings, or arrays. Instead use a global pointer variable which
points the desired object In this way, if you change the size of
the object, no global variable will change size.

16.3 MODIFYING STDLIB

If you decide to modify STDLIB, you must do so very carefully. Because
PLINK uses STDLIB while it is working, you must not directly modify STDLLB.
If you want to add routines to STDLIB, use the AMOS COPYcommand to make a

duplicate of STDLIB under another name. Then, add your routines to the copy
of STDLIB using PLINK. Finally, rename your copy to STDLIB (making sure to
keep a copy of the old STDLIB somewhere In case of emergencies).

However, it is far wiser to create a library which has SIDLIB as its

library, rather than to directly modify STDLIB. Otherwise, when Alpha Micro
releases an update to STDLIB, all your programs will need to be re—linked!

.

WRITING AND MODIFYING AN EXTERNAL LIBRARY Page 16—5

16.4 VERSION CHECKING

Both PLINK, and PRLJN check to insure that a program is only given its
original library or an update of that file, since, an attempt to use any
other file as a Library results in a system crash.

If you attempt to execute a program with an improper library, you will
receive the error

?Wrong version of xxx for use with yyy

where xxx is the name of your program and yyy is the rame of Its Library.
If you get this message, it either means that you are. running with an out of
date version of Library yyy, or that you are running with a newer version of
Library yyy which had to be re—created. In the latter case, you wiLl need
to re—create your program with PLINK.

S

S

PART Iv

APPENDICES

APPENDIX A

QUICK REFERENCE TO ALPHA PASCAL

This appendix gives a quick summary of the Pascal language as implemented by
Alpha Micro. For information on a particular Pascal statement or element,
look in the index to see what pages of this book contain information on that
element. For a complete description of the standard Pascal language, see
Jensen and Wirth, The Pascal User Manual and ReportS

For a list of all standard identifiers, see Section 5,42, "Standard
Identifiers"

A1 PROGRAM STRUCTURE

A program consists of a heading and a block, and it concludes with a period:

Heading
Block,

The heading takes this form:

PROGRAM program"name;

or;

PRO GRAM;

A block has the form:

label declaration
constant definitions
type definitions
variable declarations
external declarations
procedure and function declarations
BEGIN statementi ; statement2 ; , ,, ; statementN END,

It a tile is not a main program file, the heading takes the form;

QUICK REFERENCE TO ALPHA PASCAL Page A2

MODULE module-name;

or:

MODULE;

and the bLock takes the form:

Label decLaration
constant definitions
type defirtttions
variable declarations
external declarations
procedure and function declarations

Ad DECLARATIONS AND DEFINITIONS

Pascal requires that you define and declare all variables, Labels,
constants, data types, procedures, and functions at the front of each
program or procedure

Ad1 Label Declarations

Labels are always unsigned integers. A label declaration takes the form:

LABEL integerl, integer2 integerN ;

Add Constant Definitions

CONST identifierl = valuel;
identifier2 = vaLue?;

identifierN = valueN;

Ad3 Type Definitions

TYPE identifierl = typel;
identifier2 = (identifier3, identifier4,
identifierS = vaLueL value2;

F

QUICK REFERENCE TO ALPHA PASCAL Page A—3

A24 Variable Declarations

VAR identifier , identifier : data—type;
identifier ., identifier : value1value2;

p

Ad5 Procedure Declarations

PROCEDURE procedure—name;

or:

PROCEDURE procedure—name(formal—parametersl; formal—parametersN);
block;

where formal—parameters have the form:

identifierl , identifierN : typel

or:

VAR identifierl , identifierN : typel

A6 Function Declarations

FUNCTION function—name : result—type;
block;

or:

FUNCTION function—name(formal—parametersl;
Jormal—parametersN) : result—type;

b i o c

where formal—parameters have the form:

identifierl , identifierN : typel

or:

VAR identifierl , identifierN : typel

Q1JICK REFERENCE TO ALPHA PASCAL Page A"4

A,3 DATA TYPES

The data type tells Pascal what range of values the declared variable may
assume and what operations may be carried out on those variables. Data
types are simple data types or structured data types.

A,3,1 Simple Data Types

A simple data type is the basic data type of which structured data types arebuilt, The simple data type is called a "scalar type," Such a type
contains a set of elements, and those elements are ordered,

A3,1,1 Standard Data Types " The standard data types are:

INTEGER " A non'fractional number in the range "32767 through 32767,

REAL A floating point number significant to 11 digits (12 for
integer values) with an exponent range of roughly 1E"37 to
1 E37,

EiOOLEAN " The standard scalar type (FALSE, TRUE),

CHAR A single ASCII character,

A,3, 1,2 User"defined Scalar Types " A scalar data type takes the form:

(identifier"elementl, identifier"element2,, , ,identifier'elementN)

or a subrange type (of another, already defined scalar type) of the form:

first"element ,, last"element

A,32 Structured Data Types

Simple data types can be organized into larger units, called structured
types, A type definition or variable declaration of a structured data type
that includes the keyword PACKED tells the compiler to minimize internal
storage for that data type (at the possible expense of execution time), For
example, instead of:

VAR LongLine : ARRAY [1,1OOOJ OF CHAR;

you could cause LongLine to be a packed array by saying:

VAR LongLine : PACKED ARRAY E1,1OOOJ OF CHAR;

QUICK REFERENCE TO ALPHA PASCAL Page A"S

The structured data types are:

A321 STRING STRING data is a group of characters, You may
optionally specify a maximum length by following the keyword STRING with
square brackets enclosing the number (eg,, STRINGE23J),

A,3,2,2 Arrays

ARRAY [index1type, index2"type, , indexN—type OF component"type

A,3,2,3 Sets

SET OF elementtype

A,3,2,4 File Type

FILE OF element-type

or:

TEXT

(This is the same as "FILE OF CHAR")

A32,5 Record Type

RECORD fieldlist END

where field list is of the form:

fieid—identifier ,,, fieLd"identifierN : fieLdl"typel;
field—identifier , field"identifierN : field2"typeE;

fieidHdentifier ,,, field—identifierN : fieldN"typeN;

The field list may also contain a variant"part, which implies that the
information in that fieLd may vary as to type The variantpart takes this
form:

QUICK REFERENCE TO ALPHA PASCAL Page A—6

CASE field—type OF
case—Label .., case—label : (field—listi);
case—Label .., case—label (field—tist2);

:case.4abel .., case—label (field—ListN)

or:

CASE case—field—identifier : field—type OF
case—label •., case—label : (field—listi);
case—Label .., case—label (fietd—list2);
0Se

case—label .., case—Label : (field—listN)

A.3.2.6 Pointer Data Types — The pointer enables Pascal to permit dynamic
data structures by giving you a way to point to an eLement of such a

structure. It takes the form:

obj ect—type

Pascal provides a standard constant NIL, which points to "nothing."

A.4 EXPRESSIONS

Expressions use operators to combine variabl.es, constants, and function
calls into larger units. This section gives tnforrnat ion about each of these
components of an expression.

A.4.1 Operators

Operators have precedence, which you can override by Incuding parentheses in
the expression. The unary operators are performed before alt other
operators; next the multiplying operators are performed, followed by the
adding operators. Then, the relational operators are performed. LastLy,
the Boolean operators are applied. If several opàrators in an expression
have the same precedence, execution is performed from left to right.

A.4.1.1 Assignment —

QUICK REFERENCE TO ALPHA PASCAL Page A7

A41L1 .Lhe Modifying Assignment Operators

The modifying assignment operators are:

Addition
Subtraction
MuLtipLication
Division

A4L2 Arithmetic Operators:

+ (unary operator) Identity
(unary operator) Sign inversion

+ Addition
Subtraction

* Multiplication
DIV Integer number division
I Real number division
MOD Modulus

A4L3 Relational Operators

= Equality
C> InequaLity
C Less than
> Greater than

Less than or equal (or, set inclusion)
>= Greater than or equal (or, set inclusion)
IN Set membership

A4L4 Logical Operators

NOT Negation
OR Disjunction
AND Conjunction

A4L5 Set Operators

+ Union
Set difference

* Intersection

QUICK REfERENCE TO ALPHA PASCAL
. Page A—8

A.4.2 Constants

Constants may consist of:

Characters and strings of characters (in quotes).

TRUE and FALSE

MAXINT (which evaLuates to the largest Integer on the AMOS system, 12767).

Values of user—defined types

Integers

Decimal and exponential numbers — If a number contains a decimal point, at
least one digit must appear to the left of the decimal point. The exponent
in an exponential number is identified by the "E" symbol.. For example:
"34E—5" represents "0.000034".

A.4.3 Variables

A variable is a simple identifier, an indexed variable of the form:

array—variable £indexl—expression,...indexN—expresjon]

a referenced variable or file buffer variable of the form:

pointer—van abte
or:

fi le—vaniable

or a field designator of the form:

record—variable . field—identifier

A.4.4 Function Calls

Function calls have the form:

function—identifier

or:

function—identifier (parameter , parameterN)

.

QUICK REFERENCE TO ALPHA PASCAL Page A9

A,4,5 IF"THENELSE and CASEOF Constructs in Expressions

AiphaPascal allows you to use the IFTHEN—EL5E and CASEOF constructs to
conditionally evaluate one of two (in the case of the IFTHENELSE) or
several (in the case of the CASEOF) expressions:

IF Boolean expression THEN expression ELSE expression

and:

CASE value OF
valuel : expression;
value? : expression;

valueN : expression;
ELSE expression;

A,5 STATEMENTS

Statements are either simple statements or structured statements, A simple
statement consists of only one statement, Structured statements are
comprised of more than one statement,

You may label statements by writing:

label: statement

where "label" is an unsigned integer,

A,5,1 Simple Statements

The Pascal simple statements are:

A,5,'Ll Assignment Statement " assigns a value to a variable:

variable expression

A,5,1,2 Procedure Call Procedure calls invoke the specified procedure,
and take the form:

procedure"name

or:

procedure (parameterl, parameter2, ,,,, parameterN)

QUICK REFERENCE TO ALPHA PASCAL Page A"lO

A,5,1,3 GOTO Statement The 6010 statement transfers program control to
the labeled portion of the program, It takes the form:

G010 label

A,5,1,4 Null Statement — Another permissible simpLe statement is the null
statement7TECTs, no statement at alL),

A,5,2 Structured Statements

The PascaL structured statements are:

A,5,2,1 Compound Statements The compound statement is bracketed with
the keywords BEGIN and END, and takes the form:

BEGIN statementi; statement2; ,,,; statementN END,

A compound statement may take the pLace of any singLe statement in the
exampLes given in this appendix,

A,5,2,2 Conditional Statements
A conditi aFfjtej€ntcontifs statements whose execution depends on the
result of a conditionaL test, These statements may take the form:

11! Boolean expression THEN statement;

or:

IF Boolean expression THEN statement ELSE statement;

or:

CASE expression OF
casel"labeL: statement!:
case2—labeL: statement?;

caseN—laheL: statementN
END,

(Several case—labeLs, separated by commas, may be written in place of a

single case—label,)

QUICK REFERENCE TO ALPHA PASCAL Page A—Il

A523 Repetitive Statements

WHILE Boolean expression DO statement

or:

REPEAT statementList UNTIL BooLean expression

or:

FOR variabte-identifier := expression TO expression
DO statement —

or:

FOR variabLe—identifier : expression DOWNTO expression
DO statement

A524 WITH Statement
The WITH—DO statement aLLows you to access record fields as if they
were simpLe variables:

WITH record—variablel, record—variabLe2, record—variabLeN
DO statement

(Changed 30 ApriL 1981)

QUICK REFERENCE TO ALPHA PASCAL Page A—fl

A.6 ALPHA PASCAL STANDARD FUNCTIONS AND PROCEDURES

BeLow is an alphabetic List of aLL AiphaPascat standard functions and
procedures, that you may use. To find out what Pages of this book discuss a
particular procedure or function, refer to the Index.

ABS ARCCOS ARCCOSH ARCSIN
ARCSINH ARCTAN ARCTANI(CHARMODE
CHR CLOSE CONCAT COPY
COS COSH CREATE CRT
DELETE EOF EOLN ERASE
ERROR ERRORINFO ERRORTRAP EXIT
EXP EXPONENT EXTENSION FACTORIAL
FILLCHAR FILESIZE FSPEC GET
GETFILE GETLOCKS INCHARMODE INSERT
JOBDEV JOBUSER KILCMD LCS
LENGTH LINEMODE LN LOCATION
LOG LOOKUP MAINPROG MARK

MEMAVAIL MOVELEFT MOVERIGHT NEW

ODD OPEN OPENI OPENO

OPENR ORD PAGE PFILE
P05 POWER PRED PUT

PVIRT PWROFTEN PWROFTWO RADSO

RANDOMIZE
READ PEADLN RELEASE

RENAME RESET REWRITE RND

ROUND SCAN SEEK SETFILE
SHIFT SIN SINH SIZEOF
SPOOL SQR SQRT STDERRORTRAP

• STR STRIP SUCC TAN

TANH TIME TOD TRUNC

• UCS VAL WRITE WRITELN
XEQERR XLOCK XMOUNT

For a list of aLl standard identifiers and reserved words, see Section 5.4.
"Legal Identifiers."

.
(Changed 30 April 1981)

QUICK REFERENCE TO ALPHA PASCAL Page A11

A523 Repetitive Statements

WHILE Boolean expression DO statement

or:

REPEAT statementlist UNTIL BooLean expression

or:

FOR variabLeidentitier := expression TO expression
DO statement

or:

FOR \tariableidentitier := expression DOWNTO expression
DO statement

AS24 WITH Statement
The WITHDO statement alLows you to access record fields as it they
were simple variables:

WITH recorthvariabie'l, recordvariable2, recordvariableN
DO statement

QUICK REFERENCE TO ALPHA PASCAL Page A—12

A..6 ALPHA PASCAL STANDARD FUNCTIONS AND PROCEDURES

Below is an. alphabetic list of all AlphaPascat standard functions and
procedure that you may use. To find out what pages of this book discuss a
particular procedure or function, refer to the Index.

ABS ARCCOS ARCCOSH" ARCSIN
ARCSINH ARCTAN ARCTANH CHARMODE
CHR CLOSE CONCAT COPY
COS COSH CREATE CRT
DELETE EOF EOLN ERASE
ERROR ERRORINFO ERRORTRAP EXIT
EXP EXPONENT EXTENSION FACTORIAL
FILLCHAR FILESIZE FSPEC GET
GETFILE GETLOCKS INCHARMODE INSERT
JOBDEV JOBIJSER KILCMD LCS
LENGTH LINEMODE LN LOCATION
LOG LOOKUP MAINPROG MARK
MENAVAIL MOVELEFT MOVERIGHT NEW

ODD OPEN OPENI OPENO
OPENR ORD PAGE PEILE
P05 POWER PRED PUT
PVIRT PWROFTEN PWROFTWO RAD5O
READ READLN RELEASE RENAME
RESET REWRITE ROUND SCAN
SEEK SETFILE SHIFT SIN
SINH SIZEOF SPOOL SQR
SQRT STDERRORTRAP STRIP SUCC
TAN TANH TIME TOD
TRUNC UCS WRITE WRITELN
XEQERR XLOCK XMOUNT

For a list of all standard identifiers and reserved words, see Section 5.4,
'Legat Identifiers.

.

APPENDIX B

THE ASCII CHARACTER SET

The next few pages contain charts that List the compLete ASCII character
set. We provide the octal, decimal and hexadecimal representations of the
ASCII values.

Note that the first 32 characters are non—printing Control—characters.

a.

THE ASCII CHARACTER SET Page 8—2

THE CONTROL CHARACTERS

.
CHARACTER I OCTAL I DECIMAL I

————— I I I

I NULL I 000 I 0 I 00
SOH 001 1 I 01
STX 002 2 I 02
LIX I 003 I 3 I 03

I ECT I 004 I 4 I 04
I ENQ I 005 I 5 05
I ACK I 006 I 6 06

BEL I 007 I 7 07
8$ I 010 I 8 I 08'
HT I 011 I 9 I 09
LF I 012 I 10 I OA

VT I 013 I 11 I OB

FE I 014 I 12 I OC

CR I 015 I 13 I OD

SO I 016 I 14 I OE

SI I 017 I 15 I OF
DLE I 020 I 16 I 10
DC1 I 021

3
17 I 11

DC2 022 I 18 I 12
DC3 023 I 19 I 13
DC4 I 024 I 20 I 14
NAK I 025 I 21 I 15
SYN I 026 I 22 I 16
ETB

I 027 I 23 I 17
CAN I 030 I 24 I 18
EM I 031 I 25 I 19
$5 I 032 I 26 I 1
ESC I 033 I 27 I is
FS I 034 I 28 I ic
65 I 035 I 29 I 1D

RS I 036 I 30 I 1E
US I 037 I 31 I iF

I I

I I

HEX
I

MEANING

Null. (till character) I

Start of Heading
Start of Text

I Endotlext
I End of Transmission
I Enquiry I

Acknowledge
Bell code
Back Space
Horizontal Tab
Line Feed
Vertical Tab
Form Feed
Carriage Return
Shift Out
Shift In
Data Link Escape
Device Control I
Device ControL 2
Device ControL 3
Device ControL 4
Negative AcknowLedge
Synchronous Idle
End of Transmission Blocks
Cancel
End of Medium
Special Sequence
Escape
File Separator
Group Separator
Record Separator
Unit Separator

.

S

CHARACTER
I

OCTAL DECIMAL

I
"040

I
32

1,041 I 33
I 042 I 34

4 10431 35

F

$
I

044 I 36
I 045

I
37

&
I

046 I 38
047 I 39

(050
I

40
)

I
051

I
41

*
I 052 42

+ I 053 I 43
054 I 44

I
— 055

I
45

I I 056
I

46
I I I 037

I
47

I 0
I

060 I 48
1 tO6lj 49

I
2

I
062 I 50

3 0631 51''
4 064 I 52
5 I 065 I 53

I 6 1066 I 54
I

7
I

067 I 55

I
8 0101 56

I 9 0711 57
I 012 I 58

I 073 I 59
I C I 074 I 60
I

=
I 075 I 61

> I 076 I 62
I 077 I 63

a I 100 I 64
I I I

I I

I HEXi' MEANING
I I

I 20 Space F

I 21 ExcLamation Mark
F

I 22 Quotation Mark
F

I 23
I Number Sign

F

I 24 DolLar Sign
I

25
I

Percent Sign
26 Ampersand
27 Apostrophe
28 Opening Parenthesis

I
29 I CLosing Parenthesis

I
2A I, Asterisk

I
2B [Plus
ZC

['
Comma

20
I

Hyphen or Minus

I
2E

I
Period

I
2F

I
Stash

I
30

I
Zerq

I
31

J
One'

I
32

I
Two

33 Three
34 Four

I
35 I Five

I
36

I
Six,

I'
37 I Seven

I
38 Eight

I
39 Nine

I
3A

I
Colon

I
38

I
Semicolon

I
3C

I
Less Than

I
3D

I
Sign

I
SE

I
Than

I
3F

I
Question Mark

I
40

I
Commercial At

THE ASCII CHARACTER SET Page 8—3

PRINTING CHARACTERS

-4 r !m > U
,

30
3

0 —
>

1
>

3
0

03 -4
3

>
m

l
> 0 -4 m

03 -1
3

>
3 r 03 m
l

03 —
3

03 m
l

>
<

l

I

0D
ar

L
t0

C
D

 ti
C

 C
Y

D
)

sa
_a

 —
—

è
—

—
3

3
tJ

J1
V

U
1L

J1
 tM

V
l'J

l
fl4

"
P

'4
Lt

9
tj4

U
4&

j4
 U

(p
4&

,4
 c

aj
'jo

j r
jC

J'
J

—
—

 0
00

00
00

3
L

F3
3J

4
00

J0
"M

4'
0

N
iS

00
U

1
0U

4C
'

3
-

3
a0

00
00

00
00

0
Lo

C
O

C
O

C
O

cO
C

C
O

cO
T

hI
m

J-
I

0'
0O

'
I
af

l
0C

Lf
lN

3j
3n

J
-è

o0
'0

0O
0'

0c
0'

'fl
O

ch
0

tth
0

ac
n

U
1

U
1C

O
C

O
C

O
tM

C
O

C
O

I

3
-o

m
oo

w
rj-

0-
nm

oo
 w

>
-0

nm
o

0W
>

C
O

S-
U

4N
)-

I

3

o
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
00

 W
 0

 C
 C

 C
 C

 C
 C

 C
 C

 C
 C

 C
 C

 C
 C

 C
 C

 C
 C

 C
 C

 C
 C

C
 C

 C
 C

oo
oo

oo
oo

O
0O

0O
00

i 0
 -

rw
 O

D
D

D
D

tt
flV

V
D

D
D

D
V

 D
V

D
D

V
V

D
ttD

t
E

Z
 Z

 £
 E

(3
' 0

, O
n

C
D

V
V

tV
V

V
.O

D
D

0D
D

D
D

 0
00

00
00

00
00

0
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
 C

C
D

C
 0

0
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D

-,
, -

,
-,

,
, -

,
1

-,
i

-,
C

D
1

C
—

1
,

,
,

,
1

1
1

1
1

1
-,

1
1

1
1

0
3

0
C

O
 0

00
00

00
00

00
00

00
0>

-"
h(

O
r(

00
00

00
00

00
00

00
00

00
00

00
00

00
0

(3
jQ

,C
D

Q
'Q

, W
Q

)W
C

D
O

))
(3

jfl
)(

3)
W

C
0r

C
t

C
O

 0
,0

,0
,0

,
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
O

 C
D

C
D

 W
C

O
3W

 C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
D

C
D

C
D

C
D

C
D

 C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

)<
-,

sr
-,

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

 C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

3
C

t
C

O

o.
ro

oo
ro

oo
oo

oo
or

rt
C

D
C

D
C

D
C

D
C

D
 C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
c,

00
0r

—
3—

-r
-0

00
00

00
00

r0
00

00
00

00
00

-
rC

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
 C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
rt

rt
rt

rt
t*

 r
tr

tr
t r

cr
tC

rt
rt

-r
*r

t
C

D
C

D
tr

tr
tr

tr
tr

tr
tr

tr
tr

t
•r

tr
tr

tr
tr

P
rr

flr
tr

*r
tr

t
rr

tr
tr

*r
t r

*r
fr

rI
--

rI
rt

rP
rt

rP
rP

rt
tr

ttr
tr

tfl
-r

tr
t

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

•C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

•C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

-,
—

,
-,

-,
-,

1
-,

-
—

,
-,

—
 ._

,
-,

-,
 ,

—
,

-,
-,

-,
-,

-,
-,

, —
, ,

 ..
-,

—
-,

-,
—

,

C
O m -I 0 0 C

O

C
D 0

I

3
3

3S
1

3m
3

1
>

1

3Z
3

3
I

1
1

30
3

I

THE ASCII CHARACTER SET Page 6—5

"4

I I —I I I I

I
OCTAL DECIMAL HEX MEANING

I

p 160 112
I

70 , Lower Case Letter
I

q 161 113 71 Lower Case Letter
r 162 114 72 Lower Case Letter
s "163 115 73

I
Lower Case Letter

I

t 164 116 74 Lower Case Letter
I

u 165 117 75 Lower Case Letter
I

V I 166
I

118
I

76
I

Lower Case Letter
I

I
w

I
167

I
119

I
77

I
Lower Case Letter

I

I x
I

170
I

120
J

78
I

Lower Case Letter
I y

I
171

I
121

I
79

I
Lower Case Letter

I

I
z

I
172

I
122 7A Lower Case Letter

I C
I

173
I

123 lB Opening Brace
I I I

174
I

124 7C
I

Vertical Line
I

I I
175

I
125

I
7D Ctosing Brace

I

I I
176

I
126

I
7E

I
Tilde

I

I
DEL 1177 I 127

I
7F

I
Delete

I

I I I I I I

APPENDIX C

ALPHA PASCAL COMPILER ERROR MESSAGES

Below is an alphabetic List of alt error messages output by the ALphaPASCAL
compiler. For a distussion of how to compile programs, and for information
on error reporting and error recovery, see Chapter 4, "Operating
Instructions and Characteristics."

We believe that the error messages below are very helpful in explaining
exactly what part of your ptbgflffl caused the error. Therefore we have not
provided detailed explanations for each error message. For some of the
messages below we: have added notes that givemore tniormation about the
error and that tell you where to look in this manual for more information on
the operator, data structure,, or declaration ttwolvid in the error.

When CMPILR displays an error message, it also disolays the line of the
program that contaths the error arid Doints to the robtem. For example, if
you try to compile the following small program:

PROGRAM TestError;

VAR Numberl REAL;
Number2 : STRING;

BEGIN { Try to use addition operator on real and string data.)
IF Numberl + NumberZ = 0 THEN WRITELN('Zero.')

END.

you see the following display:

(Changed 30 April 1981)

ALPHA PASCAL COMPILER ERROR MESSAGES Page C—?

AlphaPascal Compiler Version 2.0
< 0>

PROGRAM < 5>—

BEGIN C Try to use addition operator on real and string data. 3
IF Numberl + Number? = 0 THEN WRITELNC'Zero.')

?Line 6: CBOPNBN3 In 'x+y5 x and y an not both numeric
?HIT RETURN to continue
< 6>—

7 lines
4.10 seconds, 102.44 tInes/minute

?Total. of 1 compilatIon errors.

The error above occurred because we tried to perform an arithmetic operation
on numeric and string data; both Numbenl and Number! must be numeric In
order to use the addition operator.

The first eight characters of the error message identify the portion of the
compiler that caught the error. You will probably not need to make note of
this identifier.

In many of the error messages, CMPILR actually substitutes into the error
message the operator or identifier that is the source of the error. For

example., in the list below, the error message above appears as:

EBOPtIBNJ In 'x <op> y', x and y are not both numeric

In our example above, CMPILR substituted into the error message the operator
('<op>") causing the problem, and displayed the mesiage:

IBOPNBN3 In 'x+y', x and y are not both numeric

The symbols in the error messages that are replaced by elements from your
program when the message is displayed are:

<op> Operator

XXX User—defined Identifier

xxx

yyy Keyword
zzz

S
(Changed 30 April 1981)

ALPHA PASCAL COMPILER ERROR MESSAGES Page C—3

C.1 THE ERROR MESSAGES

C??????) *** Undefined error ***
You should..never see this error message. Please report it and the
circumstances under which you saw it to Alpha Micro.

CANEANX] In 'x AND y', x must be of type eOOL:EAN
CANENOT) In 'NOT x', * must be of type BOOLEAN

See Chaptei'8 for information on BOOLEAN operators.

CASGAST) In 'x:y', tJle types of x and y are incompatible

CASGEIL) It is illegal to assign files to one another
See Chapter 1 for information on the FILE data type.

CASGMAT) In 'x <op> y', the types of x and y are tncompatible
You tried to use a modifying assignment operator on two pieces of
data that were of iacompatible type. For exampLe, you cannot use
"MJMBER 1= DATA" if PsJMBER is an INTEGER but DATA is REAL, since
you cannot return an INTEGER result ifyou divide an INTEGER by a
REAL number.

CASGSWL) String contant has wrong length for pacted array
EBDYULB) Undefined labels occur In this function/prote'dure

CBEXARL) Only '' and <) are permitted with ARRAYs
See Chapter 7 for information on ARRAY data types.

CBEXCMT] In 'x <relation> y', x and y are Incompatible
CEXFRt) Comparisondf FILEs is undefined
CBEXINS) In 'x IN y', y must be a SET type
CREXINT) In 'x IN y', x must be compatible with base type of y
CBEXPRL3 only '=' and '<>' are permitted with pointers
CBEXRRL) only '' and <>. are permitted wtth RECORDS
CBEXSRL) '<' and '>' are undefined' on Sfls

CBLKDOT] '.' (denoting end of source) expected:— assumed missing
CMPILR reached the end at the tile, but saw no period. Remember
to end all program and module ftits with a period.

(BOPINT) Only INTEGER operands are permitted wtth Cop>
CBOPIOS] Only INTEGER or set operands are 'permitted with Cop>
CSOPNBN) In 'x <op> y', x and y are not both numeric
CBOPNBSJ In 'x <op> y', x and y at'e not both sets.
CBOPNOS) Only numeric or set operands are permitted with<op>
CBOPNUM) Only numeric (INTEGER or REAO operands are permitted with <op>
ECALAPS) Preceding argument must not be a packed char field
CCALARL] The preceding string constant has wrong length
CCALARSJ The preceding SET variable has wrong size
ECALART) The preceding argument has wrong type
ECALARVJ The preceding argument must be a variable expression
CCALCHR] The preceding must be of type CHAR

(Changed 30 April 1981)

ALPHA PASCAL COMPILER ERROR MESSAGES Page C—4

CCALEXT] EXIT(x) where x is a standard func or proc is illegal
You may only supply EXIT with the PROGRAM keyword or the name of
your own Drocedure or function that you want to exit; you 'nay not

suppty the name of a function or procedure in the library.

ECALFIL) Preceding argument must be of FILE type
CCALFRM] Formal procedures and functions not implemented
CCALINT] The preceding argument must be of type INTEGER
CCALIOR] Preceding argument must be of type INTEGER or REAL
CCALLPR) 'C' expected —— assumed missing
CCALNRS) Preceding argument must be a pointer or non—REAL scalar

CCALOPM) INPUT, OUTPIJT,or RANDOM expected —— INPUT assumed
See Chapter 10 for information on file—identifiers.

CCALPAC) Must be a packed array of char or a char element
CCALPTV) The preceding must be a pointer variable
CCALRDP] It is illegal to read into a packed: char fiej.d
CCALRDT] Arguments to read must be INTEGERflAL, CHAR, or String
CCALSCNI Only '' and '<> are permitted here
ECALSEX] The preceding must be a string expression
CCALSVR] The preceding must be a string variable
CCALTFA] Too few arguments supplied
CCALTGS) The preceding must not be a string or a real.

ECALIGI) The preceding constant Is of incorrect type for variant
See Chapter 7 for information on RECORD variants.

ECALTMA] Too many arguments supplied
CCALTXT) Preceding argument must be of type TEXT (FILE OF CHAR).
CCALWRM] Preceding modifier must be of type INTEGER
CCALWRT] Must be INTEG€R, REAL, CHAR, String, or pck'd arry of chr
CCSDJNK] Junk after <constant definition> — scanning
CCSTSGN] Only INTEGER and REAL cônstants may be signed
CEXPORX) In 'x OR y', x must be of type BOOLEAN
CFACCET] In 'CASE x OF ...', x must be a non—REAL scalar type
CFACCLT] In 'CASE x OF ...'., labels must be compatible with x
CFACCVT) In CASE expressions, all cases must have compatible types
CFACDCS] The previous case label has already. appeared
CEACIFT] THEN and ELSE expressions must have compatible types
CFACRTL] Proc or func too large, split it into smal.ler pieces
EFACSCK] In set constructor C——], set elements must be scalars
CEACSCT) In set constructor C——), all elements must be compatible
CGVDFIL] Global files must be declared in PROGRAM file
EGVDFWP] x present and x never declared for some x
CGVDJNK] Junk after <variable definition> —— scanning
CINIESF) Empty source file
CINILTL] First source line too long —— truncated to 132 characters
CINIPOM) PROGRAM or MODULE expected —— 'PROGRAM;.! assumed
CINIRPR] 'P expected —— inserting ')'

CINISEM) ';' expected —— inserting ';'
CINISOI) ': or <identifier> expected —— inserting ';'

CINISOP) 5' or 'C' expected —— Inserting ';'

(Changed 30 April 1981)

ALPHA PA$CAL COMPILER ERROR MESSAGES Page C—S

CLADERR3 *** Compiler error in LOADADDRES$ ***
You should never see this error message. Please report it and the
circumstances under which you saw it to Alpha Micro.

CLADPCK) Packed variables may not be used in this context
CLBLDDC) Label already declared tn this scope
CMPATBG] Maximum string slze,$s 255
CPRDAFL) Only formal (VAR) FILE parameters are,:permtt'ted
ERR DDDF] Function or procedure already declared ,f9rward
CPRDDDP) Parameter—list must only appear in FORWARD declaration
CPRDFNR] ': <result type identifier>' expected —— assumed missing

CPRDFTM] Function type not compatible with forward declaration
For information on forward decliarat tons, see Chapter 6.

EPRDLPX] (' expected —— assumed missing
CPRDNST) Procedure/function declarations nested too deeply
EPRDPDF] Function or procedure previously def toed
CPRDPRF] Previously declared a function in same scope
CPRDPRP] Previously declared a procedure tn,same scope
EPRDSSR) Function must be of scatar, subrange, or pointer type
ESCNINSJ Giving up scan —— inserting xxx

CSCNMIS] Giving up scan —— xxx assumed missing
(SELATO) In xty) or xC——,y), x or xE——) must be of ARRAY type

CSELERR] *** Compiler error In SELECT ***
You should never see this error message. PLease report it and the
circumstances under which you saw it to Alpha Micro.

ESELFOP] In 'x', x must be of pointer or FIi.E type
ESELIXT] In xCy), y must be compatible with index type of x
[SELNIS) Only enclosing func identifiers may be, used as variables
CSELNSF] In 'x.y', y must be a 'field of the RECORD x
ESELRTO] In 'x.y', x must be of RECORD type

ESELSIF] Standard function identifiers may not be used as variabLes
For a list of'the standard identifiers, see Chapter 5.

CSELSXO] In xCy], y must be of non—REAL scatar type.
CSIDUDF] 'XXX' is undefined
CSIDWRC) 'XXX' Is not a TYPE/CONST/VAR/FIEt.D/PROCEDURE/FUNCTION identifier
CSMPNUM) In '—x', x must be numeric

CSTMBID] Wrong BEGIN—END identifier —— XX4C expected.
For information on BEGIN—END Labels, see Section 6.2, "Label
Declarations."

CSTMCSD] The oreceding case label appears more than once
ESTMCST] The preceding case label has wrong type
[SIMOOW] DO without WHILE, FOR, or WITH
CSTMEWI] ELSE without IF or CASE
CSTMFFK] Final FOR value must, be of scaler type
CSTfIFFT] FOR variable and final value have incompatible types

(Changed 30 April 1981)

V

ALPHA PASCAL COMPILER ERROR MESSAGES Page C—6

CSTMFIKJ Initial FOR value must be- of scalar type
[SIMFIT] FOR variable and Initial value have incompatible types
CSTMFVF] In 'FOR x:=...', x must not be a formal variable
CSTMFVK) Irt 'FOR x:...', x must be a non—REAL scatar variable
ESTMGTOJ GO.TO statements are not permitted without (*fl+*) option
CSTMMDLJ Definition for this label has already appeared
CSTMPEX) Function calls are not legal as statements
CSTMPEX) Procedure identifier was expected
CSTMRTL] Proc or func too large, split It into smatter pieces
CSTMTI4I] THEN without IF
CSTMIJLB) Undeclared label
CSTMIJWR) UNTIL <expression> without REPEAT

CSTMWRT) In 'WITH * DO ...', x must be a RECORD variable
See Chapter 9 for information on accessing record fields with
WITH—DO.

CSTMWT$) WITH statement has caused too many nest-ed scopes

ESTRERR) *** Compiler error in STORE ***
You should never see this error message. Please report it and the
circiznstances under which you saw tt to Alpha Micro.

CTOKEDG] Digit (0—9) expected in exponent —— assumed missing

CTOKEOF) Unexpected end—of—source—file encountered
Remember to end every program or moduLe file with a period.

CTOKFDG) Digit (0—9) expected in fraction —— assumed missing
CTOKILC] Illegal character encountered —— ignoring

CTOKINF) Include file not found
See Chapter 4 for information on Include Files.

CTOKIRGJ Integer constants must be in the range +—32767
ETOKLTL) Line too long —— truncated to 13-2 character-s
CTOKNIN) File includes (*$j ———*) may not be nested
CTOKSLS) Unterminated string (multi—line strings not permitted)
CTRMNBN) In 'x/y', both operands must be numeric
CTRYINS] xxx or yyy expected —— inserting xxx
CTRYINS) xxx or yyy expected —— inserting yyy
CTRYINS) xxx, yyy, or zzz expected —— inserting xxx
CTRYINSI xxx, yyy, or zzz expected —— inserting yyy
CTRYMIS) xxx expected —— yyy assumed missing
CTRYSCNJ xxx expected —— scanning
CTRYSCN) xxx or yyy expected —— scanning
CTRYSCN] xxx, yyy, or zzz expected —— scanning
ETYDFWP] x present and x never declared for some x
CTYDJNK) Junk after <type definition> —— scanning
CTYPBTF) In 'ARRAY Cx) OF y', y must not be a FiLE type
CTYPCTK) In 'CASE x OF ...', x must be a scalar type identifier
CTYPCTR) In 'CASE x OF ...', x must not be of type REAL
CTYPIXB) Array is too large

(Changed 30 April 1981)

ALPHA PASCAL COMPILER ERROR MESSAGES Page C—?

ARRAY Cx] OF
ARRAY Cx] OF
y where x>y is
larations too deeply nested
ord fields must not he of

In
In
x
Dec
Rec FILE type
x, y where x and y are incompatible
A string constant identifier must not appear
Subranges of type real are illegal

(Changed 30 April 1981)

(must be < SET OF O 4095)
must be a scalar type
must not be of type REAL
ave 1

x must not be of type REAL
y', x must he a scalar type
illegal

[TYPIXR]
[TYPIXT]
CTVPLGH]
[TYPNST]
CT VPR F F]

CTYPRGE]
[TV PS CI]
CT '(P 5 R R]

CT '(PS TB]
[TV PS TB]
[TYPSTK]
[TVPSTR]
CTYPSXR]
CTYPSXT]
CTVPTTE]
[yR DFWP]
CV DJNK]

Set is too large
Set is too
In SET OF
In SET OF
STRING[x]
STRING[x]

In 'CASE x
x present
Junk after

large
x

x

inust h < x < 255
where x is not an integer
OF tag type is incompatible
and x never declared for some x
<variable definition> scanning

here

with x

CXPRAFL] Only formal
CXPRLPX] '(' expected assumed
CXPRSSP] Function must be of sca

(VAR) FILE parameters are nermitted
missing

lar, subranqe, or pointer type

S

ALPHA PASCAL USER'S MANUAL

$6 compiler options
SI compiler option
SL compiler options
$P compiler option
SQ compiler options
SR compiler options

.INC files

.PCF files

.PO? files

.PSB tiles

Index

4—2
4—11

4—5, 4—11
4—13, 15—1

Page Index—I

/LINI(linker option
/SMASH linker option

Aborting command tile execut
ABS
Actual parameters
AIphaBASIC file locks
AMOS file specification .

AMOSfiles
AND
ARCCOS
ARCCOSH
ARCSIN
ARCSINH
ARCTAN
ARCTANH
Arithmetic operator .

ARRAY
Array index
ASCII
ASCII character set .

ASCII value
Assembly language subroutines
Assignment operator
Assignment statement .

BEGIN
Bibliography
Block
Block structure .

Blocking records

4—15, 15—2, 15—5
4—16, 4—19

11—2
12—3
6—11
14—6
10—16
7—15,
7—3
1 �—2
12—3
12—2
12—3
12—2
12-3
8—5

7—8,
7—8
7—4
11—1

11.—i

2—3,
1—1

5—1

2—2
10—1 9

4—13, 15—1, 16—4
8—3

S

• S S

S

S

4—7
4—7
4—8
4-10
4—10
4—10

S

• S

• S

• 5

• *

• S S

S

ion

5 *

• S

• S

• S

• •

• 0

• 5

• *

*

S

S

S

S

S

S

S

10—14

15—5

3—4,
3—2,
9—1

• S

S S

S

• S

5—4

4

ALPHA PASCAL USER'S MANUAL Paqe Index—2

BOOLEAN • 7—3, 15—4
Buffer variable. 10—3

CASE expressions .

Case label
CASE—OF
CHAR
Character array functions

FILLCHAR
MOVELEFT
MOVERIGHT
SCAN

Character editing . .
Character mode .

Character set
Charmode
CHR

Clearing fiLe tacks
Clock, System
CLOSE
CMPILR
Collating sequence
Command files
Comments
Compiler
Compiler display
Compiler listing .

Compiler options . .
$6+ and $6—
SI
$L+ and $L—

$Q+ and $0—
$R+ and $R—

Compiling a program
Compiling a single file
Compiling/updating one
Compound statement
CONCAT
CONSI
Constant definition . *

Constants
Control—C handling
COPY
COS
COSH
CREATE

Creating a source file
CR1

Data objects
Data stack
Data structures .

• a

and
a

• a a

a

• a a

a

a

a

*

a

• • a

• a a

• a

a

• a a

a

*

a

a

• a a

a

*

module
• a

a

a

*

a

. . 8—9
• 7—18

• * 7—18, 9—6
• . 5—11, 7—4, 15—4
procedures

13—7
13—7
13—8
13—9

• . 10—14
11—6

* 7—4

• 10—2, 10—14, 11—6
• . 11—1
• . 14—5
• . 14—11

• 10—17
• a 4—5

• . 7—4

4—20, 11—2
• 2—3, 5—4
• 4—5

4—10
• 4—8

* . 4—7
• . 4—7
• . 4—7

4—8
4—10
4—10

• 4—10
2—7

a 4—20 to 4—21
4—22
5—4

• . 13—2
• . 6—4

• 5—11, 6—4
• 6—4, 8—7

• • 14—15
13—2

a a 12—1
12—2

• 10—18
• . 2—4

* 11—7

6—1
15—2
2—2

.

ALPHA PASCAL USER'S MANUAL

Datatype
Debugging
Decimal notation
Declarations . .
Declaring

Functions
Labels
Procedures .

Type
Variables . . .

Declaring external ci
Declaring variables
Defining constants
DELETE
Disk blocks
Displaying file locks
Dynamic variables .

E symbol
END
End—of—file
End—of—tine
End—of—line separators
EOF
EOLN
ERASE
ERROR
Error codes
Error handling
ERRORINFO
EXIT
EXP
EXPONENT
Expression
Expression handling
Expressions

Assignment operator
CASE—OF construct . .
IF—THEN—ELSE construct

EXTENSION
EXTERNAL
External declaration
External library .

Modifying
Version number . . *

Version stamp

FACTORIAL
FALSE
Field
FILE

6—4, 7—1
14-3
5—10
6—1

6—6
6—2
6—9

6—i.

6—1, 6—6
6—12
7—2
8—7
10—21, 13—3
10—15
14—5

7—19, 11—3

5—10
2—3, 5—2, 5—4
10—3, 10—16
10—4
10—15
10—3, 10—15
10—4
10—1 9
14—16
14—13
14—12, 15—5
14—13
3—5, 9—2, 14—15
12—3
12—4
8—1

3—2

3—2

3'S, 9—6
3—2, 8—8, 9—5
10—19
3—3, 6—12, 16—1
6—12
2—?, 3—4, 4—1, 6—12, 16—1
1s6—5

4—18, 16—5
4—1 8

12—4
7—3
7—16
7—15, 10—16, 15—5

S

. .

Page Index—3

• . S

ements
S

S S

— S S

• S

• .

S * S

S S S S

S S S

S

• S

S S

S

S

S

* S

S S

S

S S

S S S S

•

S S S S

*

S S S

S S S S

S S S S

S S

S S

S S S S

S

S S

* S S S

S S

• S S S

S

S S S S

S

S S S

ALPHA PASCAL USER'S MANUAL

File error codes
File handling . . . *

File to*ks
File search pattern
File specification
File window
File—identifier . .
FILESIZE
FILLCHAR
Floating point numbers
FOR—DO
Formal parameters
Formatting output
FORWARD
Forward declaration
FSPEC
Function
Function block .

Function call .

Function declaration
Function result

GET
GETFILE
GETLOCKS .

GOTO

Heading
Heap

14—14
3—4
14—5
4—3
10—16
10—3
7—16, 10—16
10—20
13—7
3—4

9—9
6—11
10—10
6—10
6—10
7—16, 10—21
15—3
6—7
8—1
6—6
6—6

10—5
10—22
14—5
4—7, 9—2 to 9—3

5—1

7—22, 11—3, 11—5

I/O errors
Identifier
Identifier scope .

IF—THEN
IF—THEN—ELSE
Imagemode
Include file
Include files
Indentation conventions
INFOREC
INPUT
INSERT
INTEGER
Integer numbers . . .
INTERACTIVE
Invoking functions

14—13
5—2, 5—5

2—2, 5—7
9—4
9—5
11—6
4—7
14—3
5—4
14—13
10—2
13—4
6—4, 7—2, 15—4
5-9, 10—10
7—11
6—7

JOBDEV
JOBUSER

10—23
10—24

I(8D

KEYBOARD
10—2, 10—14
10—2, 11—6

Page Index—4

• . .

* . * S

a

• S *

• . S *

* *

* S * *

S S

• S *

a s * S

a . • a

* * * *

3

.

.
a s a

• S *

S S S S

• S * •

a S * S

* a a •
• S S

* a * *

* a * S

* S S *

* . S

ALPHA PASCAL USER'S MAMIAL Page Index—S

Keywords
ARRAY....
BEGIN .

CASE . .
CASE—or
CONST .

END

EXTERNAL .

FILE . .
FOR—DO

FORWARD
FUNCTION
6010 .

IF—THEN
IF—THEN—ELSE
LABEL . . .
MODULE

PACKED
PROCEDURE *
PROGRAM . .
RECORD
REPEAT—UNTIL
SET
VAR
WHILE—DO
WITH—DO . .

KILCMD .

* . a a

a . *

S a

6—2
13—4
5—5,
13—5
4—17
14—3
7—22
4—11
2—7

4—21
12—4
15—6
6—6
5—7
14—1

12—4
8-6
10—16
10—24
9—9

2—3,
7—8
2—3,
7—18
9—6
6—4
2—3,
3—3,
7—15
9—9
6—10
6—6
4—7,
9—4
9—5

6—2
5—2
7—8
6—9
5—1,
7—16
9—9
7—13
6—6
9—8
9—10
11—2

5—5

5—3

5—3
6-12, 16—1

9—3

6—1

6—1

11—3, 11—5

Label declaration
LCS
Legal identifier
LENGTH
Library version check
Line printer spooler
Linked list
Linker
Linking a program
Linking a single file
L N

LOAD
Local procedures
Local, reference
LOCATION
LOG
Logical operators .

Logical records .

LOOKUP
Loop

S

ing
a

* .

• S

. a

• *

• a

a

*

a

* a a a

a a

a a

• a a

• a a

a

. S S *

• S S •

a a a a

a a

• a a a

a

a a a a

a a

MAINPROG
MARK
Mathematical functions

ABS
ARCCOS

(Changed 30 April 1981)

14—2
7—22,
12—1

12—3
12—2

ALPHA PASCAL USER'S MANUAL Page Index—6

ARCCO$H
ARCSIN
ARCSINH
ARCTAN *

ARCTANH
COS . .
COSH

EXP .
EXPONENT
FACTOR IAL

LN
LOG .
ODD . . *

POWER

PWROFTEN
PWROFTWO

RANDOMIZERND . .
ROUND

SHIFT . *

SIN . .
SINH . *

54W .

SQRT .

STR...
TAN . .
TANH .

TRUNC
MAXINT
MEMAVA IL

operators

*

Napierian logarithm
Natural logarithm
NEW
NIL
Non—local reference
NOT
Null statement
Numbers
Numeric constants
Numeric literals
Numeric notation

(Changed 30 April 1981)

12—3
12—2
12—3
12—2
12—3
12—1

12—2
12—3
1 2—4
12—4
12—4
12—4
12—4
12—4
12—5
12—5
12—5
12—5
12—6
12—6
1 2—1

12—2
12—6
12—6
12—6
12—1

12—2
12—7
7—2,
14—2

16—4
5—2
14—10
14—9

13—8
139
7—10
14—5
16—1

12—4
1 2—4

7—20,
7—20
5-7,.

7—3
9—3
5—9
6—1, 8—7
6—4
5—9 .

*

*

*

• *

* *

• .

* .

• a

• a

• *

a

• *

*

• *

* *

*

* *

• *

*

•

Modifying assignment
Modifying STDLIB
MODULE
MOUNT.INC
Mounting a disk * *

MOVELEFT
MOVERIGHT
Multi—dimensional arrays
Multi—user file locks *

Multiple libraries

.8—7

8—4

7—22, 11—3, 11—5

*

*

* *

* *

• * * *

• * • *

• . * *

• * * *

• S *

• * *

* a *

ALPHA PA$tAL USER'S MANUAL Page Index—?

ODD
OPEN
Opening files .

OPENOOPENR .
Operator
Operator precedence
OR
GR D

OUTPUT

12—4
10—16, 10—25
io—io:

10—25
10—26
8—1

3—3, 8—1 to 8—2
7—3
7—2, 7—4, 11—3
10-2

PACK
Packing data
PAGE
Parameters
Pascal
PC.DO
PCL.DO
PCU.DO
PEILE
PL.DO
PLINK
Pointer
Pointer data type
POS
POWER

phaPascal

• . . •. 0

• S S * 5

Pee—declared constants
PRED
Previous versions of Al
Printer queue
Procedure
Procedure call .

Procedure declaration
PROGRAM
Program declaration
Program listing . .
Program name
Program structure
Prohibiting GOTOs
PU.D0
PUT
PWROFTEN
PWROFTWO

7—8
7—8
10—13
15—3
2—1

4—20
4—21, 11—2
4—22
10—26
4—21

4—11, 15—1
7—19 t 7—20,
7—19
13—3,13—5
12—4
8—7
7—2, 7—4, 11—4
3—1

14—3
15—3
9—1

6—8
5—1, 6—1
2—3, 6—1
4—8
6—1

5—1

4—7
4—21

10—5 to 10—6
12—5
12—5

Quiet compiler display 4—10

RADSO
Random tiles

• RANDOMIZE
Range checking
READ
READLN
REAL
Real nunbers

10—26
10-1 5

12—5
4—10
10—7
10—8
7—3, 15—4
5—9, 10—10

(Changed 30 Apr11 1981)

15—4

RECORD
Record variants
Recursion
Reference parameter
Registers
RelationaL operator
RELEASE
RENAME
REPEAT—UNTIL . .
Reserved words . *

RESET
REWRITE
RND
ROUND
Running a program

Sample program
Array
Demonstration
EOF

ERRORTRAP
Formatting output
Forward declaration
Function
GET and PUT
GETFILE and SETFILE
GOTO5
Identifier Scope
IF—THEN in expressions
Linked list
Modifying assignment operator

• MathematicaL functions

$

7-16, 15—5
7—18
3r5
6—12, 15—3
15—2
8—6
7,22, 11—5
10—27
9—9
1—4, 5—5 to 5—6
10—13
10—13
12—5
12—6
2—8

7—9
2—3
10—4
14—12
10—11
6—10
6—8
10—6
10—23
9—2
5—9
8—9
7—21

8—5.

12—7
7-20
10—29
9—9
7—14
9—8
7—5
7—1, 7—5
13—10
5—10
2—2, 5—7
10—27
5—2
10—15
7—1?., 15—4
7—13, 8—7
10—27
14—5
12—6
7—1
12—1

12—2 .14—1

ALPHA PASCAL USER'S MANUAL Page Index—8

.—

.

.
S

S

S

S

S

S

S

S

S

S

*

S

S

S

Pointers .

Random fiLe .

REPEAT—UNTIL
Sets
WHILE—DO . . .

Scalar constant .

Scalar data type
SCAN
Scientific notation
Scope of identifier
SEEK
Semicolon
Sequential FiLes
SET
Set operators
SETFILE
Setting file locks
SHIFT
Simple data type
SIN
SINH
SIZEOF

(Changed 30 April 1981)

ALPHA PASGAL USER'S MANUAL Page Indn9

Spec ing convent ions.
SPOOL .

Spool. switches
SPO0L.jNC
SQR

SQRT

Stack
Standard constants
Standard data type
Standard Identifiers
Standard Pascal
Statement label
Statement separator
Static variables .

STDERRORTRAP .

STDLIB
U SIR

STRING
String constant
String constants
STRING data type
String functions and

CONCAT
cOPY
DELETE
INSERT
L CS

LENGTH
Pos
STRIP
UCS

VAL.

String titeral . .
String notation
Stnngs
STRIP
Structured data type
Subrange data type
Subscript
Subset operator
S UCC

Superset operator
System queue .

procedures

TAN
TANH
Terminal dispLay .

Terminal screen—handling
TEXT
TIME
I®
TRUE

(Changed 30 April. 1981)

12—1
12—2

. . . . 4—9
. 11—7
• 7—11

14—11
.... 14—11

7—3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

5—2
14—3
14—3
14—3
12—6
12—6
11—3, 15—2
8—7
7—1

1—4, 2'3, 5'—S to 5—6
2—2
6—2
5—2, 5—4
7—19
14—13
16-1

12—6
3—6, 75, 7—10, 15—4
5—li
6—1, 8—7
5—11

13—2
13—2
13—3
13—4
13—4
13—5
13—3, 13—5

13—6
13—6
13—6.
5—il, 6—4,
5—10
5—10
13—6
7—1, 7—6
7—6
7—8
8—6
7—2, 7—4, 11—5
8—6
14—6

ALPHA PASCAL USERS MAI'MJAL Page Index-lO

TRUNCliv..
Type decLaration .

Unmountinq a disk . * .
Updating a singLe module
User—defined data type
User—defined ERRORIRAP
User—defined functions
User—defined subrange

VAt
Value parameter . . *

Value parameters
VAR
VariabLe decLaration
VariabLes
Variant
Version ntnber
Version stamp . -

VUE

. * .

* * S •
* S * S

• • * *

• * * *

. • . .

12—7

10—2, 10—14
6—4

13—6a
15—3
6—12
6—6
2—2, 6—6, 7—2
7—1, 8—8
7—18
4-18
4—18
2—5

WHILE—DO
WITH—DO
WRITE
WRITELN
Writing an external I

XERROTRAP
XLOCK
XLOCK.SY$
XNOUNT

9—8
9—10
10—9
10—9
16—4

14—16
14—5
14—6
14—9

* * * .
* * * .

I

13—6
14—9
4—21
7—5
14—12
6—6
7—6

* *

• . *

• * *

ibrary

S

* * *

* * S

* * •

* •

(Changed 30 April 1981)

