SOFTWARE MANUAL

AMOS

ASSEMBLY LANGUAGE
PROGRAMMER’S MANUAL

OWM-00100-43
REV. BOO

alpha
micro

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

C-2MD—4/81

First printing: April 1979
Second printing: 30 April 1981

'Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
'AlphaPASCAL', 'AlphalLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This manual reflects AMOS versions 4.5 and later

©1981 ~ ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

Page 11

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page iii

PREFACE

This manual covers the procedures for writing assembly lLanguage programs for
the Alpha Micro AM-100 and AM-100/T based computer systems. We also discuss
the operation of the programs. that make wup the AMOS assembly program
development system. We assume that you are familiar with assembly Llanguage
programming techniques in general, and with the AM~100 machine instruction
set in particular.

The WD16 Microcomputer Programmer's Reference Manual, (DWM-00100-04),
describes the dinstruction set for the AM=100 and AM-100/T CPUs. For
information concerning interfacing with AMOS via the AMOS monitor calls,
refer to the AMOS Monitor Calls Manual, (DWM-00100-42).

NOTE: Because the AM~100 and the AM-100/T CPUs use the same instruction set,
all references to "AM-100" in this manual also apply to the AM-100/T.

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

CHAPTER 1

PART 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

Table of Contents

PREFACE
INTRCDUCTICN

1.1 NOTE TO USERS OF PREVIOUS VERSIONS OF

MACRO, LINK, SYMBOL AND DDT cucvuervnceccnea.
THE CONTENTS OF THIS MANUAL v eeeevmcncnenannn
READER'S COMMENTS FORM wocvucesceescemcnnanns
CONVENTIONS USED IN THIS MANUAL ounveusvuecann

-
-
LBV BN

Page v

I T T & &

1=
1-

-
|
[o LIS R, BV

1-

INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM

2e1 ZMAC = SOURCE FILES wveevunceuscccncncncannens
2.2 .0BJ — INTERMEDTATE OBJECT FILES +@ouuccuucouns
2.3 .PRG ~ BINARY PROGRAM FTLES . cvvuvevonennn aua
2.4 _OVR = BINARY OVERLAY FILES wucuuvcccnncceconns
2.5 .LST - PROGRAM LISTING FILES B
2.6 .LIB - LIBRARY FILES s tstsesesmsasesaamannan
2.7 .GLB ~ GLOBAL CROSS REFERENCE FILE aesataanann
2.8 .MAP = LOAD MAP FILE .ovuueconuon.. feeteaneaans
2.9 .SYM ~ RESOLVED SYMBOL FILES csssmeasseamensna
2.10 JIPF - INTER-PHASE WORK FILE seseameseammiaanna-
2.11 _TMP - TEMPORARY WORK FILES cumeecaancacananaa

MACRO SOURCE PROGRAM FORMAT

SYMBOLIC EQUATE STATEMENTS .cccmeneuconn. asmaa
CONDITIONAL ASSEMBLY DIRECTIVES wuececnon.. neaa
MACRO DEFINITIONS AND MACRO CALLS .ovcecocunan
COMMENT LLINES AND BLANK LINES .veeucucuecncn- -

TERMS AND EXPRESSIONS

el CHARACTER SET meucuiceucemuncecaccacacans caeaan
ba2 TERMS tiriicinecncncnnnnnancens Chssenanamannaa
4.3 EXPRESSIONSue.cecocnn. mescameaanana R
boh NUMBERSeuiccievmacnancacaann casnesaana e
4.5 REGISTER SYMBOLS L. ..i.uiiuvcuceconcnanan feaanna
bof ASSEMBLY LOCATION COUNTER o ueesscoscacanannn
4.7 LOCAL SYMBOLS ..uu... e dsaEEssssasvusaaenaenana

MACHINE INSTRUCTIONS cucecnccvcnacocensccncens
DATA GENERATION STATEMENTS ©oeeccccmencancen. .

3.1
3.2
2.3 ;
3.4 ASSEMBLY CONTROL STATEMENTS uueeeuenesoneeoons ?
3.5
3.6
3.7

BN N
[I |

[i

11 1
PP HW W W N Y N

NMNF}J-‘\J RS LS LS

o

!

I

-D‘-F“-F“-l’i"-|2"-ﬂ‘-ﬂ‘-
oSV = A Y AN Y

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page vi

CHAPTER 5 ASSEMBLER PSEUDO OPCODES
5.1 ASSEMBLY CONTROL PSEUDO OPCODES o veeveeaaees .« 5=1
5.7.1 COPY meecccaeanaa feccamaccancana 5-1
5.7.2 OBINAM L. o.iiiececconnn cesnecsanan sacaa 5=3
5.7.3 PAGE tivenecncccncanaa fdecacaccaccanaaa 5=4
S.1.4 LIST - NOLIST Ceaescsassssemaseaas 5~4&
5.1.5 ASECT = RSECT ceuvuee. weawasemsssmemanaas 5~4
5.7.6 SYM ~ NOSYM Sascawneasaassaaan 5=5
5.1.7 CREF = NOCREF = MAYCREF oo cucccuconccnan 5-5
5.7.8 EVEN ciiiicecrcccacaans . ceaeaa .a 55
5.1.9 RADIX cuvcrcncneccna fmeecsscccmcacaaanc 5-5
5.7.10 NVALU L ioinemcmcccacaaaans emeeeasasana 5-6
5.7.11 END maeanas Meeaccaceacacanan B)
5.2 DATA GENERATION PSEUDO OPCODES cvvevcccaceans . 5-=7
5.2.1 BYTE ioeeecnnan. neesesasmemamamamnasn eae 07 .
5.2.2 WORD ..uvewnn. eeeiceamcsamasssaaaa e =7
5.2.3 ASCIT eieeeiennanana feeaaaa cesaeaaen- 58
5.2.4 RADSOD ciiniiiiiecanenn Meessmsassanana s 53-8
5.2.5 BLKB “ BLKW cuuececceccnnnansaccnaannns 5-R
5.3 SEGMENTATION PSEUDO OPCODES ceceovevcocananecns 5-9
5.3.1 Segmenting Assembly Language
Programs cceececeeccacceaaa tescscscscas . 5-9
5.3.2 AUTOEXTERN heeedemssssssssssanaaa 5-10
523.3 INTERN iiiceccecnnancns Weemsamasmanas ee =10
5.3.4 EXTERN ..vceecon. seemsamasdassscaana cae 311
5a3.5 OVRLAY 1.iiiiuimeenanmecnconannacananneas 512
5.4 CONVENIENCE PSEUDQ OPCODES .iececnuecnnenaneas 5-12
5.4.1 Extended Conditional JUmMPS .eeuccecocnn 5-13
5.6.2 PUSH = POP .oicvecnnananne feeecweccaaan 5~13
5.4.%7 CALL - RTN asmcamsmsmssscssana e S5=14
Seb.bd OFFSET .u.eoo.... simamamasemebaecmnannn 5-14
5405 PSI tiiieiceniancannacan eeceanana craes S5-14
CHAPTER 4 USER DEFINED MACROS
4.1 MACRO DEFINITION cmsacana aasanaa waaas B
65.1.17 Macro Definition FOrmats eeeeeenccocen- 6-2
A.1.2 The Macro Scurce Statements ..eee.o.. .- 6-2
6.1.3 The Dummy Argument LisSt e
6.1.4 Lahels (..neiumccecacacanannn ceseeaaas 6-3
6.1.5 Local SymbolsS c.ieeeewmeauaasnaacecnccnaan 6-3
6.1.6 Comments “uemedmcamasmacsanesanas B4
6.1.7 Special Macro OpPerators eeeecececeeeeeea . b4
6.1.7.1 Argument Concatenation (') ... é-5
6.1.7.2 Expression Evaluation (\) 6-5
6.1.8 Suppressing Macro Expansion - ENDMX ... -6
6.1.9 NCHR, NTYPE, NEVAL and NSIZE c.ecvecoo. 6=6
6.7.9.17 NCHR 1ucecucaaanan “pieasansaas . 6—5
6.17.9.2 NTYPE icuvcenanaas @esassanaana . 67
65.1.9.3 NEVAL .uc.-... sesssmaan faseanaa 67
65.1.9.4 NSIZE .eeceenn.. Mmmesssassaans &-7
6.1.10 Sample Macro Definitions .cecevecesaons H=8

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

CHAPTER 7

CHAPTER 8

PART II

CHAPTER ©

6.2 MACRO CALLS .o.vo... fEeasssassmEsssssssmaEm .
6.2.1 Name Faemasssmsanana. cmeamsamna
6.2.2 Real Arguments ...uweiceoeeencononon. a

6.2.2.1 Real Argument Format “ana
6.2.3 Label suieeeinneanaan fmaeeraaas R
6.2.4 Comments ...oueeoueo.. Cemaaaana Neemaaana
6.2.5 Nested Macro Calls .uweveoececoocoennn.
6.2.6 Sample Macro Calls wueveccceon. eaeamna.

CONDITIOMAL ASSEMBLY OIRECTIVES

7.1 CONDITIGNAL DIRECTIVE FORMATS ammraamaman e

7a2 CONDITION CODES wvevcvevenon. hasasmmesameemsaamaa

7.3 SUBCONDITIONALS v eeenovocnconen ameapamamaan -

7.4 NESTING OF CONDITIONALS Aemsnaanann Pmaaa

WRITING RELOCATABLE AND RE-ENTRANT CODE

8.1

8.2

USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

VALID ADDRESSING MODES

8.1.1

Index Modes

RE-ENTRANT CODE .,......

8.2.1

Using Base ReqiSters ..ocweee.-. .e e

THE ALPHA MICRO ASSEMBLER (MACRN)

9.1
9.2

Cegie]
"
N

THE MACRO PHASES

COMMAND LINE mebemanaanana S
9.2.7 Filespel wuiieececeeecucnaean e
9.2.2 Assembler Options .o ovuveeenn..
9.2.3 Parameterized Assembly Option
SAMPLE ASSEMBLY DISPLAY ..o .vueeorcmcnnnn
THE ASSEMBLY LISTING ..uovovono.. fammaEmaana
9.4.1 Assembly Listina Format ...oeco...
9.4.2 Listing Control Pseudo Opcodes ...
9.4.3 Generating a Cross Reference

MACRO
9.5.1
9.5.2

9.4.3.1 Cross Reference Control
Pseudo Opcodes
9.4.3.2 C(Cross Reference Listing

Format
?.4.3.3 Sample

Listing
ERRORS -

Error Messages .,

Cross Reference

Page vii

6-8
6~9
6-9
6-9
6-10
6=11
6=11
6=~11

8-1
2-3
8=3
8-3

SYSTEM

9-1
9-2
9~2
9-2

9-5
9-6
9-6
9-6
9-7

9-7

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL . Page viii

CHAPTER 10 THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE
GENERATOR (SYMBOL)

10.1 LINK L .cineenanan- Nasseceaann mesesaunaanaannasa 1901
10.1.1 LINK Command Lin2 wececcescceceaan ceana 1I=2
10.1.1.1 Continuation Lines weseecene. 102

10.1.1.2 LINK OPtions cevneceeceacane. 1=3

10.1.2 Sample LINK Display coeecececaas coasaea 10=3%
100123 LINK ErrOrS oeeee e eccceaaanncann. emea 10-4

10.2 THE SYMBOL TABLE FILE GENERATOR (SYMBOL) waaan 104
13.2.1 SYMBOL Command LiNe -sceecoceacena enana 10=5
10.2.1.1 Continuation LinesS .oueeecea. 1M=4A

10.2.1.2 SYMBOL 0Dti0NS cceeccccennn -- 10-4

10.2.2 Sample SYMBOL Display ocecweveceecn- heaa 10-4

10.3 LIBRARY AND OPTIONAL FILESooroen... Wameow mn-7
10.3.1 Library Filesc.c.. Mecdscmssscaancas 10-%
10.3.2 Optional Files cuicevcncun. cannacanannsa 108

10.4 THE LOAD MAP FILE i vecocececeanas wesasssanaass 10)~-9
10.5 LINK AND SYMBOL ERROR MESSAGES aererasvaanoana 1=9

CHAPTER 11 THE OBJECT FILE LIBRARY GENERATOR (LIR)

11.1 LIB COMMAND LINE wewcocecennn mesmammcaccacsn.a . 11-1
11.1.1 Continuation Lines ..cewececeees naeaana - 112
11.1.2 LIB Option Switeh (/L) covececen renansas 11~7

11.2 SAMPLE LIB DISPLAY Ceacasmssana cescnanane 113

11.3 UPDATING A LIBRARY .. ecccencnnann casmsaas 11-%

11.4 LIB ERROR MESSAGES & oo vrecmconen. P nea H1-4

CHAPTER 12 THE GLOBAL CR0OSS REFERENCE GENERATOR (GLOBAL)

i

12.1 GLOBAL COMMAND LINE fehbcecaaa cabwaaama
12.1.1 Continuation Lines fececasaaaaa -
12.1.2 GLOBAL Options .ueeceeono. camamcasaaaan

12.2 SAMPLE GLORAL DISPLAY toccueewenes Fantasmanaaa

12.3 SAMPLE LISTING DISPLAY ceeasmana. Abhmesasmanaa .

12.4 GLOBAL ERROR MESSAGES weecinccececacenas neumaa

g J E"!\J NN

L JUTT. W S W S Y
Pt
ot rg 0 P

™
1

CHAPTER 13 THE SYMBOLIC DEBUGGER (DDT)

13.1 THE DDT COMMAND LINF SeecabasamtasrabO e 13-1

13.2 USING SYMBOL FILES .cccenon.. cetmccsccneaanasra 13-2

13.3 TERMINAL INPUT wivevaccconnonn tesemsammana cenea 132

13.4 EXPRESSIONS PEAUleseamomssEctemmentanananana aees 132

13.4.1 Input Expressions cevesannana 13=3

13.4.1.1 Special Symbols ..cucuvecanaas 13=%

13.4.1.2 Local Symbolswececs caane 1373

13.4.2 Output Expressions ceeeeanan cenaes 13-4

13.5 DDT MODES sdoerauaEsEsemananns roasaaaa sea 13=5

13.6 DDT COMMANDSccoeen Gteesfaccesmsasacneaaa « 13-5

13.6.1 Opening a Location or Register (/) ... 13-5
13.6.2 Closing a Location)

(Carriage-Return) Weamanana nvaseas 13-86

AMOS ASSEMBLY LANGUAGE PROGRAMMER®S MANUAL

APPENDIX A

APPENDIX B

INDEX

Display a Value in Octal (=)
Opening the Next Location
(Line~Feed) wessasmaaanma
Opening the Previous Location ()
Opening a Location Indirectly (&)
Opening an Absolute Location
Indirectly (TAB) ..oceennnens cnena
13.6.8 Starting 2 Program (3G6) .eceeceeas
13.6.9 Setting Breakpoints ($8) coeececns
13.6.10 Clearing Breakpoints ($€) wceaveans

’..N’JJ
C"-O"
-P‘-\.N

1
1

1
1:
1

LN\.N\.N

-6
6.
-6

] .
~l O~ LA

13.6.11 Proceeding From a Breakpoint ($P)

13.6.12 Executing Single Instructions
(3X and \) ciiineennmnnanana rmsasa
13.6.13 Setting Program-Relative Mode (%R)
13.6.14 Displaying Data in Decimal (D) ..
13.6.15 pdisplaying pata in Octal ($=)
13.6.16 Displaying Data in Hex (B3H)
13.6.17 Displaying Data in RADSOD ($%) ...
13.6.18 Displaying Data as ASCII
Characters (3") .uceeercacaes PR
13.6.19 Displaying Data as BRytes ($#)
13.6.20 pisplaying a String of ASCII
Characters ($A) c.veeceancanaacanas
13.6.21 Displaying the Base Address and
S1ze (BM) Lniveecsanncacana eamanes
13.6.22 Defining New Symbols (:) ..nceaee .
13.6.23 Examining Reaister Contents (%) ..
13.7 USING DDT TO PATCH PROGRAMS
13.8 DDT ERRORS . .uvrcvevann ammmmman Gmmmmmcannan
13.9 EXITING DDT vucucececennsesnmaannana nanenma

THE ASCII CHARACTER SET

SUMMARY OF PROGRAM SWITCHES

THE MACRO ASSEMBLER — MACRO .c.v.nueveneaece
THE LINKAGE EDITOR = LINK cuccuceceicnncon

8.1

B.2

B.3 THE SYMBOL TABLE FILE GENERATOR - SYMBOL -
B.4 THE OBJECT FILE LIBRARY GENERATOR - LIB ..
B.5

-anma

Page ix

13-6

12-6

—
3§
~ ~

= [T Y
[UL

[

N W A A thNLN\.Nu
00D D 0000~]

-—

B-2
B-3
B-3

THE GLOBAL CROSS REFERENCE GENERATOR - GLOBAL B-3

CHAPTER 1

INTROBUCTION

The AM=100 and AM-100/T based computer systems support a flexible and
efficient assembly Language develooment system under the AMOS monitor. This
system includes the assembler, Linkage editor, symbol file generator, obhject
file Library qenerator, global symbol cross reference generator, and
symbolic debugger programs.

The assembler 1dis a multi-nass macro assembler with conditional assembly
directives, library copy function, and external segment links. The Linkage
editor dis wused to Link multi-segment programs together and to create a
runnable proagram file. The onerating system supports segment overlays
thereby allowing a large program to be tagically divided into smaller
segments and executed sequentially. The debugger programs accept a
specially created symbol file as input and allow the program to he traced
and debugged in symbolic instructions using all the Llabels as they were
entered in the source program. The Library generator provides a mechanism
for developing and maintaining a Library file that contains frequently ysed
routines, making them accessible to all programmers on the system. AlLL
components of the assembly language development system run under control of
the standard AMOS monitor,

There currently exist over 70 monitor calls in macro form that the assembly
language programmer uses to communicate with the AMOS monitor and to make
use of the routines it has to offer. These macro calls are predefined in a
file called SYS.MAC located in account 7,71 on the AMOS System Disk. The
programmer uses a single COPY statement to include this complete Library of
predefined furnctions in his assembly lanauage program and then refers to the
monitor calls by their macro names; this makes for an easy-to-use
communication Link to the system resources. SYS.MAC also includes equate
statements for many of the predefined system variables including the job
table entries for the user's impure job variables.

INTRODUCTION Page 1-2

If your programs are to be compatible with the AMOS system architecture, you
must write them in totally relocatable code. A relocatable program may be
loaded anywhere in RAM and executed without modifyina any =zddresses within
the program itself. There are machine instructions which assist in writing
totally relocatable code, and by obeying a few simple restrictions the task

of writing assembly Llanguage programs for the AM-10N and AM-100/T becomes
almost foolproof.

Optionally, you may write programs which are re-—entrant and then incorporate
these programs or subroutines into system memory to be shared by all users
without requiring a separate copy for each user. (To add programs to system
memory, you must modify the system 4dnitialization command file. For
information on the system initialization command file, see the "System
Operator's Information” section of the AMOS Software Update Documentation
Packet .)

We will not delve into the rules for re-entrant programming in great detail
here since it is an advanced programming technique and requires specific
rules that are not machine dependent. There are numerous books on the
subject and all general practices apply to the programming of the Alpha
Micro computer system. There are a number of features in the instruction
set which do lend themselves quite nicely to writing re-entrant code, some
of which are detailed in Chapter 8.

1.1 NOTE TO USERS OF PREVIOUS VERSIONS OF MACRO, LINK, SYMBOL AND DDT

If you are familiar with versions of MACRO, LINK, SYMBOL, and DDT that were
released before AMOS Versions 4.5 and later, you would probably Like a
summary of what changes were made to these programs with AMOS Release 4.5.
I1f you are new to the AMOS system, please skip on to Section 1.2, below.

THE OBJECT FILE LIBRARY

One of the most important changes made was the introduction of the new
program LIB, the object file library generator. You can now use LIB to
combine collections of .08J files into an object file Llibrary. Then when
you use LINK or SYMBOL to Llink your program, you can optionally specify a
Library file from which routines will be Llinked into your program if your
praogram references symbols in that Library file. Besides generating new
Library files, you may update existing Llibrary files by deleting or
replacing existing modules or adding new modules, and you may obtain a
Library Llisting file that tells you what object files are in a specific
Library. For more information on LIB and the use of Llibrary files, refer
to Section 10.3, "Library and Optional Files," and Chapter 11, "The
Object File Library Generator (LIB)."

LOCAL SYMBOLS
MACRO, ©ODPT, and FIX now support the use of local symbols. A brief

discussion of local symbols occurs in Section 4.7, "Local Symbols." Ffor
information on the wuse of local symbols within macro definitions, see

INTRODUCTION Page 1-3

Section 6.1.5, "Local Symbols," and for a discussion on accessing Llocal
symbols through DDT and AlphaFIX, see Section 12.4, "Expressions."

CHANGES TO MACRO:

The macro assembler now gives a new assembly display which provides more
information. (For example, if MACRO is automatically EXTERNing symbols,
it Llists those symbols alphabetically in Phase 2. For information on
automatically EXTERNing undefined symbols, see AUTOEXTERN, below, 1in
the section on Pseudo Opcodes.) 1f you forgot to end your file with an
END statement, MACRO now tells you so.

MACRO supports two new option request switches that allow you to: 1)
request a symbol cross reference listing: and, 2) use the parameterized
assembly option.

The cross reference listing (which appears at the end of a regular
assembly Llisting) contains an alphabetic List of all symbols, tells you
which lines of your source program they appeared on. and whether the
symbols are label definitions, equate definitions, are INTERMed,
EXTERNed, or are overlays. The listing also tells you which symbols were
never defined. The cross reference then gives a similar listing for all
macro definitions and references. For information on the MACRO cross
reference, see Section 9.4.3, "Generating a Cross Reference."

The parameterized assembly option allows you to specify a wvalue at the
time vyou assemble vyour program which your program can analyze. This
feature is very useful when used with the conditional assembly directive
pseudo opcodes. For more information, see Section 9.2.3%3, "The
Parameterized Assembly Option."

LINK and SYMBOL

Both LINK and SYMBOL have changed gquite a bit. They both now support a
number of option request syitches. By combining these switches, LINK and
SYMBOL can be made to merform the same functions. (For exampte, LINK can
generate a symbol table file, and SYMBOL can generate a resolved program
filel)

LINK and SYMBOL both support Llibrary files and optional files.
The LINK options are:

Designate a file as a Library file.

Designate a file as an optional file.

Pesignate a file as a required file (the default).
ienerate a load map file.

Generate a symbol table file.

Include equated symhols in the symbol table file.
Generate a program file (the default).

Suppress program generation.

INTRODUCTION] Page 1-4

NOTE: An "optional file" contains only one .08J file, and 1is Llinked in
only if_references are made by your program to symbols in that file. For
information on optional files, see Section 10.3, "Library and Optional
Files." A load map file contains a map of how the Linked together dtems
will be loaded into memory when you execute the program file. It also
contains additional information on each item. See Section 10.4, "The Load
Map File," for more information.

The SYMBOL options are:

Designate a file as a Library file.

Designate a file as an optional file.

Designate a file as a required fite (the default).
Generate a load map file.

Generate a symbol table file (the default).
Include equated symbols in the symbal table file.
Generate a program file,

Suppress symbol table file generation.

GLOBAL

GLOBAL generates a global symbol cross reference for a collection of .08J
files. This listing tells you which files the symbols were defined in
and which files the symbols were referenced in. (NOTE: This differs from
the MACRO cross referemce 1in that GLOBAL 1is meant to be used for a
collection of .0BJ files to determine the symbol references between those
files; the MACRO cross reference gives detailed information on the
symbols within a single file.) See Chapter 12, '"The Global Cross
Reference Generator (GLOBAL)," for more information.

PSEUDO OPCODES

This manual now documents the search pattern MACRO uses in Loocking for
the copy file specified by the COPY pseudo opcode. Please see Section
5.1.1, "copy."

Several new pseudo opcodes have been added:

OBJNAM - Allows you to modify the name and extension given to the
output files created by MACRO, LINK, and SYMBOL.

LIST, NOLIST - Alilow you to suspend and re-emable output to the
assembly Listing.

CREF, NOCREF, MAYCREF -~ Allow you to suspend and re—enable output to
the cross reference portion of the assembly Listing.

NVALU =~ Allows your program to make use of the value supplied on the
MACRO command Line via the /V parameterized assembly option switch.

AUTOEXTERN = Tells MACRO to automatically EXTERN any undefined
symbols.

INTRODUCTION Page 1-5

ENBMX - Terminates macro expansion.

You may find information on all of these pseudo opcodes except ENDMX by
referring to Chapter 5, "Assembler Pseudo Opcodes."” For dinformation on
ENDMX, see Section 4.1.8, "Suppressing Macro Expansion - ENDMX."

FILES
Several new files are now created by the AMOS assembly language system:
.LIB files - Library files generated by LIB.
.GLB files Global cross reference Listing created by GLOSAL.

.MAP files - Load map files generated by LINK and SYMBOL.
-TMP files = Temnorary work file generated by LIR.

OTHER FEATURES:

This manual contains information on two previously undocumented
operators:

The expression eyaluation operator, \, for wuse within macro
definitions (see Section 6.1.7, "Special Macro Operators'): and,

The binary shift operator, (underscore); see Section 4.3,
"Expressions."

This book also now 1includes two Appendices: "Appendix A, The ASCIT
Character Set," and "Appendix B, Summary of Program Switches."

1.2 THE CONTENTS OF THIS MANUAL
Part I - INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

Chapters 2 through 8 contain information on the form of your assembly
language programs. For example, Chapter 4 discusses labels, terms, and
expressions in your assembly language program statements. Chapter 5
discusses the pseudo opcodes available to you, and Chapter 4 discusses
how to construct and call macros.

Part II - USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

Chapters 9 through 13 give operating information for the varicus
components of the Alpha Micro assembly Language programming system:

MACRO = The macro~assembler

LINK - The linkage editor

SYMBOL - The symbol table generator

LIS - The object file library generator

GLOBAL - The global cross reference generator

DDT = The dynamic debugging and patching program

INTRODUCTION Page 1-6

Appendix A gives the complete ASCII character set, with values specified in
decimal, octal, and hexadecimal. Appendix B gives a brief summary of all
option request switches ysed by MACRO, LINK, SYMBOL, LIR, and GLORAL.

1.3 READER'S COMMENTS FORM

Please note the Reader's Comment Form at the back of this manual. We would
very much appreciate any comments or criticisms you may have concerning this
book. Any suggestions for future documentation projects are also welcome.

1.4 CONVENTIONS USED IN THIS MANUAL

To make our examples concise and easy to understand, we've adopted a number
of graphics conventions throughout our manuals:

Number Base Unless otherwise noted, all numbers are decimal (base 10).

PPN A Project~programmer number. This number identdifies a user
disk account (e.g., £100,2]). we also represent an account
number as [p,pnl.

Filespec A file specification. Tdentifies a file. 1t usually has the
elements:

Devn:Filename,Extlp,pnl

where “Devn:” is a device specification that identifies a
logical wunit of a physical device, "filename” gives the name
of the file, and "ext" specifies the file's extension,

r Optional elements of a command Line. When these symbols
appear in a sample command Line, they designate elements that
you may omit from the command Line.

Underlined characters indicate those characters that AMOS
prints on your terminal display. For example, in the Llatter
chapters of this manual you may see an underlined dot, .,
which indicates the AMOS monitor prompt symhol.

HET Carriage return symbol. This symbol marks the place in your
keyboard entry to press the RETURN key.

n . Indicates a C(ontrol~character, For example, if you type a
Control=-C, you see it echoed on your terminal as "(,.

3 Escape symbol. This symbol marks the place in your keyboard
entry to press the ESCAPE key (sometimes labeled ALT MODE or
ESC).

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PART I

INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

These chapters introduce the experienced assembly lLanguage programmer to

assembly language programmina for the AM-100 and AM=100/T based computer
systems.

CHAPTER 2

FILES USED IN THE ASSEMBLY [ANGUAGE SYSTEM

This section describes the files that are used during the normal course of
building and testing an assembly Language program. We will refer to these
files by their extensions: i.e., a .MAC file is any file with an extension
of "MAC". ALL files described here will not necessarily be used by all
programmers during any one programming session, but you will eventually run
across all of them at one time or another so you might as well know briefly
what they are used for and how they are created.

2.1 .MAC - SOURCE FILES

-MAC files are the original ASCII source files that you create using the
EDIT or VUE program. .MAC files are input files for the assembler program
(MACRO) which makes one or more passes over them depending on the assembly
options selected. If you want to make any changes to a program, you make
the changes to the .MAC file by using the EDIT or VUE program; you then
reassemble and relink it. Files that you include with the COPY assembly
pseudo opcode must also be ASCII source files with an extension of .MAC.

2.2 ,0BJ - INTERMEDIATE OBJECT FILES

-084 files are the direct output of the assembler (Phase 2) and contain the
assembled binary code, symbol references, internal symbol definitions, and
unresolved external symbol references. .08J files are not directly usable
for anything by themselves but must first be processed by one or more of
several other programs to get a finished file that has a direct use by
itself. The linkage editor program (LINK) reads one or more .08J files and
creates a fully resolved and runnable binary program file in memory image
format. The Llibrary generating program (LIB) combines specified .0BJ files
into an object file Library. The GLOBAL program reads .08J files and
creates a global symbol cross reference file. The symbol file program
(SYMBOL) reads the .0BJ files and creates a file which contains all user
defined symbols and their resolved addresses. (This symbol table file is
used by the symbolic debugger programs poT and FIX.) The assembler 4tself

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM : Page 2-2

also rereads the .0BJ file during Phase 3% together with the .MAC source file
to create the ASCII List file.

2.3 .PRG - BINARY PROGRAM FILES

.PRG files are created by the Linkage editor program (LINK) and are the end
result of the assembly process. The .PRG file is a binary memory image of
the assembled program which 1is Lloaded into user RAM when the program is
requested for execution. (That s, the .PRG file 45 the final, fully
assembled and resolved machine language program of which the .MAC file was
the source.)

The .MAC file from which the .PRG file was generated must have been written
using the rules for totally relocatable code so that the .PRG file may be
dumped into any memory location and executed without modification. One or
more .0BJ files may have been input to the Linker for the creation of the
single .PRG file. Once you have tested the .PRG program file, you may place
it into the System Library Account, DSKO:01,41, where it will become
available to all users on the system.

2.4 LOVR — RINARY OVERLAY FILES

If the program contains overlay segments which do mot all reside in memory
at the same time, the linkage editor generates one .PRG main segment file
and one or more LOVR overlay segment files. LINK generates each overlay
file in response to an OVRLAY assembler pseudo opcode. The .PRG program
segment will be responsible for the calling and executing of each of the
other .OVR segments during the running of the program. Your program may
selectively bypass overlay segments as does the assembler itself, which
contains six overlays. Overlay files have the same memory image format as
the .PRG program files except that they are resolved at an effective address
other than zero so that they will not completely overlay the controlling
segment. This addressing 1is the direct responsibility of the programmer;
for more information on creating overlays, see Section 5.3.5, "OVRLAY."

2.5 .LST =~ PROGRAM LISTING FILES

An optional output of the assembler is 3 complete resolved listing of the
source program with the associated binary code that was generated. MACRO
creates this List file during Phase X of the assembly process; you may
generate it directly from the .MAC and .0BJ files by bypassing Phases 1 and
2 with the /0 assembly switch. -The .LST file is formated ASCII; you may
display it via the TYPE command or examine it by either the EDIT or VUE
programs. Or, you may print the List file using the PRINT command.

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM Page 2-3

The .LST file may optionally contain a full symbol cross reference if you
use the /R assembly switch. (See Section 2.2 for information on the /9 and
/R MACRO switches.)

2.6 .LIB - LIBRARY FILES

The .LIB file is a library file. (A Library file contains a collection of
-084 files that are |inked into the main program as required.) The LIB
program allows you to generate and maintain object file libraries. The LINK
and SYMBOL programs accept these Library (.LIB) files as input and
automatically include any object files from such a Library necessary to
resolve external references. See Chapter 11 for information on creating and
maintaining program Libraries.

2.7 .GLB - GLOBAL CROSS REFERENCE FILE

The GLOBAL program reads a group of .0BJ files and creates an alphabetic
cross reference .GLB file that lists all global symbols in the files, and
shows which files define them and which files accept them as externally
defined symbols. (For information on GLOBAL, see Chapter 12.)

2.8 .MAP - LOAD MAP FILE

Both the Linkage editor LINK and the symhbol table file generator SYMRAL
generate a load map file in response to the optional /M switch. The load
map {(.MAP) file shows how the assembled and linked object files will he
located in memory when the program is loaded into memory prior to execution.
It also gives information about each object file Linked into the final .PRG
file. For information on tha Lload mab, see Section 10.4, "The Load Map
File." ,

2.9 .SYM - RESOLVED SYMBOL FILES

The .SYM file is a direct ocutput of the symbol file generation program
(SYMBOL) which takes one or more object (.084) files and creates a symhol
table with all user defined symbols and their resolved machine addresses.
The .SYM file s used as input to the debugger programs poT and FIX which
may then operate with references to the user symbols in the orogaram instead
of absolute machine addresses. In a system where the program is always
offset by some amount in memory, this is almost essential if you are to he
able to trace the execution flow of a program under test. The .SYM file is
in a special packed binary form and, as such, is not much good for anything
except input to BDT and FIX. (NOTE: The LINK program can also generate a
.SYM symbol table file.) .

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM FPage 2-4

2.10 .IPF - INTER-PHASE WORK FILE

The .IPF file is a temporary work file built during the assembly process by
Phase 1 of the assembler to carry information on to Phase 2. The .IPF file
is packed binary junk and the only reason we mention it here is that if the
system crashes during an assembly you may find one Left on your disk. Erase
1t; it is useless and just takes up space. There is no problem if it exists
and you don't find it, since the next assembly of the same program will
erase any .IPF file it finds during Phase 1 before attempting to create a
new one.

2.11 .TMP - TEMPORARY WORK FTLES

The LIB program creates a temporary work file named Jobnam.TMP ("Jobnam' is
the name of your job). As with the .IPF file, you should never see this
file wunless something goes wrong. The next time you run LIB, the .TMP file
should disappear.

CHAPTER 3

MACRO SOURCE PROGRAM FORMAT

A macro source program is a single .MAC file composed of a sequence of ASCII
source statement Llines, Each Line must be complete in itself since there is
ne provisicn for multiple-Lline statements. Each statement may be one of the
following, depending on its function:

Valid machine instruction

Data generation statement
Symbolic equate statement
Assembly control statement
Conditional assembly directive
Macro definition

Macro call

Comment or hlank Line

v N IE 6 NV, B SR UN I N Y
.

The maximum Lline Length is 100 characters. Each line is terminated by a
carriage-return and Lline-feed pair which the editor provides when you press
the RETURN key. Unless otherwige specified, all of the above Lines may
contain an optional comment field following the actual statement;: this
comment field starts with a semicolon (:) and extends to the end of the
Line The assembler treats gspaces and tabs (Control-1) as equal: they are
used to delimit fields within statements. Tabs are useful to keep statement
fields aligned and make for clean Listings. Tabs are an important nart of
generating readable code.

NOTE: This manual refers to the term "user symbol" several times during
Later discussions, so we will define it at this point. A user symbol is any
name defined by you within your program. Tt must be unigue to that program,
and must be from 1-6 characters in Lenath, Legal characters for a user
symbol include the alphabetic characters A-Z, the numeric characters 0-9,
and the two special symbols "." and "$". The first character of a user
symbol must be non-numeric. MACRO folds all lower case characters to upper
case. Symbols are packed RADS0 and stored as two words in the symbol table
during the assembly onrocess along with their current asstgned value and
attribute flags.

MACRO SOURCE PROGRAM FORMAT _ Paae %-2

3.1 MACHINE INSTRUCTIONS

One machine statement is allowed par line and is assembled into & single
machine hardware dnstruction which aenerates one, two, or three words of
binary code depending on the instruction and addressing modes used. The
aeneral format of a machine instruction statement -

{label:}¥ {opcode} <{operands} {rcomments}

The label field is optional and is used to give 2 symbolic name to the
current instruction being assembled. It must terminate with a colon. The
label may be any wvalid user symbol that has not been previously defined,
The value of the Llabel may he =ither absolute or relocatable depending on
the current assembly status. Relocatable symbols will be resolved during
Link-edit time by adding the Llabel value to the current program relocation
bias (calculated by [|INK). More than one label may appear on the samas
statement line separated by colons; in this case, each label is given the
same value as the current location. Any symbol used in a lahel field may
not be redefined later in the program. A label may appear as the only ditem
on a Lline in which case it is assigned the address of the next byte of
generated code.

The opcode field is required and contains one of the machine instruction
opcodes in mnemonic form such as MOV, CLR8, TST, ADD, etc. (Refer to the
WD16 Microcomputer Programmer's Reference Manual, (DWM-D0100~04Y, for a
complete description of all the machine instructions available in the AM=100
system.) The opcode field terminates with a space, tab, semicolon or
carriage-return. If a label field was used, a space or tab between the
colon and the opcode is optional hut recommended.

The operands field is required on those instructions that have either one or
two operands. The operands field is separated from the opcode field by one
or more spaces or tabs. If the instruction heing used requires two
operands, the operands are separated from each other by a comma. leadina
spaces are always ignored din the operands field while the operands
themselves terminate with a space, tab, comma, semicolon or carriage-return.

The comments field is optional and is defined by a leading semicolon. The
comments field then extends throuah the remainder of the Lline wup to the
carriage-return. Any wvalid ASCII characters are legal in the comments
field.

3.2 DATA GENERATION STATEMENTS

Data generation statements resemble machine instructions in format and
generate binary data within the program flow. The data g=enerated is
normally not interpreted during program run as executable instructions but
rather as constant data such as ASCIT messaoes to be typed or numeric values
to be wused by those instruction being executed. The general format of the
data generation statement is:

MACRO SOURCE PROGRAM FORMAT Page 3-3

{label:}» <{operator} {operands?} {;comments?}

The label field is optional and follows the same format and rules as the
machine dnstruction Label field. The operator field contains the specific
data generation mnemonic for the type of data desired. We discuss these
codes in Section 5.2, "pata Generation Pseudo Opcodes." The operands field
contains the actual data to be generated by the statement and its format
depends on the type of operator in use. Some operators such as WORD and
BYTE allow multiple operands within the same statement So that the amount of
binary data generated by the one statement is variable. 1If a Label is used,
1ts value is always that of the address into which the first byte of data
will be assembled. As with machine instructions, the comments field is
optional.

There is a ‘special default type of data qgeneration statement which yYou
should be aware of. If no operator is present, MACRO assumes the statement
iS a WORD statement and it interprets the operands field as such. The
assembler works in the following manner when analyzing statements:

1. Leading symbols terminated by colons are processed as labeis and
stored in the assembler symbol table.

2. The next symhol is first scanned for a match 1in the macro tahle
which consists of all macros previously defined in the program.

3. If the operator symbol is not a macro name, it is then matched
against the table of machine instruction opcodes, data generation
operators, and assembly control pseudo opcodes.

4. If none of the above result in g defined operator, the default WORD
processor is entered and the symbol is assumed to be the bheginning
of the associated operands field for the WORD statement.

3.3 SYMBOLIC FQUATE STATEMENTS

A user symbol may be assigned a value by entering it on a statement Line
followed by an equal-sign (=) and the expression to which it is to be
equated. The general format of the equate statement ig:

{user symbol?} = {expression} {:comments?

The eaual-sign may have Leading or trailing spaces and tabs if desired for
formatting purposes. The expression may he any valid numeric expression but
since all eguate statemsnts must be fully resolved during Phase 1, any user
symbols used in the expression must be defined at the time that the equate
statement s encountered. Fquate statements may not contain references to
external symbols. The comments field is optional as in the machine
instruction statement.

MACRO SOURCE PROGRAM FORMAT Page 3-4

User symbols that are assigned values in the program may be reassianed a
different value later in the program by using another equate statement to
redefine the desired symbol. Labels may not be redefined by equate
statements, however. If the relocation attribute of the evaluated
expression is zero, the value assigned to the symhol is absolute. If the
relocation attribute is non-zero, then the value assigned 95 relocatable.
If the expression contains a register symbol, then the equated symbol is
also given a register attribute. TIn other words, the value assigned to the
user symhol pretty much follows the attributes of the expression to which it
s equated.

3.4 ASSEMBLY CONTROL STATEMENTS

Assemhly control statements cover a wide range of functions that generally
set up or alter the parameters which control the assembly process. They do
not themselves generate any binary code but are used for such purposes as
Listing format control, numeric radix assignment, and program generation or
addressing information. The aeneral format for assembly control statements
iss

{pseudo~opcode?} {arqguments} <{;comments?}

The pseudo opcode is the mnemonic that defines the function to he performed.
Chapter S lists all pseudo opcodes along with an explanation of what rach
one does. Some of them require arguments that are needed to set up
parameters. These arquments are separated from the pseudo opcode by one or
more Sspaces or tabs. As in other statement formats, the comments field is
optional. Unless the explanation in Chapter 5 for a pseudo opcode specifies
otherwise, lLabels azre not normally permitted in assembly control statements.

2.5 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly is defined as selectively assembling or bypassing
statements within defined bounds depending on the value of some variable at
the time the assembly is performed. The bounds are made by conditional
assembly directives which specify the variable or variables to be tested and
the condition to be met in arder for the assembly to occur. Conditional
assembly directives are most commonly used in conjunction with macro
definitions to direct the tailoring of each macro call as it is encountered.
We discuss conditional assembly directives in Chapter 7.

3.6 MACRO DEFINITIONS AND MACRO CALLS

Macros are defined as one or more valid statements which may be called for
by using a single symbol (the macro name) within the program anytime after
the macro has been defined. Macros are always defined by you within your
program or within a copy file which is called into your program by the COPY

MACRO SOURCE PROGRAM FORMAT Page 3-5

statement. The copy file called SYS.MAC is a macro Library of over 70 such
macro definitions which define all the supervisor calls available to your
programs for communicating with the monitor routines. This library file is
supplied on the AMOS System Disk in account cz,71.

Macro calls are those statements which name the defined macre as the
operator of the statement and give the specific arguments to be used by the
macro (if any are required). A macro call within the program causes the
defined macro to be included in its tailored form at the point of the call.
Macro calls normally cause one or more machine instructions to be assembled
and the respective binary code to be generated.

Chapter &6 defines macro definitions and macro calls more fully.

3.7 COMMENT LINES AND BLANK LINES

Statements which begin with a semicolon (after any leading spaces and tabs)
are considered comment Lines and do not result 4n the generation of any
binary code or in the alteration of any assembly control parameters. They
are useful only for documenting the source programs and making them easier
to read and maintain. B8lank lines are also considered comment lines and are
for appearances only in the source file. It is most important to fully
document your programs, so use comments Lliberally.

CHAPTER 4

TERMS AND EXPRESSIONS

This section describes the various terms and components ysed in MACRO source
statements, including the defined character set for the construction of
symbols and expressions.

4.1 CHARACTER SET

The entire ASCII character set is legal in MACRO source programs except for
the control~-characters. MACRO translates lower case characters to upper
case before it checks the syntax of each source line. The characters that
are valid in user defined symbols are Limited to A-Z, (-9, "$" and "."
because symbols are packed RADS0D before being stored in the symbol table.
The folowing Llist gives the special characters that are recognized by the
assembler when scanning source lines:

[X3

Label terminator

: Comment field indicator

= Equate statement operator

Immediate expression indicator

a Deferred addressing indicator

(Initial register indicator

) Terminating register indicator

, Operand field or macro argument separator

- Value of the assembly current location counter when used as a term
< Initial argument or expression indicator

> Terminating argument or expression indicator

+ Arithmetic addition operator or autoincrement mode indicator

~ Arithmetic subtraction operator or autodecrement mode indicator
* Arithmetic multiplication operator

/ Arithmetic division operator

£ Logical AND operator

|

Logical inclusive OR operator

TERMS AND EXPRESSIONS Page 4-2

Single ASCII character term indicator
Double ASCII character term indicator

I Initial RADSO triplet term indicator

1 Terminating RADSO triplet term indicator
- Universal unary indicator

_ (Underscore) Binary shift operator

The wuse of the above legal characters out of context for their designed
purposes will cause the generation of a syntax error (code Q),

4.2 TERMS

A term is the basic unit of data in an arithmetic expression and may be one
of the following:

1. A number as composed of legal digits within the current radix of
the system or as temporarily defined by the inclusion of a Lleading

temporary radix change operator;

2. A user symbol (as previously defined) which is given an assigned
value either by its use as a label or a direct equate statement:

3. An ASCII conversion defined by the single or double guote
indicators;

4. A RADSO triplet enclosed in square brackets;

5. The wperiod symbol (.) which represents the current value of the
assembly current Llocation counter:

6. An expression or term enclosed within angle brackets. Angle
brackets are wused to alter the normal hierarchy of expression
evaluation which is normally done in a left~to-right manner. Any
quantity enclosed within angle brackets will be evaluated befare
the remainder of the expression in which it is found. The action
of angle brackets within a MACRO source expression is the same as
that of parentheses within a normal arithmetic expression such as
is used in the BASIC language. Angle brackets may also be used to
apply a unary operator to an entire expression such as —-<16/A>.

4.3 EXPRESSIONS

An expression is a combination of terms and operators which will evaluate to
an unsigned 16-bit value in the decimal range of D-45535. Negative values
in the range of -32768 through -1 will be stored properly after evaluation
- but will be treated the same as their unsigned counterparts in the range of
32768 through 65535,

TERMS AND EXPRESSIONS Page 4-3

The evaluation of any expression also includes the evaluation of the mode of
that expression (absolute, relocatable, and external) and the register
designation of the expression.

Operators are defined as unary or binary. Unary operators precede a single
term and alter the evaluation of that term alone. Multiple unary operators
may be applied in sequence to the same term and are evaluated in reverse
order. Binary operators combine two terms to give a resultant effective
singte term value. Multiple binary operators are illegal.

Expressions are evaluated left to- right under the hierarchy of the operators
which are in use within that expression. Anale brackets wmay be used to
atter the normal process of evaluation. Unary operators always take
precedence over binary operators and are applied to the associated terms
first.

The tegal operators are:

+

Unary plus sign (default if term not preceded by another unary)
Unary minus sign which negates the associated term value

Unary one's complement operator (XOR's the term with all opes)
Temporary radix change to decimal for the associated term
Temporary radix change to binary for the associated term

Temporary radix change to octal for the associated term

Temporary radix change to hexadecimal for the associated term
Binary addition operator

Binary subtraction operator

Binary multiplication operator

Binary division operator

(Underscore.) Binary shift operator (given A B, binary representa-
tion of A is shifted B number of times. If B is positive, shifts A
Lteft; if B is negative, shifts A right.)

& Binary Logical AND operator

Binary Llogical inclusive OR operator

»

Y 3 3}
T oW oo

3

~ % 1 +

NOTE: Two special operators (\ and ') also exist for use within macro
definitions. See Section 64.1.7, "Special Macro Operators,"” for more
information.

Expressions are evaluated as being absolute, relocatable, or external. This
distinction becomes particutarly important since we are writing totally
retocatable code for the AM=~100 system. The following rules apply in the
evaluation of the relocation attribute of an expression:

1. An expression 1is absolute if its value is fixed and contains no
retocatable terms. Alsc, a relocatable term minus another
relocatable term results in an absotute value. Labels allocated
within an absolute section (ASECT) will be assigned absolute values
and attributes.

2. An expression is relocatable if its value s fixed relative to the
current program base which is relocatable at load time. The value
may have an offset added to it hy LINK if it 4is not within the

TERMS AND EXPRESSIONS Page 4-4

first segment of 3 program file. Labels allocated within a
relocatable section (RSECT) will be assigned relocatable values and

attributes. (For information on the ASECT and RSECT pseudo
opcodes, see Section 5.1.5.)

3. An expression is defined as external when one or more of its terms
is an external symbol reference. This expression will not be fully
resolved until the program file is aenerated by the Llinkage editor
(LINK) when the external terms are defined. The final resolution
of an external expression may be relocatable or absolute, depending
on the attributes of the terms involved (both internal and
external). The Linkage editor also contains all the mechanics for
evaluating the attributes of resolved expressions. (See Section
5.3, "Segmentation Pseudo Opcodes,'" for information on the EXTERN,
INTERN, and AUTOEXTERN pseudo opcodes.)

4.4 NUMBERS

Any source item which starts with a digit (0-9) is considered to be a number
and this number will be evaluated under the currently prevailing radix
unless preceded by a temporary radix operator or followed immediately by a
decimal point. The prevailing radix always starts as octal (base 8) at the
beginning of any assembly but may be changed by the RADIX assembly control
statement. Any number that terminates with a decimal point will be
evaluated as decimal (base 10) regardless of the prevailing radix.
Fractional numbers are not allowed in MACRO source statements since alt
numbers must evaluate to a 16=bit binary integer value.

The prevailing radix controls the default evaluation of numbers and may be
set by the RADIX statement to any value from 2 (binary) through 36. Numbers
in a base above 10 (decimal) use the alphabetic characters A-Z to represent
the digit values of 10 through 35. The most common system above base 10 is
hexadecimal where the letters A-F represent the decimal digit values 10-15.
ALL numbers must begin with a digit 0-9 to distinguish them from a user
symbol, so the hexadecimal value of F56 must be entered as 0OF56.

Negative numbers are preceded by a minus 'sign; MACRO evaluates them and

stores them in two's complement form. You may optionally precede positive
numbers with a plus sign but this is not required.

4.5 REGISTER SYMBOLS

The WD16 chipset (the heart of the AM=100 and AM-100/T systems) contains
eight 16=hit registers which are symbolically named and used as fol lows:

TERMS AND EXPRESSIONS Page 4-5

RO - register 0, general purpose
R1 - register 1, general purpose
R2 - register 2, general purpose
R3 - register 3, general purpose
R4 - register 4, general purpose
RS - register 5, general purpose
SP = register 6, stack pointer

PC - register 7, program counter

These eight symbols are already defined to the assembler and must be used
when the address mode explicitly requires a register to be referenced. The
above register symbols have a register attribute associated with them and
you may equate your own symbols to these registers if you so desire. The
register attribute will be carried over to this newly defimed symbol. For
example, the equate statement IOPTR=R4 will equate the user symbaol IOPTR to
the value of 4 and also give it a register attribute so that it may be used
in place of R4 for address modes.

4.6 ASSEMBLY LOCATION COUNTER

During the assembly process, MACRO assigns sequential memory Llocations to
all machine dnstructions and data constants as it encounters them in the
Source program. At any given statement, the next byte to be assigned will
be intermally stored in the assembly location counter. This address may he
used in expressions by referencing the period ¢.) as a symbolic term. For
example, the instruction "JMP .+6" will cause a jump to the address which is
6 bytes in front of the first byte of the instruction itself.

The assembly location counter has an attribute associated with it which is
either absolute or relocatable. Initially, it is set up in the relocatable
mode and cleared to zero value for the allocation of relocatable binary code
as machine instructions and data constants are assembled. If MACRO
eéncounters an ASECT statement, MACRO changes the attribute of the assembly
location counter to absolute which means the address associated with it will
not be adjusted by the LINK program. If MACRO encounters an RSECT
statement, MACRO sets the attribute back to relocatable again which means
that the address associated with it will be adjusted by the LINK program to
compensate for the program segment offset. The assembler also maintains two
separate address counters for switching between ASECT and RSECT sections.

Initially, the value of the assembly location counter is set to zero and is
incremented as each statement which oroduces binary code is assembled during
Phase 1, You may explicitly change the setting of the assembly location
counter at any time by using a direct equate statement that uses the period
symbol instead of a user symbol. Ffor example, the statement ".=500" forces
the assembly location counter to take on a value of 500 and to begin all
assembly allocation from that point.

TERMS AND EXPRESSIONS Page 4~6

4.7 LOCAL SYMBOLS

MACRO supports Llocal symbols of the form nnn$, where nnn may be any number
from O through 65535, decimal. A program using local symbols will require
less symbol table space and will assemble faster than a similar program
without local symbols.

(NOTE: Local symbols of the form nnnts are used within macros and have scope
within a particular macro expansion. For information on this kind of Llocal
symbol, see Section 6.1.5, "Local Symbols.™)

A local symbol only has scope between two non-local symbols. For example:

SEND: MOVE (ROI+,R1

BEQ 1%
TTY

: BR SEND

1%: RTN

RCV: KBD
LEA RO ,BUF

1%: MOVB (R2)+, (RO +
BNE 1%
RTN

SUBR: -

1% is defined twice in the program above. The first 1% has a range from the
definition of SEND wup to but not including the definition of RCVY. The
second 1% has a range from RCV up to SUBR.

NOTE: You may also define local symbols with an equate (=),

CHAPTER 5

ASSEMBLER PSEUDO OPCODES

A pseudo opcode is so named because although it Looks much Like a regular
operation code, a pseudo opcode is not a true machine instruction and may or
may not generate actual binary code. Pseudo opcodes are built into the
assembler and provide a variety of useful functions that make the Life of
the programmer easier,

This chapter discusses the MACRO pseudo opcodes available for your yse. We
classify the functions of the pseudo opcodes 4into four categories: 1)
assembly control; 2) data ageneration: 3) segmentation; and, 4) convenience.
The sections below discuss each of these types of pseudo opcodes.

Note that other chapters discuss several other pseudo opcodes that are used
in special circumstances. For example, Chapter 6, "User pefined Macros,"
discusses the pseudo opcodes you can use inside of macro definitions. For a
full Llist of all pseudo opcodes, refer to the index.

5.1 ASSEMBLY CONTROL PSEUDO OPCODES

Assembly control statements perform a wide variety of functions which do not
in themselves generate any binary code but, instead, set up or alter certain
parameters which control the assembly process. Each statement consists of a
defined assembly control pseudo opcode followed by optional arguments as
required by the specific format. These pseudo opcodes are described here
along with the required arguments for each.

3.1.1 CopPY

The COPY statement allows another file to be included in the assembled
program at the point where the COPY statement is located. The entire copied
file 1is assembled, but you may use conditional assembly statements to omit
certain portions if desired. The most common use of this statement is for
the dinclusion of the standard copy file SYS.MAC which defines all system
call macros and system parameters, (The SYS.MAC file 45 1in account

ASSEMBLER PSEUDO OPCODES Page 5-2

bsK0:[7,7].) The COPY statement includes a file specification that specifies

the file that is to be copied into the source program during assembly. For
example:

COPY DEF ; My oun set of macro definitions in the file DEF.MAC.

Note that the actual source program is not modified; rather, the assemhier
merely gets the input from the copied file and then returns to the original
source fite as it assembles the source fite. A copy file may not inctude
another COPY statement within itsetf although the originat file may include
as many individual COPY statements as desired. The filespec may actuatly be
a complete file specification containing a device and account specification,
If you do not specify an extension, MACRO wuses the default extension of
“MAC.,

If you specify both a device and account, MACRD tooks for the copy file in
the specified device and account. However, if you omit either a device or
an account specification, MACRO goes through several steps in trying to find
the specified file:

If you omit both the device and the account specification:

1. MACRO Looks for the file in the device and account you are logged
into.

2. 1f the file does not exist in that account and if the source file
is on a different device than the one you are logged into, MACRO
Looks in the account you are Logged into on the device containing
the source file.

3. If the file does not exist in that account either, and if the

source filte is in a different account and device than the ones YO

are logged into, MACRO Looks 1in the account and device of the
source file,

4. Finally, MACRO Looks in the System MACRO account, DSK0O:[7,71].
If you omit just the device specification:

1. MACRO Looks in the specified account on the device containing the
source file,

2. If the fite does not exist in that account, MACRO Looks in the
specified account on the device you are logged into.

3. Finally, if the account specified is £7,71, MACRO Llooks 1in the
System MACRO account, DSK0:[7,71].

If you omit just the account specification:

1. MACRO tooks in the account containing the souyrce file on the
specified device.

ASSEMBLER PSEUDO OPCODES Page 5-3

2. If the file does not exist in that account, and if the source file
1s 1n a different account than the one you are logged into, MACRO
Looks on the specified device in the account you are lLogged into.

3. Finally, MACRO Looks in the System MACRO account, DSKN:[7,7]1.

You may find it convenient to place copy files dnto the System MACRO
account, DSKO:L7,73, since they will then bhecome available to all
programmers throuah the COPY statement.

f

MACRO does not normally output the source statements 1in the copied file
during the Listing phase of the assembly since most users do not want the
system copy file (SYS.MAC) and other collections of common routines to be
repeated in all program Listings. You may override this by using a /L
switch following the filespec in the statement; this will cause the copied
file to be included in the assembly listing. For example:

COPY MYMAC.MAC/L

As it assembles your program, MACRO reports any COPY statements encountered.
For example:)

Copying from DSKQ:SYS.MAC(7,7]

5.1.2 OBJNAM

The OBJNAM pseudo opcode controls the names of output files produced by
LINK, SYMBOL, and MACRO. It tells these programs how you want to modify the
output file name and extension. If you do not use 0BJNAM, MACRO, LINK, and
SYMBOL produce an output file with the same name as the input file and the
appropriate extension.

The OBJNAM statement takess the form-

OBJNAM filnam.ext
or:
OBJNAM expr1{,...exprh}

where 1<=N<=3., That 1is, ORBJNAM is fol lowed by a filename and extension or by
one to three expressions. If OBJNAM takes the second form, each expression
is either O or a RADS0O value. The first expression denotes the first three
characters of the filename, the second expresson denotes the Last three
characters of the filename, and the third expression denotes the three
characters of the file extension.

OBJNAM causes the output file names to be modified as follows (where vyou
have specified "file" and "ext" in the OBJNAM statement Line) -

ASSEMBLER PSEUDO OPCODES Page 5-4

source.0BJ _— file.0BJ
source.PR®3 —-——D file.ext
source.QVR —-—=> file.ext
source ST ——— file LST
source.MAP - file.MAP
saurce,.SYM ——— file.SYM

If you omit "ext" or if any expression is omitted or is zero, the
corresponding portion of the file name remains unmodified. For example, if
you were assembling DEVCPY.MAC, and specified the OBJNAM statement :

OBJNAM TEST

(omitting the extension), the assembled and linked outout file would have
the name:

TEST.PRG

5.1.3 PAGE

The PAGE statement causes your assembly listing to begin a new page before
continuing with the Listed cutput. No action takes place other than this
during assembly.

5.7.4 LIST = NOLIST

You may obtain an assembly Listing by using the /L assembly switch. The
LIST and NOLIST pseudo opcodes control which portions of your program will
appear in the listing file. NOLIST disables Listing, and LIST re-enables
Listing. The LIST and NOLIST pseudo opcodes do not appear in the listing.
NOTE: MACRO will ignore the LIST and NOLIST pseudo opcodes if you use the
optional /X assembly switch.

5.1.5 ASECT - RSECT

The ASECT statement causes the assembler to generate code for the absolute
section of the program. This code will not be modified during LINK editing
and the wvalues assigned to Labels will not have the relocatable attribute
flag set.

The RSECT statement causes the assembler to generate code for the
relocatable section of the program. This is the normal section for the
AM~100 and AM-100/T systems which always relocates the pregram in user
memory., - This code will be modified during LINK editing and the values
assigned to Labels will have the relocatable attribute flag set. Two
separate assembly Location counters are maintained during program assembly.

ASSEMBLER PSEUDO OPCODES Page 5-5

5.1.6 SYM - NOSYM

The SYM statement causes all following user symbols to be output to the
object file along with their assigned wvalues. The MNOSYM inhibits this
output for all following user symbols. These symbols are later used by the
SYMBOL program to generate a reference file for the dynamic debuggger
programs DBPT and FIX. The wuse of SYM and NOSYM does not cause any
noticeable change in the actual program.

5.1.7 CREF - NOCREF - MAYCREF

To obtain a full cross reference listing, you may specify the /R assembly
switch, (To see the cross reference Listing on your terminal, specify the
/RT switch,)

The three pseudo opcodes CREF, NOCREF, and MAYCREF control which portions of
your program will be processed in creating the cross reference.

CREF enables normal cross referencing.

NOCREF suppresses from the cross reference listing all defined symbols until
MACRO encounters a CREF or MAYCREF statement.

MAYCREF tells MACRO to suppress all symbols defined from the cross reference
Listing if those symbols are never referenced.

For a full discussion of the format of the cross reference Llisting, see
Section 9.4.3%, "Generating a Cross Reference."

5.1.8 EVEN

The EVEN statement forces the next hinary code to be generated on a word
boundary (next even byte) by incrementing the assembly location counter if
it is odd (no change if 4t s even). This 1is necessary since all
instructions must lie on a word boundary for proper execution by the AM~100
system,

5.17.9 RADIX

The RADIX statement forces a new default radix to bhe set up in the
assembler. The default radix of the system determines how all numbers that
are not preceded by a temporary radix operator ("B, D,"H,"0) will be
interpreted. The statement takes the form:

RADIX n

ASSEMBLER PSEUDO OPCODES Page 5-4

where the radix change argument "n'' must be a decimal number in the range of
2-36. Radix values above 10 use the letters A-2 to represent the digit
values of 10-35 inclusively. The default radix of all assemblies 15 base 8
(octal) in the absence of any explicit RADIX statement.

5.1.10 NvaLY

MACRO provides a parameterized assembly facility by allowing you to use the

/v switch to specify a value on the MACRO command Line. The value switch
may take one of these forms:

/V:x x 18 an octal or hex number (depending on the
prevailing radix setting)

VO :x x 15 an octal number

FVH I x is a hexadecimal number

X
/D x x is a decimal number

VA x x is one or two ASCII characters
JVR :x x is one to three RADS0 characters

The NVALU pseudo opcode allows your prodram to access the value specified in
the /V assembly switch. The MVALU statement takes the form:

NVALY sym

which sets the symbol "sym" to one of the values below, depending on which
/v switch was used:

sSym=x
sym="0x
sym="Hx
sym="0x
sym="x
sym="'x
sym=Cx]

5.1.11 END

The END statement terminates the source file and is jincluded only to give a
defined end on the listing. In the absence of an END statement, the
assembly will terminate with the logical end of input file. Note that if an
END statement is encountered anywhere in the source input (including inside
a copied file) the assembly will terminate whether the legical end of the
input. file has been reached or not.

NOTE: As it assembles vyour program, MACRO warns you if your program file
does not contain an END statement:

Phase 1: Missing END statement

ASSEMBLER PSEUDO OPCODES Page 5-7

5.2 DATA GENERATION PSEUDO OPCODES

The MACRO assembler has several pseudo opcodes which generate specific data
constants within the program area for use as text messages, constant values,
tables, etc. This section lists these pseudo opcedes and gives details on
the data formats which are generated by them. ALL statements may have
Labels in which case the Label is assigned the address that will receive the
first byte of the generated data. ALl data statements begin allocating
their specific data formats at the address specified by the assembly current
location counter and generate multiple bytes in sequence, incrementing the
current location counter as necessary. Those statements which generate hyte
data (BYTE, ASCII, BLKB) may begin and end on any byte address, odd or even.
Those statements which generate word data (WORD, RADSO, BLKW) must begin on
a word houndary (even byte) or else a boundary error (B) will result. The
EVEN statement may be wused at any point where the status of the current
location counter is in doubt to insure an even houndary.

5.2.1 BYTE

The BYTE statement generates one or more bytes (eight bits each) of data.
The arguments faor generating the data consist of expressions separated by
commas. Any legal expression is valid but only the Llower byte will be
stored after evaluation. Some examples are:

ZER: BYTE 0 ;Generates 1 byte of data containing zero
BYTE 1,2,3 ;Generates 3 bytes of data containing 1,2,3
MULTI: BYTE A-B,TAG*4 ,SAM ;Generates 3 bytes of data
BYTE 'A,'aQ ;Generates 2 hytes of ASCIT data
5.2.2 WORD

The WORD statement generates one or more words (16 bits each) of data. The
arguments for generating the data consist of expressions separated by
commas, Any legal expression is valid which evaluates into a 16-bit value.
WORD statements may also he generated by default if the first symbol on a
Lline (after any labels) is not defined as an opcode, psaudo opcode or macro
name, Some examples are:

ZER: WORD O ;Generates 1 word (2 bytes) of data zero
WORD 1,23 sGenerates 3 words of data containing 1,2,3
WORD A-B,"AT ,SAM~, ;Generates 3 words of data

SAM ;Generates by default the value of SAM

ASSEMBLER PSEUDO OPCODES) Page 5-8

5.2.3 ASCII

The ASCII statement generates one or more bytes of ASCII data. The arqument
for generating the data is a string of Legal ASCII characters bounded on
both ends by the same character which must not be dincluded in the data
string itself. Any printing character may be used as a delimiter. Only one
such string may be generated by each ASCII statement. Some examples are:

MSG: ASCII /THIS IS A MESSAGE/ :Generates a string of 17 data bytes
ASCII /aq/ sGenerates a single data byte of "Q"
MSG2: ASCITI % I/0 TERM & ;Generates a string of 10 data bytes

5.2.4 RADSO

The RADS0 statement generates one or more words (16 bits each) of data. The
argument is a string of valid RADS0 packable characters bounded on both ends
by the same character which must not be included in the data strina. Any
printing character may be used as a delimiter. The Legal characters for
RAD3D packing are A-Z, 0-9, dollar-sign (8, period () and space. One
packed word will be gqenerated for each three characters in the string or
fraction thereof with trailing spaces being assumed te fill out the Last
triplet. Some examples are:

DOB: RADSO /DSK/ ;Generates one word of packed dats
RADSD /SAM QQ/ ;Generates two words of packed data
RADS0 /ABCD/ ;Generates two words (same as RADS0 /ARCD /)

5.2.5 BLKB - BLKW

These . statements do not actually generate data but are included in this
section because they result in the allocation of memory in a defined manner.
The BLKB allocates an area of bytes and the BLKW allocates an area of words.
In all other respects they operate the same. The argument for each 1ds a3
single expression which evaluates to a value between 03 and 65535. This
value is then added to the assembly current location counter (twice if BLKW)
which effectively reserves that block of memory and continues allocating
memory at the new address. Normally this results in a contiguous area of
all zeros since the linker clears all blank areas when it generates the
program file, This action does not always happen, however, because the
location counter may be stepped back into the reserved area in which case
the new data will overlay the reserved block of memory. This is an
important concept in dealing with the absolute section since no data is
actually generated by these statements, only memory addresses are reserved.
Some examples are:)

DATA: BLKB 44 ;Reserves 44 bytes of memory
BLKB A*B ;Reserves A*B bytes of memory
BLKW 200 sReserves 200 words (400 bytes) of memary

ASSEMBLER PSEUDO OPCODES Page 5-9

5.3 SEGMENTATION PSEUDO OPCODES

The MACRO assembler, together with the LINK editor and monitor overlay
calls, suppoert a powerful method of seamenting and overlaying programs for
both convenience during system development and memory conservation during
execution, This section describes the methods available for the various
options and also the assembler pseudo opcodes which help support the system.
The pseudo opcodes we will discuss are AUTOEXTERN, INTERN, EXTERN and
OVRLAY. This section also hriefly discusses the concept of program
Libraries.

5.3.1 Seagmenting Assembly Languaage Programs

There are several reasons for segmenting a oprogram and also different
methods for doing so, depending on the end result desired. A very large
source program takes longer to edit (even a small change) and gives a
greater opportunity for total loss if some disaster strikes the file Llinks.
A large program also takes longer to assemble and more memory in which to do
so- Segmented programs may be organized in such a manner as to allow
portions of the program to be resident in memory and other portions to be
called in from disk only as required. Segmented programs may also contain
duplicate symbols if the program segments are assembled separately and
Linked together by LINK. Also, program segments which are assembled
separately may also be Llisted separately resulting in less listing time (and
Less paper used) for each change that is made.

The simplest method for creating a program in segments gains one of the
above advantages. This method makes use of the COPY statement and allows a
large program to be sdited as multiple segments which are then copied into
the main source program by using one COPY statement for each segment. As
changes are made to the source program, you need only edit the segment which
requires the changes, The assembly is done, howaver, on the complete source
program since all copied files are included in the source input. oOnly one
object file results and only one single List file can be created. The /L
option on the COPY statement may be used to control those segments that are
desired to be included on the Listing itself.

A more complex but flexible method is to break up the program into Llogical
segments which may be assembled separately and then linked together at a
later time by the LINK program. Several obiect (.0BJY files result as
output of the different segment assemblies which are then input to the LINK
program which creates a fully resolved and runnable program (.PRG) file.
The advantages of the COPY method are realized as well as the added
advantage of having to assembie only those segaments which require changes,
The LINK process runs much faster and requires less user memory than the
assembly process. oOne of the requirements of a3 program which 1is segmented
in this manner is that all references to routines and data constants which
reside in another segment must be done through twc special assembler pseudo
opcodes, INTERN and EXTERN. Since a reference to a routine in another
segment 1s not defined during the assembly of the calling segment, the
symbol (name of the routime) 4s said to be "external." It is declared

ASSEMBLER PSEUDO OPCODES Page 5-10

external by the EXTERN statement which tells the assembler that it is
defined and will be resolved by the Llinkage editor at a later time. The
segment in which the routine exists then declares that symbol as "internal"
via the INTERN statement which tells the assembler to output the symbol with
a special code which defines it to the Linkage editor for final resolution.

The method of segmenting a program and then creating a single runnable
program with LINK may be extended cne step further using a feature in the
monitor which allows program segments to be called in from the disk and
overlay an existing portion of the main program. A segment which is to be
used as an overlay defines itself as such by using the OQVRLAY statement and
giving the address at which the overlay is to be loaded. The main program
then uses a special form of the FETCH supervisor call to load the overlay
segment and then executes it by jumping to a known segment start address.
This implementation of overlaying seaments is used in the MACRO assembler
itself and conserves user memory during execution of Large system programs.
The LINK program creates one program (.PRG) file for the main seqment and
one overlay (,OVR) file for each overlay segment in use.

NOTE: Still another method for modularizing programs is the use of Library
files. Program Libraries allow you to make use of frequently used routines
in many different nrograms without rewriting those routines each time vyou
need them.

You may specify one or more Library (.LIB) files to LINK which then Links in
only those object files 1in the .LIB file that are necessary to resolve
external references. For full information on generating and maintaining
program Library files, see Chapter 11, "The Object File Library Generator
Lis)."

5.3.2 AUTOEXTERN

The AUTOEXTERN pseudo opcode tells MACRO to automatically EXTERN any
undefined symbols; those symbols are then displayed at the end of Phase 2 of
the assembly. When AUTOEXTERN is in effect you do not have to explicitly
EXTERN symbols.

5.3.3 INTERN

The INTERN statement defines one or more user symbols as internal to the
pregram segment so that they will be defined to the Linkage editor program
for final resolution. The INTERN statement takes the form:

INTERN sym1{,sym2,...symN}

Each INTERN statement may be followed by one or more internal user symbols
separated by commas. As many INTERN statements as required may be used in
the program. There is also no Limit to the number of symbols that may be
referenced by each INTERN statement except for the physical Line Length.

ASSEMBLER PSEUDC OPCODES Page 5-11

Each symbol that 1is referenced in an INTERN statement must be defined within
the segment either as a label on a routine or constant or as a value by an
equate statement. The symbol will then be available to the LINK program for
resolving references to it which come from EXTERN statements in other

segments. Any symbol defined as external in a segment that has not been
defined as internal in another segment will result in an undefined error
during Llinkage editing. A symhol may never be defined by more than one

INTERN statement during any one LINK run; i.e., the same symbol cannot
appear as internal in two different segments that will eventually be Linked
into the same program.

A short hand notation for INTERNing a Llabel or equated symbol exists.
Instead of writing:

INTERN Symbol
Symbol:

you may now write:
Symbol::
Instead of writing:

INTERN Symbol
Symbol = Expression

you may now write:

Symbol == Expression

5.3.4 EXTERN

The EXTERN statement is used to define one or more user symbols as external
to the segment sp that they may be resolved by the linkage editor program.
The EXTERN statement takes the form:

EXTERN sym1{,sym2,...s5ymN}

Each EXTERN statement may be followed by one or more user symbols separated
by commas. As many EXTERN statements as required may be used in the
program. There is also no Llimit to the number of symbols that may he
defined by each EXTERN statement except for the physical Line length.

Each symbol that is defined by an EXTERN statement may be referenced within
the segment just as if it had been defined within the segment as a label or
an equate statement item. There is no Limitation placed on its use as a
term within any operand expression since the LINK proaram has complete
expression resolution mechanics built in. There are two restrictions to its
use within the seament. An externally defined symbol may not be used within
the address operand of any branch instructions (BR, BEQ@, BGT etc.) due to
the fact that there is no way to insure that the resulting placement will

ASSEMBLER PSEUDO OPCODES Page 5-12

fatl within the 127-word relative requirement. It may, however, be ysed
within the address operand of the iump (JMP) instruction. The second
restriction is that an equate statement may not contain any externally
defined symbols 4n its operand expression since all equates must he fully
resolvable as they are encountered,

The LINK program builds a symbol table from all the symbols referenced in
all INTERN statements in all program segments. It then goes back and
resolves all expressions containing symbols defined by EXTERN statements by
looking them up 4in the table of INTERN symbols. Any symbol defined in an
EXTERN statement but not matched by some INTERN symbol will give an error
message during Llinkage editing.

5.3.5 QVRLAY

The OVRLAY statement identifies a program seqment as heing an overlay file
instead of a continuation of the main proaram file. It also defines the
address of the base of the overlay relative to the base of the main program
so that the loading of the overlay segment is done at the proper spot in the
program memory area. The OVRLAY statement takes a single argument which 1is
& user symbol that must be defined in some other segment in an INTERN
statement. For example:

- OVRLAY Sym
MOTE: It is legal to write:

OVRLAY Sym
Sym: F-

as long as "sym:" appears at the start of the overlay. (The symbol *'sym"
is essentially defined twice with the same value.) The OVRLAY address will
be resolved by LINK when the files are processed. Information on the code
used to Lload the overlay segments intc memory will be found in the
description of the FETCH supervisor call in the AMOS Monitor cCalls Manual .
Further information on processing of the OVRLAY statement may be found in
the section describing the LINK program processing.

5.4 CONVENIENCE PSEUDO OPCODES

There exist a few pseudo opcodes in the assembler that we refer to as
convenience opcodes for lack of a better term. These opcodes do not really
do anything that cannot already be accomplished by the existing source
Language in some other format, but they are easier to understand and make
the Listing more readable when used in the form that has been <implementad
here. Some of them are implemented directly in the assembler program itself
while others exist as predefined macro calls in the system copy file §YS.MAC
which is normally called by atl programs.

ASSEMBLER PSEUDO OPCODES Page 5-13

5.4.1 Extended Conditional Jumps

One very frustrating thing about editing some new chanaes into a program is
when you find that an existing BNE (or other conditional branch) no longer
reaches due to the new code extending the address out of the *27~word Limit
for branches. The most common solution to this problem is to replace the
offending branch with a branch of the opposite condition followed by a jump
to the desired address. 1In other words, our BNE TAG could be replaced by
BEQ .+6 followed by JMP TAG which effectively does the same thing. The only
problem here is that this makes the Listing somewhat less than clear when
trying to decipher the flow of the program. We have therefore dmplemented
into the assembler a set of conditional jump opcodes which effectively
generate this two-instruction code sequence for the proper opposite
conditional but which still look very readable in the source Llisting. Thesa
opcodes have been listed here along with the actual Wp1s instructions
generated:

JEQ TAG aenerates BNE .+6 followed by JMP TAG

JNE TAG " BEQ .+4 JMP TAG
JPL TAG " BMI .+6 " JMP TAG
JMI TAG " BPL .+6 " JMP TAG
JLO TAG " BHIS .+4 " JMP TAG
JHI TAG " BLOS .+A " JMP - TAG
JLOS TAG " BHI .+6 " JMP TAG
JHIS TAG " BLO .+6 " JMP TAG
JLT TAG " BGE .+6 " JMP TAG
JGT TAG " BLE .+6 " JMP TAG
JLE TAG " BGT .+6 " JMP TAG
JGE TAG " BLT .+6 " JMP TAG
JCC TaAG " BLCS .+6 " JMP TAG
JCS TAG " BCC .+6 " JMP TAG
JVC TAG " BVS .+6 " JMP TAG
JVS TAG " BYL L+6 " JMP O TAG

Remember that although these opcodes are easier (require Lless plannina) than
the simple branches they do actually generate three words of binary code
instead of only one so, if space is at a premium, use them only when
necessary.

5.4.2 PUSH - POP

The hardware stack in the Wb16 is normally referenced by its index register
(SPY and transferring words of data to and from the stack is done by Moy
instructions. Many machines have dedicated instructions to push and PO
data to and from the stack. In order to make the flow of system programs a
Little clearer for those of us used to pushing and popping, two macros have
been implemented 4in SYS.MAC which recognize the PUSH and POP instructions.,
Each takes a normal source address argument but each also has a special
default format which is used when no specific argument address is desired.
These instructions generate the following code:

ASSEMBLER PSELIDO OPCODES Page 5-14

PUSH SRC generates MOV SRC,-(5P) ;Pushes SRC onto stack

eUSH " CLR ~(SP) ;Pushes a zero onto stack
POP DST " MOV (SPX+,DPST iPops stack into DST
POP ' TST (Sp)+ sRemoves top stack word

5.4.3 CALL - RTN

The normal subroutine calling sequence of the WD16 is the JSR instruction
which Links its arguments through any of the eight registers. The assembler
recognizes the more popular mnemonic opcode CALL for which it generates a
JSR instruction. 1In addition, if no register is specified in the CALL or
RTN dinstructions, the assembler assumes the most commonly used register PC
for its argument Llinkage. 1n other words:

CALL TAG qgenerates CALL PC,TAG
RTN " RTN PC

5.4.4 OFFSET

There are many times during the programming of totally relocatable code
where an address must be expressed and stored as a relative offset from the
Llocation of the constant itself. 1In other words, the storage of the address
TAG must be in the form of TAG-. which is actually the offset from the
current position of the constant itself to the address defined as TAG. The
value of this constant offset will not change no matter what its position in
memory happens to turn out to be. A good example of the wuse of relative
address offsets s in the tables associated with the instructions TIMP and
TCALL which must be relative offsets and not direct addresses. The OFFSET
pseudo opcode has been implemented to make the Listings a Little more
obvious as to intent. The OFFSET opcode takes a single address argument and
generates the relative offset to that address from the current position of
the constant.

5.4.5 PSI

Although intended only to be used internally to generate the system monitor
macros, the PSI (PSeudo-Instruction) will be defined here as a result of the
numerous inquiries about it. The PSI instruction will generate an
instruction similar in format to the double-address instructions (such as
MOV, ADD, SUB etc.) which may be one, two or three words in length depending
on the address modes used. 1In addition, it allows a 4-bit pseudo opcode to
be specified explicitly in the operand field. Basically, the format is:

PSI opcode ,source~address,destination-address

This results in a normal instruction format with the opcode comprising the
top & bits (bits 12-15), the source address comprising the middle & bits

ASSEMBLER PSEUDO OPCODES Page 5-15

(bits 6=11) and the destination address comprising the low 6 bits (bits
0-5). Additional index words are generated if required by the addressing
modes in use.

The instruction generated by the PSI statement is never executed directly by
the machine since, in actuality, it duplicates one of the existing legal
instructions. Instead, it follows a specific SYCB instruction and s used
to generate the pseudo-instruction to be executed by the SVCB calling
sequence and thereby results in an easy method for generating the standard
address arguments.

CHAPTER 6

USER DEFINED MACROS

It is often convenient to create your own opcode definitions which when used
in the source program result in the creation of a predefined sequence of one

or more source code statements. These user-created opcodes are called
"macros'" in assembly language programming and the Alpha Micro assembler
supports 2 flexible macro subsystem. There are two phases that you go

~through when using macro calls. First, you define the macro opcode once 1in
the program as a series of source code statements along with possible dummy
arguments. You only do this once; the macro remains defined throuashout the
remainder of the assembly process. Second, you then invoke the macro by a
single source statement giving the macro name along with optional real
arguments that replace the defined dummy arguments in the macro source code
which is generated. Calling the macro in this manner causes the macro
statement to be replaced by the defined sequence of source code statements
that have been custom tailored by the optional real arguments in the calling
statement. You may perform this calling sequence as many times as needed in
the source program with as many different real arqQuments as desired.

6.1 MACRO DEFINITION

Defining a macro generates no actual binary code in the program but merely
places the macro definition in a special table in the assembler memory work
area. Calling the macro (which then generates the sequence of source
statements) is the process that actually generates the binary code. If your
program never calls the macro or 1if the macro does not contain any
code-generating source statements, MACRO produces no binary code for the
macro. The use of conditional assembly directives within a macro definition
may result in no code-generating statements for this particular call to the
macro. The fact that no code is actually generated if the macro s never
called is an important concept since 1t then allows macro libraries to be
created that may contain many macro definitions that are standard for a
particular user system. Those macros that are never called in any specific
program do not generate any code and therefore take up no additional memory.
The system Llibrary SYS.MAC contains over 70 such macro definitions that
define the supervisor calls to the monitor. .

USER DEFINED MACROS Page A-2

6.17.17 Macro Definition Formats

There are two formats available for use in defining macros. The normal
format allows one or more source Llines to be generated as a result of the
macro call. The single-line format restricts the macro definition to one
Line of generated source code but takes up less room on the source Listing.
For several sample macros, see Section 6.1.10, below.

The general format for multiple—line macros i5:

DEFINE name {dummy argument List}
source Line 1
source Line 2

source Lline n
ENDM

The general format for a single-Lline macro is:
DEFINE name {dummy araument List} = source line

In both forms above, the macro name is any legal user symhol; it effectively
hecomes the opcode by which the macro is called. This symbol may duplicate
a Label in the program or may even redefine an AM=10{} pseudo opcode or a
WD16 machine opcode (e.a., you can redefine the MOV opcode to do an ADD if
you really want to confuse some people). You may only define a macro name
once and an attempt to redefine it later in the program will give
unspecified results.

6.1.2 The Macro Source Statements

The multiple-Line macro definition source statements begin with the Line
immediately following the DEFINE statement and continue through to but not
including the ENDM termination Lline. NOTE: Every macro definition must end
with the ENDM pseudo opcode.

When the program text calls the macro, MACRO will generate and assemble all
macro source Lines just as if they had heen explicitly entered directly into
the source program. In the single-line form, the source Lline begins with
the character following the equal sign and continues through (and including)

the carriage-return and line-feed pair which terminates the DEFINE statement
Line.

Macro definitions must not be nested within other macro definitions. Macro
processing 1is done on a special prepass scheme which prohibits the
processing of -any DEFINE statements within another DEFINE statement.

USER DEFINED MACROS Page 6-3

6.1.3 The Dummy Argument List

The dummy argument list is optional in both forms of macros and consists of
one or more user symbols separated by commas. These symbols are unique only
within the actual definition of the current macro and may be duplicated in
other macro argument Lists or may even be other opcodes and defined symbols.
These dummy argument symbols will never appear as such in the generated
sequence of source statements when the macro is called but will be replaced
by the equivalent real arguments supplied in the calling statement. The
dummy argument symbols may appear anywhere in the definition socurce Llines,
even as labels. Each time MACRO encounters a dummy argument when generating
the source Lines during a macro call, it replaces the dummy argument with
the corresponding real argument that was supplied by the calling statement.

6.7.4 Labels

A Label must not be used on the DEFINE statement Line since it has no

meaning. Labels may be used on the calling statements. A label must not be
used on the ENDM Line or the ENDM Lline will not be detected.

6.7.5 Local Symbols :

MACRO supports Llocal symbols of the form nnn$ and nnn$%, where nnn is a
number between O and 65535, decimal. Local symbols of the form nnn$ have
scope only between two non~local Llabels, and may he used outside of macro
definitions.

Local symbols of the form nnn$$% are for use only within macro definitions.
If a nnn$$ label appears outside of a macro, MACRO will treat the Label Like
nnn$ except that the label will not appear in the symbol table file (used
for debugging purposes). NOTE: You may define a Local symbol with an equate

(=).

Below are two sample macros that use local symbols:

DEFINE LEAMSG X

LEA RO ,10%% ; Get address of message

BR 20%% : Branch around message
10%%: ASCII X!

BYTE O

EVEN

20%%:
ENDM

WSER DEFINED MACROS Page 6-4

Now we call the macro:

LEAMSG HELLO

TTYL aR0 ; Display HELLO
LEAMSG BYE
TTYL ARND : Display BYE

The example above works correctly even though it generates two occurrences
of 10%% and 20$$ because the symbols are local to each macro call.

The example below demonstrates that local labels of the form nnn$ can be
passed as arguments to macros, and that they will be distinguished from
Labels of the form nnn$$ even if "nnn" is the same:

DEFINE JGT10 X, Y

cMp X 410
BLE 1$%
JMP Y
1%%:
ENDM

Now we call the macro:

JGT10 RO, %1 ; expands to:
. . cmp RO,#10
H BLE 1%%
; JMp 1%
s 1%%:
DEC RO
1%: RTN

6.1.6 Comments

A comment may follow the dummy argument List in the multiple-Line form but
you should not use a comment with the single~line form, You should avoid
comments in the actual generated source Llines in the macro definition simply
because MACRQ stores the entire source text 1in work memory as ASCII
characters (including all comments). This may tend to use up work memory to
the extent that you may not have enough memory to finish the assembly.

6.1.7 Special Macro Operators

Two special operators exist that are used only within macro definitions: the

argument concatenation operator (') and the expression evaluation operator
(\) o ‘

USER DEFINED MACROS Page /-5

6.1.7.1 Argument Concatenation (') - Since dummy arguments must be valid
user symbols, the apostrophe (') is a Legal delimiter for any dummy argument
within a macro definition source Line. When an apostrophe immediately
precedes and/or follows a dummy argument in the source text, the apostrophe
is removed and the substitution of the real arqument occurs at that point.
This is useful for building symbols with arguments that are to be a part of
that symbol.

Given the following macro definition and eventual calls:

DEFINE BUILD AA BB
TAG'AA: MOV R1,8'8B'7
ENDM

BUILD RA,STS
BUILD T,P

the effective code generated by the two calls would be:

TAGRA: MOV R1,QSTS7
TAGT: MOV R1,QP7
6.1.7.2 Expression Evaluation (\) - The \ operator tells MACRO to

evaluate the expression that follows and to return its value. (8efore local
symbols were supported by MACRO, the \ operator was often used to simulate
local symbols. For information on true local symbols, see Section 6.1.5,
"Local Symbols.") You may use an expression of the form:

\expr
(a "\" followed by an expression) within a ‘macro definition. MACRO then
evaluates the expression and returns its value as a string. Ry placing a
symbol in front of the \, you can direct MACRO to append the wvalue of +the
expression following the \ onto the end of the symbol. Ffor example:

LABEL\4 %4
evaluates to:

LABEL14:
and:

STC/%:

evaluates to:

STC1:

USER DEFINED MACROS Page 6-6

Symbols generated in this way do take up room in the symbol table.

NOTE: Be very careful that the expression following the \ operator does not
contain any macro arguments; they will not be expanded properly and will
probably cause a syntax error (@ code).

6.1.8 Suppressing Macro Expansion - ENDMX

The ENPMX pseudo opcode ends the expansion of the current macro. This
pseudo opcode is illegal outside of a macro definition. You will find this
pseudo opcode useful when wusing conditional assembly directive pseudo
opcodes to control macro expansion. (NOTE: ENDMX controls what macro code
is generated at the time of a macro call; it does not affect whether the
macro expansion is included in your assembly Listing.)

6.1.9 NCHR, NYYPE, NEVAL and NSIZE

These four macro directives return a value that specifies the number of
characters in an argument (NCHR), the addressing mode type of an argument
(NTYPE), the value of any extra word generated by the addressing mode
evaluation, or the Llength of any extra words generated by an addressing
mode. These statements function similarly to the equate statement (=) in
that they assign a value to a user symbol which may be reassigned as many
times as desired during the course of the assembly. They are normally wused
to control the development of macro source code based on the size and type
of arguments passed to the macro and therefore are defined in this section
dealing with macros. In actuality, you may use them anywhere in the source
Program with any valid source code as an argument but they are fairly
meaningless unless used within a macro.

Once the symbol has been assigned a value by one of the NCHR, NTYPE, NEVAL
directives, you may use it by itself or within expressions to control the

development of the macro source code through the conditional assembly
statements.

6.1.9.7 NCHR - The NCHR statement assigns a value to a user symbol that
is equivalent to the number of characters in the argument string. It has
the format:

NCHR symbol ,string

USER DEFINED MACROS Page 6-7

6.1.9.2 NTYPE -~ The NTYPE statement assigns a value to a user symbol that
is equivalent to the &-hit addressing mode of the argument. It has the
format:

NTYPE symbol ,argument

The following is a list of the addressing modes and the values that they
will deliver yia the NTYPE statement. The upper case "R" represents any of
the eight registers (RO-R5, SP. PC) which have a corresponding result value
of 0-7 added to the resulting mode they are used in.

R direct register delivers OR

aR indirect register delivers 1R

(R)Y+ autoincrement delivers 2R

a(R)+ indirect autoincrement delivers 2R
=(R) - autodecrement delivers 4R

a—- (R) indirect autoincrement delivers SR
X (R} indexed delivers 4R

ax (rR) indirect indexed delivers 7R

#HY immediate delivers 27

TAG relative delivers &7

ATAG indirect relative delivers 77

For example, 1if you use register R4 in indirect addressing mode, NTYPE
returns a 14 (i.e., 1R where R = register 4).

6.1.9.3 NEVAL - The NEVAL statement assigns a value to a user symbol that
is equivalent to the value of the extra word generated by one of the
indexed, relative or immediate addressing modes. This word represents the
index augment for indexed modes, the relative offset for relative modes or
the immediate value for the immediate mode. It has the format:

NEVAL symbol ,argument

5.1.9.4 NSIZE -~ The NSIZE statement assigns a value to a user symbol that
is equal to the size of the address form (iee., D if no extra word is
generated, 2 if an extra word is generated). It has the format:

NSIZE symbol ,argument

USER DEFINED MACROS Page 6~8

6.1.10 sSample Macro Definitions
Below are several sample macro definitions.

A macro called ADDIT which generates four instructions:

DEFINE ADDIT

MOV R1,R3
ADD R3,SUM
ASL R3

ADD R3,SUM
ENDM

A macro called XCHNG which exchanges two memory words:

DEFINE XCHNG MEMA ,MEMB

MOV MEMA ,R1
MOV MEMS ,MEMA
MOV R1,MEMB
ENDM

A macro called STKSUB which subtracts a memory word from the top stack word:

DEFINE STKSUB TAG
suB TAG,25P
ENDM

The same STKSUB macro in the single-line format since only one Line is used:
DEFINE STKSUB TAG = sUB TAG,3SP

For some more complex examples of macro definitions, print out or inspect
the system macro Library $YS.MAC that defines all of the supervisor calls
used by the AM-100 computer system,

6.2 MACRO CALLS

The actual generation of the defined source code comes when you call the
macro by its name within the text of your source program. The macro must
have been defined prior to its first reference. Macros are only processed
for definition during Phase 1 of the assembly process. Macro calls have the
same format regardless of whether the macro definition is multiple or single
{ine format:

{label:> name {real arguments} {;commments?}

USER DEFINED MACROS Page 6~9

6.2.1T Name

Name represents the name given to the macro definition; this becomes the
effective opcode by which your program calls the macro.

$.2.2 Real Arguments

Use real arguments when the definition of the macro has a dummy argument
list; they actually replace the dummy arguments in the source code text of
the macro definition. The real arguments replace the dummy arguments on a
one-for-one basis in exactly the same order as the elements of the dummy
argument List. The first real argument in the call takes the place of each
occurrence of the first dummy arqument in the definition, and so on for all
the arguments. If there are not encugh real arguments given in the call to
fill all required dummy arguments, the unfilled dummy arguments take on a
null value and are effectively replaced with nothing. If there are more
arguments in the call then required to fill the dummy arguments in the
definition, MACRO ignores the excess arguments. .

6.2.2.17 Real Argument Format - Normally, the real arguments are separated
by commas and the assembler expects this format. Also, leading and trailing
blanks are 1ignored when processing each real argument in the macro call
statement. Often you may want to include a comma or blank as part of the
real argument without having 4t act as a delimiter or be bypassed. Any
argument that is enclosed in angle brackets will be passed onto the source
code generation verbatim including any blanks and commas.

The macro call:
XPURT ONE,TWO, THREE

has three real arguments while the call:
XPURT <ONE,TWO,THREE>

has only one argument which includes the two commas. The call:
XPURT <ONE ,TWO>,THREE

has two real arguments of which the first includes one comma.

USER DEFINED MACROS Page 6-10

The system macro TYPE is another good example:

DEFINE TYPE MSG

TTYI

ASCII /MSG/
BYTE 0
EVEN

ENDM

This macro is one of the AMOS monitor calls and is designed to type out the
ASCII message which appears as the argument to the TYPE macre call. The
BYTE (0 statement insures a null terminator and the EVEN statement insures
that the next instruction is again synchronized on a word boundary.

The call:
TYPE HELLO

will type out the message "HELLO" because all the Lleading blanks are
automatically ignored before the argument is processed. The call:

TYPE < HELLO >

will type out the message " HELLO " because the blanks are included in
the argument as a result of the angle brackets. Similarly, the call:

TYPE HELLO, I AM A COMPUTER

will type out the message "HELLO" because the comma will terminate the
argument and the rest of it will be ignored. The call:

TYPE <HELLO, I AM A COMPUTER>

will type out the message "HELLO, I AM A COMPUTER" because the comma is
included in the argument as a result of the angle brackets.

6.2.3 Label

The ‘Label is optional and will be assigned the address contained by the
assembly current Llocation counter. This will normally be the address of the
first byte of code which is generated by the macro source Lines (assuming
that the macro does actually generate code). If the macro does not generate
code, then the label will still be defined but it will represent the address
of the next byte of code that is generated after the macro call.

USER DEFINED MACROS Page 4-11

6.2.4 Comments

As in other statements, comments are optional.

6.2.5 HNested Macro Calls

Macro calls may be nested to a depth of 16 levels. A nested macro is
defined as & macro call within the source statements generated by another
macro call. Arguments may be passed to nested macros by naming the dummy
arguments the same throughout the levels. Arguments that contain blanks or
commas may be passed through successive levels by enclosing them in one set
of angle brackets for each level of nesting since one set of angle brackets
will be removed from an argument with each nesting level. For example, to
pass the argument A,B through three Levels of nested macro calls you would
enter the argument as <<<A,B>>> in the first Level macro call.

A.2.6 Sample Macro Calls
Consider this example:

DEFINE TBLADD ARG1,ARGZ,ARG3

MoV ARG1,R1

ADD ARG? ,R1

MoV R1,ARG1(ARG3)
ENDM

This macro is called TBLADD and requires three real arguments. Assume the
following call in your program:

SAM: TBLADD SUMS,ENTRY,R5

The following source statements would be generated:

SAM: MOV SUMS, R1
ADD ENTRY, R1
MOV R1,SUMS (RS5)

It is evident from its usage that ARG2 must be a register. Assume that only
two arguments were given in the call:

SAM: TBLABD SUMS ,ENTRY
The following source statements would be generated:
SAM: MOV SUMS,R1

ADD ENTRY, R
MOV R1,SUMS ()

USER DEFINED MACROS Page 6-12

Notice that the third instruction would contain an error due to the missing
register term which resulted from the missing third argument, Sometimes a
missing argument may be used to advantage by altering the generation of the
source statements yith the conditional assembly statements. These
statements (described 1in the next chapter) can detect the fact that the
argument 1s missing and be used to selectively omit portions of code.

CHAPTER 7

CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to selectively include or bypass
certain Lines or segments of source code based on variable parameters which
are tested during assembly. This allows several different versions of the
same program to be generated from one source file. Conditional assembly
directives find their widest use within macro definitions where they are
used to tailor the macro based on the real arguments used in the macro c¢all.

NOTE: You may find the MACRO oarameterized assembly option especially useful
when used with conditional assembly directives. The MACRO /V switch allows
you to provide a value on the MACRO® command Line which can be examined by
your source program. See Section 9.2.3 for information on this feature.

7.1 CONDITIONAL DIRECTIVE FORMATS

Like the macro definitions, conditional directives follow two general forms.
The normal form allows one or more Lines of source code to be selected or
bypassed based on the current status of a variable., The single Line form
performs the same function but s a shorter version and only allows the
control of a single Line of source code. '

The general form of a normal conditional hlock is:

IF condition,argument
source Line 1
source Line 2

source Line n
ENDC

The general form of a single-line conditional is:

IF condition,argument, source-line

CONDITIONAL ASSEMBLY DIRECTIVES . Fage 7-2

Both forms employ the If pseudo opcode to identify the conditional directive
and both forms require a condition code which specifies the type of test to
be performed and an argument upon which to perform that test. The condition
code is a symbol which identifies the test which is performed at the time
the conditional is encountered during Phase 1 of the assembly process. The
argument may be a symbol, expression or macro argument, depending on the
type of test being performed.

Note that the item that distinguishes the two forms is the comma that
follows the argument in the single-Line form. If the comma exists, the
remainder of the Line up to and including the carriage-return and Line-feed
will be the source Line that will either be assembled or bypassed depending
on the result of the conditional test. If the comma does not exist, the
conditional assembly will be done on the source Line that follows the
conditional directive (IF) Line up to but not dncluding the ENDC terminating
Line.

7.2 CONDITION CODES

The following is a List of the condition codes that are Legal and the type
of condition that the associated argument is tested for. Unless otherwise
specified, the argument is evaluated as an expression and the 14~bit result
of that evaluation is the quantity that is tested to meet the condition.
The conditional source Lines are assembled if the argument meets the
condition Listed next to the code below.

EQ The argument is equal to zero.

NE The argument is not equal to zero.

LT The argument is less than zero.

GT The argument is greater than zero.

{E The argument is Lless than or equal to zero.

GE The argument is greater than or equal to zero.

DF The argument is completely defined at this point.

NDF The argument contains one or more wundefined symbols at this
point.

B The argument (a string of ASCII characters) is blank or null.

NB The argument (a string of ASCII characters) is not blank or null.

CONDITIONAL ASSEMBLY DIRECTIVES Page 7-3

7.3 SUBCONDITIONALS

There are three subconditional directives that allow the alteration of the
normal conditional processing Wwithin a conditional block. These
subconditionals (IFF, IFT and IFTE) require no other parameters and must be
used within the source code that is between the IF and ENDC statements. The
following functions may be performed through the proper use of
subconditionals:

1. Assembly of an alternate block of code when the main conditional
code is being bypassed due to a failed conditonal test.

2. Assembly of a noncontiguous bhody of code within the conditional
block depending on the result of the main conditional test.

3. Unconditional assembly of a block of code within a conditional
block. regardless of the result of the conditional test.

The three subconditionals and their functions are:

IFF The source Llines following the TFF statement up to the
next subconditional or end of main conditional are
assembled if the main conditional test result was false.

TFT The source Llines following the IFT statement up to the
next subconditional or end of main conditional are
assembled if the main conditional test result was true.

IFTF The source |ines following the IFTF statement up to the
next subconditional or end of main conditional are
assembled regardless of the main conditional test result.

7.4 NESTING OF CONDITIONALS

Conditionals and subconditionals may be nested to a maximum depth of 16
levels. Any conditionals within a higher Llevel conditional will be bypassed
(the test will not be performed) 1if the result of the higher Level
conditional test was false. Subconditionals within outer Level conditional
blocks will be tested while those within inner level untested blocks will be
ignored. Consider the following simple example:

CONDITIONAL ASSEMBLY DIRECTIVES Page 7-4

TEST1: IF EQ,3-3 ;True so assemble following code
WORD 33 sAssembled since EG,3~3 was true
IF NE ,4=4 ;False so bypass following code
WORD 44 ;Not assembled since NE,4-4 was false
IFF ;Tested - true since NE,4-4 was false
WORD 441 ;Assembled since IFF was true
IFT :Tested - false since NE,4-4 wasn't true
WORD 442 ;Not assembled since IFT was false
IFTF ;Tested - truye regardless of NE ,4=4
WORD 443 sAssembled since IFTF was true
ENDC ;End of NE,4-4 conditional hlock
ENDC ;End of EG,3-3 conditional block

TEST?2: IF EQ,5-6 ;False so bypass following code
WORD 56 +Not assembled since EQ,5-6 was false
IF EQ,A-6 ;Not tested since EQ,5-6 was false
WORD 61 sNot assembled since EQ,4-6 was untested
IFF ;Not tested since EQ,6-6 was untested
WORD 661 sNot assembled since IFF was untested
IFT ;Not tested since EQ,6~6 was untested
WORD 662 ;Not assembled since IFT was untested
IFTF ;Not tested since ER,5-6 was untested
WORD 63 ;Not assembled since IFTF was untested
ENDC ‘End of EQ,6-6 conditional block
ENDC ;End of EQ,5-6 conditional block

The system macro for the PUSH convenience opcode is a good example of how
conditionals may be used to control the code generated by a macro:

DEFINE PUSH SRC

IF B,SRC, CcLR -(5P)
IF NB,SRC, MOV SRC,-(SP)
ENDM

If the macro is called without an argument (SRC is hlank) then the first
conditional is true and the code CLR -(SP) is generated to push a zero word
onto the stack. The second conditional is therefore false and generates no
code. If the macro is called with an argument (SRC is not blank) then the
reverse happens and the code MOV SRC,=(SP) 1is generated with SRC being
replaced by the real argument in the calling statement. This causes the SRC
word to be pushed onto the stack.

The same PUSH macro could have been alternately coded using subconditionals:

DEFINE PUSH SRC

IF B8,5RC

CLR -(SP)

IFF

MOV SRC,-(SP)
ENDC

ENDM

CONDITIONAL ASSEMBLY DIRECTIVES Page 7-5

For some more examples of conditionals used within macros, oprint out or
inspect the system Library SYS.MAC which defines all of the supervisor calls
used by the AM-100 computer system. This file is on the System Disk in
account [7,7].

CHAPTER §

WRITING RELOCATABLE AND RE~ENTRANT CODE

The Alpha Micro computer system not only supports relocatable programs, but
requires that all programs written for operation under control of the AMOS
monitor be written in totally relocatable code. This means that a program
may be loaded physically into memory at any location and it will run without
modification. No addresses within the program ever need to be modified
since all references to memory are made in relation to the current value of
the program counter register (pC). The program may even be dynamically
moved about in memory without modification so long as it is not currently
active while it s being moved. The code is actually independent of its
position in memory and therefore has often been referred to by other
manufacturers as "position independent code."

Writing relocatable c¢ode for the AM=100 system has been simplified by the
incorporation of several instructions which make references to the current
position of the program automatic. The Load effective address (LEA)
instruction may be used to calculate the current value of any relocatable
address and to Lload that current value 1into any register. The table
referencing instructions (TJMP and TCALL) both use relative gffsets to
perform their functions as opposed to absolute or calculated addresses.

8.1 VALID ADDRESSING MODES

Due to the normally relocatable nature of the AM-100 instruction set and
addressing modes, writing totally relocatable code merely involves obeying a
few specific restrictions in the course of programming. The most important
of these is to never refer to any absolute address in main memory unless you
are sure of its Llocation and contents. Two of the addressing modes will
always generate absolute memory references and must be avoided when writing
relocatable code. Note the following examples:

CLR DHTAG
CLR TAG(R4)

WRITING RELOCATABLE AND RE-ENTRANT CODE Page 8-2

In the first example the absolute address of TAG is stored in immediate mode
and then wused to indirectly address that absolute memory location. This
addressing mode is not relocatable unless the reference to TAG is 3
reference to a known absolyute memory location. 1In the second example, the
most common method of indexing can be shown tc be non-relocatable, Normal
indexing address schemes take the base of some area (in this case it is TAG)
and add an offset from some calculation which is stored in an index register
(in this case R4) to develop the target memory address. The value of TAG is
stored in the instruction as an absolute value and no offset is ever added
to compensate for relocation of the program. This mode would not be
relocatable wunless, as in the first example, the reference to TAG is to a
known absolute memory Llocation.

The two above addressing modes are the most commonly made errors that
violate the rules for relocatable code. A more subtle mistake is made when
a register is set up as an index to a table within the user program to be
referenced later through the register. Take these examples:

MoV HTABLE ,RQ
LEA RGO, TABLE

The first example stores the address of TABLE as an absolute value due to
- the immediate mode addressing. Since the assembly of the program s done
starting at location zero, the value of TABLE during assembly is really the
offset from TABLE to the base of the program. When the program actually
runs, it . will not be Located at zero (the operating system resides in the
first 12K or so) and the actual address of TABLE will not be the same as at
assembly time. The second example is the proper instruction to be used when
setting up a register to a memory reference. The instruction is coded at
assembly time as an offset from the instruction idtself to the Location
marked as TABLE and when the LEA instruction is executed, the actual value
of TABLE in its current Llocation is calculated and loaded into the register,

Addressing modes that involve only register references are totally
relocatable. These modes are:

Rx direct register

MRx indirect register
{(Rx)+ autoincrement

?(Rx)+ indirect autoincrement
-{Rx) autodecrement

8- (Rx) indirect autodecrement

The two relative addressing modes are also relocatable:

TAG relative
ATAG indirect relative

WRITING RELOCATABLE AND RE-ENTRANT CODE Page 8-3

8.1.1 1Index Modes

Index modes can be relocatable or non-relocatable depending on their usage
and set up procedure, Generally speaking, if the register is absolute and
the index offset 1is a relative tag in the program, the indexing is not
relocatable and will deliver wrong results. 1If the register is first loaded
with the effective value of the relative address within the program and the
index offset 1is the absolute component, then the scheme is relocatable and
will give the desired results., Take the following two examples of clearing
the third word (sixth byte) in TABLE:

This 15 the wrong way:

MOVI 6,R3 :R3 gets absolute component offset
CLR TABLE (R3) ;rabsolute location TABLE(R3) is cleared

This is the right way:

LEA R3 ,TABLE ;R3 gets current address of TABLE in program
CLR 6(R3) :relocatable lLocation at TABLE+8 1s cleared

8.2 RE-ENTRANT CODE

Writing re-entrant programs involves a Little trick which can be played with
relative code machines. Re-entrant programs distinguish themselves by their
ability to be placed into system memory (via the SYSTEM command in your
SYSTEM.INI file) and simultaneously shared by multiple wusers. A good
example of a re-entrant program s the AlphaBASIC compiler and runtime
package. More than one user may share this program without loading it dnto
each of their individual memory partitions. The main problem with writing
re-entrant programs deals with the local variables that must be used as a
work space for each user. These individual work spaces must be allocated
within the user's own memory partition and yet must be accessed by the
common re-entrant program. Remember, the re-entrant program must never
store variables within its own program area or else it i5 no longer
re—entrant.

8.2.17 Using Base Registers

If a table of the named Llocal variables is created using BLKB and BLKW
statements at the beginning of the re~entrant program, the LlLabels assigned
to these variables may be used as indexes to the variable area once it has
been allocated within the user's memory space. This concept reguires that
one register (RQ~R5) be dedicated throughout the program as the base point
for the local variable area. For an example, Llet's suppose that your

program will reguire four wvariables called VARA through YARD with the
following sizes:

WRITING RELOCATABLE AND RE~ENTRANT CODE Page 8-4

ASECT

.=0
VARA: BLKW 4 ;variable 1 size is 4 words
VARB: BLKW 1 svariable 2 size is 1 word
VARC: BLKB 16. svariable 3 size is 16 bytes
VARD: BLKW 1 svariable 4 size is 1 word

.=0

RSECT

The above table will be at the beginning of the re-entrant program defining
a local wvariable area of 14 words (or 28 bytes). The two '".=N" statements
surrounding the table are required to insure that the area generates no code
but 1s merely used to set up the index values assigned to the Llabels VARA
through VARD. Generation of the actual program code which follows will then
begin at relative location O where it is expected. The ASECT call sets the
assembler dinto absolute mode so that the variables are defined as
non-relocatable, The RSECT call restores relocation for the following
program code. The program must set up the above variable area by allocating
the required space within the user's memory partition (probably with a
GETMEM call) and set the selected index register to point to its absolute
base address (returned by the GETMEM call).

If we assume that you have chosen R5 to be your index to the wvariable area
and have set it to point to the allocated 14~word block, the four variables

may then be referenced throughout the program execution by the following
addresses:

VARA(RS) for variable
VARB(RS) for variable
VARC(RS) for variable
VARD (R5) for variable

-l SR N

In addition to the above direct addressing method, another index (say R2)
may be set to index an individual variable with the following statement:

LEA R2 ,VARC(RS) ;index the 16=byte variable 3

The index R2 now points to the specific VARC variable which might be wused
for incremental indexing within itself (perhaps to store 16 1-byte flags).

Remember that in the above scheme, the base index register R5 in this
example) must never be destroyed in the program execution or else you will
not be able to reference any of the variables.

In summary, the best way ta learn how to evaluate the relocatablity of a
particular programming technique is to become thoroughly familiar with the
addressing modes used by the Wp16 chipset and the type of code that they

generate, This information can be found in the WD16 Microcomputer
Programmer's Reference Manual, (DWM-00100-04).

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PART II

USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

These chapters describe the use of:

MACRO - The macro assembler.

LINK - The linkage editor

SYMBOL - The symbol table generator :

LIB - The object file Llibrary generator

GLOBAL - The qglobal symbol cross reference generator
ODT - The dynamic debugaing and patching program

For 1information on the screep-oriented assembly language program debugger
AlphaFIX, see the AlphaFIX User's Manual, (DWM-00100-69).

CHAPTER 9

THE ALPHA MICRO ASSEMBLER (MACRO)

This chapter discusses the Alpha Micro assembler program, MACRO.

After writing your source code (the .MAC file), you must assemble it. The
assembler translates your assembly Language program into machine Llanguage
(the .0BJ file). The Linkage editor (discussed in the next chapter)
processes the .0BJ files to resolve all symbol references and to create the
final, executable program (.PRG or .QVR) file.

This chapter gives information on the operation of the macro assembler
program.

9.1 THE MACRO PHASES

The assembler actually runs in five distinct phases that are selectively
called depending on what functions are needed. A brief summary of their
respective functions follows:

PHASE (

Interprets the command Line and sets up parameters in the
common area for use by successive phases.

PHASE 1

Reads the source (.MAC) file and performs Pass 1 of a
standard two-pass assembly process by expanding macros,
building the user symhol table, and generating the
interphase work (.IPF) file.

PHASE 2

Reads the interphase (.IPF) file and performs Pass ? of a
standard two-pass assembly process by resolving symbols
and generating the object code (.0BJ) file. MACRO then
deletes the interphase work file. '

Reads the source (.MAC) file and the object (.0BJ) File
and creates a Llist (.LST) disk file or outputs the
assembly Listing to the terminal.

PHASE 3

[

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-2

PHASE 4 - Actually not part of the assembler but an automatic call
to the LINK program to read the object (.0BJ) file and
create a runnable program (.PRG or .0OVR) file. Only occurs
if there were no internal or external symbol references in
the program. (1If Phase 4 is not called, you will Hlater
have to wuse LINK to link this file with the other files
that contain the symbols that will resolve the external
and internal references.)

9.2 COMMAND LINE
The general format for the assembler command Line is:

«MACRO filespec{/switches?

9.2.1 Filespes

Filespec specifies the source file you want to assemble; it may optionally
be a complete file specification containing account and device
specifications.

The /switches option request is a slash followed by one or more alphabetic
characters. A switch alters the normal assembly process. If you enter no
switches, MACRO performs an assembly on the specified source file and
creates an object file but no List file (i.e., Phase 3 is bypassed). 1If the
program is a sinale segment <(i.e., 49t contains no INTERN or EXTERN
statements), then MACRO enters Phase 4, which creates an executahle (.PRG or
.OVR) program file.

9.2.2 Assembler Options

You may select one or more of the assembly options below by specifying the
appropriate switch on the MACRO command Line:

/B text Generates a hottom footer line on every page of the Llisting
using the rest of the text on the command Line following the
/B switch as title information. For example:

=MACRO DEVCPY/B Version AQ0 (FED)
generates a listing file of which every page contains the
bottom Line title: "Version AQ0." /B must be the last switch

on the command Line.

/C Includes conditionals in the listing. (Conditionals are
normally suppressed.) '

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9=3

/E Writes to the assembly Listing only those Lines that contain
an error.
/H Lists bhinary code in hexadecimal instead of octal in the

assembly Llisting.

/L Generates a List file by calling Phase 3 during the
assembly. Creates the output file with the same name as
your source file, but a ,LST extension. (You may modify the
name of your Llisting file by using the O0BJNAM pseudo opcode
in your source program-- see Section 5.1.2, "OBJNAM.')

/0 Uses the current object file by omitting Phases 1 and 2.
/R Generates a cross reference, which appears at the end of the
assembly Llisting. See Section 9.4.%, "“Generating a Cross

Reference," for information on the cross reference listing.

/T Prints the assembly Listing on vyour terminal instead of
Wwriting it to a disk file.

V{ar:x Allows you to specify a value on the MACRO command Line
which can be examined during the assembly process. fa"
specifies the type of valuye specified, and X is the value.
See Section 9.2.3, "Parameterized Assembly Option," for more
information.

/X Lists in your assembly Listing all macro expansions. (Macro
expansions are normally suppressed,)

NOTE: You do not have to specify the /L switch when you use the /B, /C, /E,
/H, /R, /T, or /X switches to tell MACRO to generate a listing.

You may combine any of the above switches as desired in a single command
Line by entering them after a single / character at the end of the command
lLine. For example:

-MACRO NEWDVR.MAC/RT(RET)

The command Lline above tells MACRO to generate a Llisting file for NEWDVR.MAC
that contains a cross reference and to output that Llisting to the terminal.

The most common method of assembling new programs is as follows:
1. Assemble the program with the command :
~=MACRO filespec @eD)

This will allow you to count any errars that occur during Phases 1
and 2.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-4

2. If no errors occur, create a List file with:
<MACRO filespec/LOEED
or, optionally, list it on the terminal with:
+MACRO filespec/TO (RET)
or, get a cross reference with the listing:
«MACRO filespec/RO (reT)
3. If there were errors, List them alone with:
«MACRO filespec/TOE RET)
Correct the errors and go back to Step 1.
4. 1f the proaram has only one segment, then MACRO automatically calls
Phase 4 which creates the .PRG or .OVR program file: otherwise, you
will need to use the LINK or SYMBOL proegram to generate the final

program file-— see the next chapter for information on LINK and
SYMBOL.

@.2.3 Parameterized Assembly Option

MACRO provides a parameterized assembly facility by allowing you to use the
/¥ switch to specify a value on the MACRO command Line. The value switch
may take one of these forms:

AR x is an octal or hex number (depending on the
prevailing radix setting)

VOix X is an octal number

fVHx x i$ a hexadecimal number

/DX x is a decimal number

IVA:x x is one or two ASCII characters
fVR:x x s one to three RADSN characters

The NVALU pseudo opcode allows your program to access the value specified in
the /v assembly switch. The NVALU statement takes the forms

NVALU sym

which sets the symbol "sym" to one of the values below, depending on which
fV switch was used:

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-5

sym=x
sym="0x
sym="H0x
sSym="Dx
sym="x
sym=""x
sym=0x]]

You may find this feature especially useful when using conditional assembly
directive pseudo opcodes to select which portions of code to assemble.

9.3 SAMPLE ASSEMBLY DISPLAY
Below we show a sample assembly display:
-MACRO SAVTXT.MAC/L (&7

== Macro Assembler Version 1.1 ==

Processing SAVTXT.MAC

Phase 1: Copying from DSKO:SYS.MACT?,7]
Work “area: 39714 bytes, 3614 used
Phase 2 Object file finished
Phase 3: Listing file finished
Phase &: Program file finished [Program size = 40. hytes]

If MACRO is automatically EXTERNing any symbols, it tells you S0 1in Phase ?
(Listing the symbols alphabetically). For example:

Phase 2: Object file finished
EXTERNS were generated for the following symbols:
GETNUM PRTNUM

In the case above, MACRO automatically EXTERNed the symbols GETNUM and
PRTNUM. MACRO automatically EXTERNs symbols if those symbols are undefined
and if the AUTOEXTERN pseudo opcode appears in your source file.

Notice that even 1f your program is a single segment, MACRO will not call
Phase 4 to link your proaram if MACRO was not able to resolve all symbol
references in your program (that is, if EXTERNs were qgenerated). You will
need to use LINK or SYMBOL to Link your program with the other file(s) that
contain the symbols referenced by your main program.

If you ask for a cross reference Listing, you see the following message
during Phase 3:

Phase 3: (ross reference file finished

THE ALPHA MICRO ASSEMBLER (MACRO) _ Page 9-4

9.4 THE ASSEMBLY LISTING

By specifying the appropriate assembly switches, you can direct MACRO to
call pPhase 3 of the assembly process to create a List file which is sent to
a disk file or to your terminal. The Listing is formatted and contains bhoth
the source of your program and binary code that 1is generated by the
assembly.

9.4.1 Assembly Listing format

Each page contains a page number and a title that gives the name of the
program that has been assembled and the account number that the file was

assembled 1in. Unless otherwise controlled by PAGE statements, each pade
contains 54 |ines of source data. Each page is terminated by a form-feed
character. If the system date has been set (via the monitor Level DATE

command) , the date appears at the top of each page of the listing. If you
specified the /B assemhly switch, MACRO outputs to each page a page footer
containing the text specified on your MACRO command line.

Each data line on the listing contains four sections:

1. Columns 1-5 List the error codes on the Line that generated the
error. (For a List of the MACRO error codes, ssze Section 9.5,
"MACRO £rrors.™)

2. Columns R-13 list the current address of the generated data if any
data code was generated. Or, these columns give the value of the
assignment if this is an equate statement.

3. Columns 16-37 List the generated binary data {(maximum of the first
three words) in octal (or hex if /H assembly switch was used).

4. Columns 40-~132 List the source line.

9.4.2 Listing Control Pseudo Opcodes

Several pseudo opcodes exist that control your assembly Llisting: you will
place these pseudo opcodes in your source program. We List them briefly
below. For more information on each pseudo opcode, see Chapter 5.

OBJNAM - Allows you to modify the name of your assembly
Listing disk file.

LIST = Re-enables output to the Listing file.

NOLIST - Turns off output to the assembly Listing file.
(LIST and NOLIST are ignored if you use the /X
Switch.)

PAGE - Begins a new page in the assembly Listing.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-7

9.4.3 Generating a Cross Reference

You may wuse the /R switch to generate a cross reference as part of the
assembly Llisting. To see the cross reference on your terminal, use the /RT
Switches. You may specify the /0 switch to bypass assembly Phases 1 and 2
if an object (.0BJ) file for the current source file already exists.

NOTE: For information on using the GLOBAL command to generate a global cross
reference, see Chapter 12.

9.4.3.1 Cross Reference Control Pseudo Opcodes - The CREF, MAYCREF, and
NOCREF pseudo opcodes control the generation of the cross reference Listing:

CREF Enables normal cross referencing.

NOCREF Suppresses from the Listing all defined symbols until
MACRO encounters a CREF or MAYCREF pseudo-op.

MAYCREF Suppresses from the listing all defined symbols if
those symbols are never referenced.

9.4.3.2 C(Cross Reference Listing Format - The cross reference Listing ig
similar to an ordinary assembly [isting except that it also 4ncludes the
following:

1. A column of sequence numbers appears at the left of the listing.

2. At the end of the assembly listing, an alphabetic Listing of each
symbol appears giving, in numeric order, the sequence numbers of
the Lines in which each symbol appears. These sequence numbers are
sometimes followed by a code of the form =X, where X identifies the
type of symbol. X may be one of the following:

a label definition

- an equate definition
an INTERNed symbol

= an EXTERNed symbol

= an QVRLAY.

O X =mr
1

Also, a single quote (') appears after symbols that were npever
defined. (MACRO will automatically EXTERN such symbols if the
AUTOEXTERN pseudo opcode is present in your source program.)

3. A similar listing of macro definitions and references follows the
: symbol Llisting. (The sequence number corresponding to & macro
definition is flagged by a "-M" code.)

THE ALPHA MICRO ASSEMBLER (MACRO) _ Page 9-8

9.4.3.3 Sample C(Cross Reference Listing - Remember that the Cross
reference appears at the end of a regular assembly Llisting. Below is a
sample of what the cross reference portion of the assembly Llisting for a
small program, MATH.MAC, might look like:

MATH £110,5] . CROSS REFERENCE LISTING PAGE OM

ACCUM 304 4354 520 530 542 543 553 354

ADD 423 520-L

DIVI 429 555-L

EXIT 365 370 459 597-L

GETEXP 364-L

GETNUM! 386 415

NUMERR 393 416 567-L

OPRERR 407 411 583-L

OPRTBL 468 A13-L

PARSE 383%-L

PRTNUM! 441 450

START 354-L

suB 425 530-L

5..RDX 30-E 309

$VAL 415 16-E 618 619 619-E 623 626 627
643 643~E :

MATH £110,5] CROSS REFERENCE LISTING PAGE 002

BYP T8T-M 566 3835 398 4712 49 503

CRLF 173-m 457

EXIT 174~-M 573 589 597

GTBEC 184-M 496

OPERAT 337-m 613 621 629 637

TYPECR 292-M 451 567 583

Notice that the cross reference above identifies equated symbols and macro
definition symbols. It also identifies the GETNUM and PRTNUM symbols as
undefined or automatically EXTERNed symbols.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-9

9.5 MACRO ERRORS
MACRO displays two types of error messages: errors codes that appear in your

assembly Listing and error messages that appear on your terminal screen as
you assemble the program.

9.5.1 Error Codes

Below are the error codes that can appear in your assembly Listing. Each
code appears on the Line of the source program in which the error occurred.

A Branch address was out of the 127-word range.
5] Boundary error =~ a word operand was on an odd byte

address. (See Chapter 5 for information on the EVEN
pseudo opecode.l)

C Conditional statement syntax error.

D buplicate user symbol. (Symbol defined more than once.)

I Illegal character in source Line.

M Missing term or operator in operand or expression.,

N Numeric error which indicates a digit out of the current

radix range.

P An expression that had to be resolvable on the first pass -

Was not.

Q Questionable syntax - this s a general catch-all error
code.

R Register error - a register expression was not 3in the

range of 0-7.

T Source Lline or operand terminated improperly.

U Undefined user symbol during Pass 2.

v Value of an absolute parameter was out of its defined
range.

X Assembler system error ~ please notify Alpha Micro.

THE ALPHA MICRO ASSEMBLER (MACRO) . Page 9-10

9.5.2 Error Messages

You may see several error messages during the program assembly;

INVALID CONTROL PARAMETER VALUE
You used the /V assembly switch to specify a value on the MACRO command
Line, but something was wrong with the format of the option request.
For example, the value after the /V switch was missing or incorrect.

?Cannot OPEN Devn: — invalid filename
There is something wrong with the format of your command line. For
example, you may have tried to use an assembly switch but forgot to
place it at the end of the file specification. ALL switches must
appear at the end of the command line. -

?File specification error
There s something wrong with the format of your command Lline. For
example, you typed MACRO followed by a RETURN (omitting the file
specification).

?MACN.OVR not found
where n 15 a number from 0 to 5. MACRO cannot find one of the overlays
that are a part of MACRO. Make sure that the missing file 43 in
account DSKD:F1,47. If the file 1is not there, contact the System
Operator.

?Copy file filespec not found
where filespec s the file specification you supplied to the COPY
pseudo opcode. For detailed information on the search pattern MACRO
now uses to search for the copy file, see Section 5.1.1, "COPY."

?Expression stack error
This 7s an internal MACRO error. You should never see it-=- but if vyou
~do, check your source program to see if you made any errors in
specifying expressions.

{SYNC ERRORI] ‘

MACRO generates a Listing file by reading the source file and the
obiect file and synchronizing the source Lines with the resolved object
data to come up with the Listing line data. 1If these two files get out
of sync, there is no way that the Listing may proceed and the messaqe
LSYNC ERROR] appears on your terminal. MACRO will then close the List
file at the point of the sync error, but the Line that caused the error
will not have been included. A sync error of this sort means one of
two things: either you have an out~of-date object file that you are
using with the /0 switch, or you have found an undiagnosed assembler
bug. These bugs usually occur when you get fancy with nested macros
and conditionals that have a valid error buried down deep within.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-11

NOTE: The most probable cause for this error is that you are using an
object file that was generated by a different version of MACRO than the
one you are using now. If you see no obvious errors in your program,
try generating a Listing without the /0 switch (thus building a new

object fite). 1If you still get FSYNC ERROR], report the problem to
Alpha Micro.

CHAPTER 10

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL)

This chapter contains information on the Linkage editor LINK and the symbol
table generator program SYMBOL. We discuss both of these programs at this
time because LINK and S$YMBOL are very similar and, with the proper selection
of option switches, can be made to perform virtually the same functions.
LINK takes one or more object files produced by the assembler and resolves
all external symbol references. The file that LINK produces is the final,
executable program file. SYMBOL takes one or more object files and produces
a symbol table file for that program. As we will see later, LINK and SYMBOL
can also perform other functions.

Besides discussing how to Link .0BYJ files, this chapter also discusses the
- use of LINK and S$YMBOL with Library (.LIB) files. For more information on
object file libraries, see Chapter 11, "The Object File Library Generator
(Lisy.”

10.1 LINK

The assembler itself does not produce a file that is directly usable as an
executable program. (Unless of course, your program is a single segment
file that contains no EXTERNed, INTERNed, or AUTOEXTERNed symbols, in which
case MACRO calls LINK as Phase 4 of the assembly.)

The assembler output file is an object (.0BJ) file that is not fully
resolved and which contains symbol definitions and embedded cross—segment
commands.

It is the Llinkage editor (LINK) that resolves the ohject file, LINK reads
one or more of these object files and creates one runnable proaram (.PRG)
file which the operating system can load into memory and run. Furthermore,
if the program contains overlay segments, LINK resolves them and creates one
overlay (.0VR) file for each one. These overlay files are loaded into
memory upon command during the running of the program and allow memory
conservation for large programs such as the assembler itself.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 1D-2

We mentioned previously that if your pregram has only one segment, MACRO
automatically calls the linkage editor to create a prearam file (as Phase 4
of the assembly). In this case, no further action 1is necessary and you are
ready to run the program. If, however, the program is comprised of more
than one segment, you must run the LINK program yourself, specifying the
name and order of the seqment files involved.

10.1.1 LINK Command Line
The general format of the LINK command is:

LINK {/switches }fiLESpec1{,fiLeSpecz,...fiLeSpecN}{/switches}ﬁﬁl

where filespec selects an object file. The default extension is 08, The
first file specified may not be a library file or an overlay file. If a
filespec includes a device and account specification, LINK searches for the
file 1in that account. If you omit a device and account specification, LINK
searches for the file first in the account and device you are Llogged into;
secondly, in your proiect Library account (account FP,01); and, finally, in
the System Macro Library account, DSKO:[7,7].

LINK treats switches in the same way that a standard AMOS wildcard command
does; this means that the files affected by the option switches you use can
depend on where you place the switches. Any switch that appears in front of
a filespec becomes the default switch and thus affects the rest of the
~ filespecs on the command Line (unless canceled by a subsequent switch). Any
switch that appears at the end of a filespec affects only the files selected
by that specification. For example, suppose you want to use the /0 switch to
tdentify one or more .0BJ files as optional files:

«LINK FILBCK,/0 DIRBCK,TAPBCK

selects the files DIRBCK and TAPBCK as optional files because the /0 switch
precedes the filespec DIRBCK, and thus becomes the default. The command
Line:

«LINK FILBCK,DIRBCK/0O,TAPBCK

selects only the file DIRBCK as an optional file because the /0 switch
- follows the DIRBCK filespec and appears before the next comma in the command
line,

NOTE: Special switches (identified as "operation switches® in the
discussions below) affect ALL filespecs specified on the command Line no
matter where you place the switch. For example, it doesn't matter where you
place the /M switch on the command Line-- it affects all files selected by
the filespecs on the command Lline.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-3

10.1.1.1 Continuation Lines - If the program you want to Link contains
more files than will fit on the command Lline, you may continue the files on
the next Lline by terminating the last filespec with a comma. LINK continues
to accept files as long as the last filespec on the Line terminates with a
comma.

10.1.1.2 LINK Opticns

/E Inc lude equated symbols in the symbol table file. (You must use
/€ with the /M or /S switch.) (Operation switch.)

/L Pesignates a Library file. See Section 10.3, "Library and
Optional Files," for information on Libhrary files.

/M Generate a load map (.MAP) file. See Section 10.4, "The Load
Map File,”" for a discussion of the Lload map. (Operation switch.)

/N Suppress /P switch. (Operation switch.)

/0 Designates an optional file. See Section 10.3, "Library and
Optional Files," for information on optional files.

/P Generate program (.PRG) and overlay (.0VR) files. The default
switch, (Operation switch.)

/R Designates a reaguired file. The default switch. Cancels the /L
and /0 switches.

/5 Generate a symbol table (.SYM) file. (Operation switch.)

You may specify multiple switches by preceding each switch with a /. (See
the command Line below.)

10.1.2 Sample LINK pisplay

Below is a sample LINK display. Note that we are using the /L switch to
specify a Library file, and are using the /M switch to generate a Load map.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-4

=LINK MATH,UTILIT.LIB/L/M@GeD

== Linkage Editor Version 2.0 ==

Processing MATH.OBJ [Base = 0, Size = 348. bytes]

-~ Optional and Library Request --

Processing UTILIT.LIB(NUM) [Base = 534, Size = 144. bytes]

Program and Map files finished. [Program size = 492. bytes]

Notice that LINK tells you the size (in decimal bytes) of each module. If
you specify a Llibrary file, LINK tells you which of the object files in the
Library file are being Linked in. (In the sample above, LINK Linked in the
NUM routine from the UTILIT.LIB Library file.) ‘

10.1.3 LINK Errors

LINK reads each of the files specified and creates the necessary program and
opticnal overlay files. LINK displays any error messages on the terminal if
it encounters any errors during processing. The most common error 4is the
undefined - global symbol error which means you have an EXTERN symbol in one
segment which is not defined in another segment by an INTERN statement.
LINK does not generate a program file if it cannot find one or more of the
segments in its assembled object (.08J) form. For a List of the LINK error
messages, see Section 10.5.

10.2 THE SYMBOL TABLE FILE GENERATOR (SYMBOL)

The object files output by the assembler contain complete information on the
symbols used in your program, as well as the actual generated code. To make
this List of symbols available to the debugger programs, you must use the
SYMBOL program. Just Like LINK, the SYMBOL program takes one or more .0BJ
files and creates an output file, in this case a symbol (.SYM) file. pDT
and FIX use this file to provide symbolic debugging of programs.

Unlike the program file, the symbol file is not generated automatically even
if only one program segment is used. You must explicitly run SYMBOL if you
wish to create a symbol file.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-5

10.2.1 SYMBOL Command Line
The format for calling SYMBOL is identical to the LINK command line:
=SYMBOL {/switches }filespect{,filespec2,...filespecN}{/suitches} @D

where filespec selects an object file. The default extension is .0BJ. The
first file specified may not be a Library file or an overlay file. If a
filespec dincludes a device and account specification, SYMBOL searches for
the file in that account. 1f you omit a device and account specification,
SYMBOL searches for the file first in the account and device you are logaed
into; secondly, in your project Llibrary account (account £p,01); and,
finally, in the System Macro Library account, bSKO:[7,71.

SYMBOL treats switches im the same way that a standard AMOS wildcard command
does; this means that the files affected by the option switches you use
depends on where you place the switches. Any switch that appears 1in front
of a filespec becomes the default switch and thus affects the rest of the
filespecs on the command Line (unless canceled by a subsequent switch). Any
switch that appears at the end of a filespec affects only the files selected
by that specification. For example, suppose you want to use the /0 switch
to identify one or more .0BJ files as optional files: -

-SYMBOL MAIN,/0 SUB1,SUB? (D)

selects the files SUB1 and SUB2 as optional files because the /0 switch
precedes the filespec SUB1, and thus becomes the default. The command Line:

-SYMBOL MATN,SUB1/0,5UB2

selects only the file SUB1 as an optional file because the /0 switch follows
the SUB1 filespec and appears before the next comma in the command Line.

NOTE: Special switches (identified as "operation switches" in the
discussions below) affect ALL filespecs specified on the command Line no
matter where you place the switch. For example, it doesn't matter where you
place the /M switch on the command Line-- it affects all files selected by
the filespecs on the command Line.

The output of SYMBOL 1is placed 1into a file named filespec.SYM, where
filespec is the first file specified on the SYMBOL command Line. No symbol
file will be generated if one or more of the specified files is not found in
its assembled object (.08J file) form. (NOTE: You may use the OBJNAM pseudo
opcode within your .MAC file to modify the name used for the SYMBOL output
file. See Section 5.1.2, "OBJNAM.')

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBROL) Page 106

10.2.1.1 Continuation Lines - As with LINK, if the program contains more
files than will fit on the command line, you may continue the file
specifications on the next Line by terminating the [(ast filespec with a
comma. SYMBOL will continue to accept filespecs as lona as the Llast
filespec on the (ine terminates with a comma.

10.2.1.2 SYMBOL Options

/E Include equated symbols in the symbol table file. You may also
use this switch with /M to tell SYMBOL to include equated
symbols in the load map. (%peration switch.)

/L Designates a library file. See Section 10.3, ‘'Library and
Optional Files,” for information on Library files.

/M Generate a load map (.MAP) file. See Section 10.4, "The Load
Map File," bhelow, for a discussion of the load map. (Dperation

switch.)
/N Suppress /S switch. (Operation switch.)
/0 Designates an optional file. See Section 10.3, "Library and

Optional Files," below, for infarmation on optional files.

/P Generate program (.PRG) and overlay (.0VR) files. (Operation
switch.)

/R Designates a required file. The default switch. Cancels the
affect of a /L or /0 switch.

/5 Generate a symbol table (.SYM) file. The default switch.
(Operation switch.)

You may specify multiple switches by preceding each switch with a /. (See
the command Line below.)

10.2.2 Sample SYMBOL Display

Below is a sample SYMBOL dispLay. Note that we are using the /L switch to
specify a library file, and are using the /M switch to generate a load map.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-7

=SYMBOL MATH,UTILIT.LIB/L/M GeD)

== Linkage Editor Version 2.0 ==

Processing MATH.OBJ

~= Optional and Library Request --

Processing UTILIT.LIBCNUM)

Symbol and Map files finished.

If you specify a library file, SYMBOL tells you which of the object files in
the Library file it is including in the symbol table file. (In the sample
above, SYMBOL included the NUM routine from the QUTILIT.LIB Library file.)

NOTE: If you compare this display with that of the LINK preogram (Section
10.1.2, "Sample LINK bisplay," above), you will notice that it is very
similar. In fact, LINK and SYMBOL can be made to perform exactly the same
functions. If we had specified the /P switch and the /N switch -(specifying
that we wanted a .PRG file generated and did not want a symbol table file),
the display above would have looked exactly Like the LINK display in Section
1M0.1.2.

10.3 LIBRARY AND OPTIONAL FILES
Both LINK and SYMBOL support the use of Library files and optional files.

Most programmers have been faced at one time or another with the task of
having to write a standard routine again and again for multiple programs.
Library and optional files help you to avoid this situation by allowing your
programs to contain references to previously written routines in an object
file Llibrary or an optional file.

Besides making your Life easier by making it possible for you to write
frequently used routines only once, Library and optional files also help to
standardize programs by providing the same error checking, input checking,
message display, etc., for multiple proarams.

LINK and SYMBOL place any object files from a Library file and any optional
files at the end of your program in the order that they are needed to
resolve external references.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-8

10.3.1 Likrary Files

A Llibrary file is a file produced by the LIB program (discussed in the next
chapter). The Llibrary file contains a group of .0BJ files. The purpose of
generating a Llibrary file is to gather together a group of subroutines that
are frequently used by programs on your system. These routines are then
easily accessed by all programmers on the system by using the EXTERN or
AUTOEXTERN pseudo opcodes 4in their source programs and specifying the
required routine. Unlike using the COPY pseudo opcode, which physically
incorporates the entire source file specified by the COPY statement into
your assembled program when you assemble it, using a Library file causes
only those subroutines within the library file that are referenced by vyour
program to be linked into your nbrogram.

For example, if a Library file contains the following object files: SWTCH,
SPACE, STRCHK, and GETLIN, and the program you Link with the Library file
only references the routine GETLIN, only the object code for that routine
will be Llinked into your program.

IMPORTANT NOTE: You should note that the entire .0BJ file that is a
component of a Library file will be Linked in if your program references a
symbol in it; not just that portion of the .0BJ file required by vyour
prodaram. For example, suppose you create a library file (using LIB) that
contains the following .0BJ files: STRCHX, GETLIN, and GETNUM. If your
program references a symbol within the GETNUM cbject file, the entire GETNUM
file is Llinked in even if it also contains several other routines. For this
reason, you should Limit each .0BJ file that is a component of the Library
to only one subroutine.

You may not specify the Library file first on the LINK or SYMBOL command
Line. (This 1is hecause to resolve symbol references, LINK and SYMBOL must
first access the file that makes those references before it accesses the
file that defines them.)

10.3.2 Optional Files

By wusing the /0 switch with LINK or SYMBOL, you may request that the
specified file (called an "optional file'") be included in the Linked program
if the optional file is needed to resolve any external references in one of
the other files being linked. 1If such a reference exists, the optional file
will be incorporated into your program; otherwise, it will not. Unlike a
Library file, an optional file only contains the contents of a single .0BJ
file. An optional file may not be an overlay.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-9

10.4 THE LLOAD MAP FILE

A Lload map shows how the modules Linked together will be

SYMBOL, you may ask that a load map file be generated.

loaded into memory
when the program is invoked for execution. Using the /M switch with LINK or

A load map file

has

the name of the first file specified on the LINK or SYMBOL command Line and

the extension .MAP.

A Load map Llists each object file used in the order that it was
each object file, the (oad map gives the following information:

1. The file's offset from the beginning of the program;

2. the size of the file in decimal bytes;

used.

For

3. in alphabetic order, all the symbols defined in that file and their
If the symbols are
relocatable relative to the base of the program, the Load map flags

relocated values after the Linking process.
them with a "r" symbol.

For example, the following LINK command Line:
LLINK MATH,NUM/M

generated the Lload map file below, MATH.MAP:

[Linkage Editor Version 1.01
Program Load Map

Module Base Size Symbol value Symbol value Symbol value
MATH 000000r 348. ACCUM 000520r ADD 000330r BASCHG 000262r
BASE {0051ér DIVI 000s562r EXIT 000574 r
GETEXP 0000046r GETOPR Q00224r MULT 000344
NUMERR 000406r OPRERR 000446r OPRTBL 0G00533r
PARSE (00024r START 000000r sURB 00336
NUM Q00534r 144, CHGTBL 000706r GETNUM 000534r PRTNUM 0006161
10.5 LINK AND SYMBOL ERROR MESSAGES
?Command error
There was something wrong with your command Line. For example, vyou

tried to use LINK or SYMBOL without specifying a file on which to work.

?Fatal error - Insufficient memory

You must Tncrease the size of your memory partition; there was not

enough room to perform the procedure you specified.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) age 10-10

?Undefined switch /x - ignored

Rafer to Appendix 8§, "Summary of Program Switches,”" to make sure that
you specified a valid switch.

?Fatal error - Overlays of code are not permitted

Mext expected address 35 xxxx

Overlay code address 3s xxxx
Your program 1s tryind to overlay previous code. Check your .MAC
programs to make sure that your overlay references are correct.

7xxxx undefined
An external symbol is undefined. This is a very common error. You
have referenced a symbol which has not previously been defined (e.g.,
You have made a reference to a label that does not exist). Make sure
that an EXTERN statement in one segment is defined by an INTERN
Statement in another segment.

?Fatal error - First file must not be a library
To enabte LINK or SYMBOL to correctly resolve external references to a
Library, you must specify the program that references that Library
before you specify the Library file jtself.

?Fatal error - Attempt to specify overlay xxx ‘as optional
You may not use the /0 switch to designate a file as optional if that
object file is an overlay.

?fFatal error - Overlay symbol "xxxx" in segment vyyyy

was not defined in a previous input segment
You may not reference an undefined overlay. In other words, LINK is
trying to process a supposed overlay file, but has seen no references
to the overlay in a previous file. Without such a reference, LINK
cannot construct the overlay, so it aborts and returns you to AMOS
command level. ‘

?Fatal error - First file must not be an overlay
To enable LINK or SYMBOL to correctly resolve external references to an
overlay, vyou must specify the program that references that overlay
before you specify the overlay file itsel f.

?fatal error - Expression stack error
An error occurred when LINK or SYMBOL evaluated some expressions in
your files. This indicates an internal error-- you should never see
this error message.

?Fatal error - Expression stack overflow ,
You exceeded the number of nested expressions that LINK or SYMBOL can
handle. Try to find the exceedingly complex expression in your source
“file and simplify it.

CHAPTER 11

THE OBJECT FILE LIBRARY GENERATOR (LIB)

One of the more aggravating programming tasks is rewriting a utility program
that you've used many times before and that you know you will use many times
in the future. Many kinds of routines are so useful that vyou need them
again and again in many different programs: 2.d., routines that check for
ASCII characters, that input and output characters, that sort data, etc.

The purpose of the Library file is to collect together these frequently used
routines where they can be accessible to your program files when you Link
them into final, executable programs. Not only do Library files help you to
avoid writing and rewriting the same routines over and over, but they can
also give help to every other programmer on the system. An added benefit of
Library files is that they tend to help standardize programs on the system
by providing standard input, output, error checking, and message display
routines used by everyone on the system.

The Alpha Micro object file library generator, LIB, constructs library files
out of .0BJ files. Each of the -0BJ files which is built into the Library
file is a separate routine that can be accessed by your programs. The final
Library file has a .LIB extension and can he used by hoth LINK and SYMBOL..

1.1 LIB COMMAND LINE
The LIB command (ine takes one of two forms:

-LIBL/LY output=input1{,input2,...inputN}
or:
~LIBU/LY dnoutl,input?,...inputN} e

(The second format is equivalent tos: LIR inout=inout{,input2,...inputN} if
you do not wuse the /L switch; otherwise, it is equivalent to:
TRM:=inout{,inout2,...inputN}.)

"Output” 4s an output file specification; it specifies the name of your
Library file. The output file has the extension .LIB and the name specified
by the output or {inout specification. -

THE 0BJECT FILE LIBRARY GENERATOR (LIB) Page 11-2

"Input'" specifies the .0BJ files you want to place in the Library. The
input specification can take the following forms:

filespec

filespec\itemt
filespec\(item1,item2,...itemN)
filespecCitem1,item?,...1temN)

The \ symbol designates an exception. For example, in the command line:
~LIB MYLIB\SUB1,NEWSUB,READIT (RET)

tells LIB that we want to modify the existing library MYLIB (the "inout"
specification) hy removing the ohject file SUB1, and adding NEWSUB and
READIT.

The parentheses specify a group of object files. For example:
-LIB MYLIB\(SUB1,NEWSUB,READIT) SGETNUM

tells LIB to modify the existing library MYLIB by deleting the collection of
object files SUB1, NEWSUB, and READIT, and to add the object file GETNUM.

LIB looks for the specified files in the account and device specified. If
you omit the device and account specification from the filespec, LIB
searches - first 4in the account and device vyou are logged into: then your
project library account on the device yYou are logged into (account TP,07):
finally, LIB searches in the System Macro Library account, DSKO:T7,71.

11.1.1 Continuation Lines

As with LINK and SymBoL, YOU may enter as many filespecs as you wish on as
many Lines as you wish as long as you end the last filespec on the line with
a comma.

11.1.2 LIB Option Switch (/L)

The only LIB switch at this time 1is the /L switch which tells LIB to
generate a Llibrary listing. This Llisting Llooks similar to a lLoad map
Listing (see Secticn 10.4., “The Load Map File."), and Llists all object
files in the library file and all INTERNed symbols.

If you specify an output file (e.g., LIB LIST=MYLIB/L) LIB creates the
Listing with the name and extension you specified. (The default extension
is .LST.) 1f you do not specify an output file (e.g., LIB MYLIB/L), i_IB
sends the library listing to your terminal display.

THE OBJECT FILE LIBRARY GENERATOR (LIB) Page 11-3

11.2 SAMPLE LIB DISPLAY

Suppose we are creating a new Library called USEFUL from the _0BJ files
ERRMSG, GETLIN, and FORMAT:

-LIB USE FUL=GETLIN,FO-RMAT,ERRMSG

== Object File Librarian Version 1.0 ==

Processing GETLIN.OBJ
Processing FORMAT.OBJ
Processing ERRMSG. OB

Library file finished

As LIB processes each new «0BJ file, it tells vou so.

Suppose we want to add a routine to an existing library. The sample display
might Look Like thig:

-LIB USEFUL,LINSIZ

== Object File Librarian Version 1.0 ==

Processing USEFUL.LIB(GETLIN)
Processing USEFUL.LIBCFORMAT)
Processing USEFUL. LIB(ERRMSG)
Processing LINSIZ.OBJ

Library file finished

-

We've sucessfully added the Néw routine [INSIZ to our old Library that
already contained the object files GETLIN, FORMAT, and ERRMSG. Notice that

LIB tells you as it processes each .0BJ file contained within the Library
file,

11.3 UPDATING A LIBRARY

Replacing one or more of the -0B! files that make up a Library file can be a
bit tricky. If you simply try to add a new version of an existing .0BJ file
without deleting the old one first, problems can result pecause bhoth
versions of the object file will be in the Library. The recommended
procedure is to first delete the old routine, and then to add the new one.

For example, if we wish to replace the old version of FORMAT with a new one,
We enter:

~LIB USEFUL\FORMAT, FORMAT (reT)

THE OBJECT FILE LIBRARY GENERATOR (LIRB) Page 11-4

which first deletes the file and then adds it. Assume that our small
Library only contains three routines, GETLIN, ERRMSG, and FORMAT. The LIB
display in response to this command Line would look Like this:

== Object File Librarian Version 1.0 ==

Processing USEFUL.LIB(GETLIN)
Processing USEFUL.LIBCERRMSG)
Processing FORMAT.ORBJ

Library file finished

Notice that LIB tells you what routines are contained in the library.

11.4 LIB ERROR MESSAGES
You may see the following error messages when you use LIRB:

?Command error
LIB did not understand your command line. For example, you entered
LIB followed by a RETURN. Make sure that your file specifications
are in standard form.

?Undefined switch /X - ignored
where X 15 the switch you supplied. LIB currently uses only one
option switch, /L, to produce a library Listing. Make sure that you
did not type a / by accident when you wanted to type a backslash,

?0BJ files are not libraries —- they can not be restricted

with a modifier '
You may only use the "\" file restrictor and the """ file inclusion
symbols if you are modifying a Llibrary.

?Listing aborted
LIB was not able to finish the Library Llisting. For example, an
error occurred while LIR was trying to access a file,

?The following module was not found - XK X
You tried to modify an existing library, but the object files you
specified were not present in the Library file. Make sure that you
did not accidentally use the \ restrictor symbol. '

?Fatal error - xxx is an overlay
You may not specify an overlay as an element of an quect file
Library.

CHAPTER 12

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL)

The GLOBAL pregram takes a group of object (.0BJ) files and produces an
alphabetic global ¢ross reference which Lists all global symbols in the
files, and shows which files define those symbols and which files accept
them as externally defined symbols. '

In other words, GLOBAL produces a listing file that contains a cross
reference of all symbols that have been referenced in an INTERN, EXTERN, or
OVRLAY statement so that You can see in which ,0BJ files these references
occur. (NOTE: GLOBAL produces a cross reference of all global symbols for a
collection of .08J files. Remember that you can also see a cross reference
Listing as part of your assembly listing for all alobal and local symbols
for an individual .0BJ file by specifying the MACRO /R switch when vyou
assemble the file.)

GLOBAL is particularly useful when you want to find out what references are
made to symbols between files. The /R assembly switch is most wuseful when
you want more detailed information about a single .0RJ file.

NOTE: GLOBAL does not support Library files.

12.1 GLOBAL COMMAND |INE
The GLOBAL command (ine takes this form:
-GLOBAL{/switches} filespec1,fi Lespec?{,...filespecN}EED
where switches are optional and affect the format of the information in the
Listing file. Filespecl...filespecN is a List of file specifications that

select the ,08BJ files for which You want the globhal cross reference.

If you omit the extension from a file specification, GLOBAL uses the defaul t
extension of .0BJ.

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Page 12-2

GLOBAL produces the Listing file in the account and device you are Logged
into with the name of the first file specification on the command iine and a
-GLB extension.

12.1.1 Continuation Lines

If there are too many file specifications to fit on one line, you may end
the command line with a comma. GLOBAL continues to accept file
specifications as leng as the (ast filespec on the line ends with a comma.
If the Llast filespec on the Line ends with a comma, GLOBAL prompts you with
an asterisk for more filespecs. For example:

.GLOBAL MAIN,sum,suae,suss,suaz._,
FSUBS, SUB4

12.1.2 LOBAL Options

You may request the following options by including the appropriate switches
on your command line:

Line width options (default is B0 characters):

W Wide Listing (same as /W:130). Produces a Llisting
file that may have up to 130 characters on a Lline.

/Win Specifies characters per Line, where n specifies
the number of characters.

Page length options (default is 60 Lines):
/L Long listing (same as /L:80).

/L:n Specifies Lines per page, where n specifies the
number of {(ines.

Each switch must begin with a slash. For example:

~GLOBAL/W/L MAIN,SUBT,SUB?

12.2 SAMPLE GLOBAL DISPLAY

As GLOBAL processes the specified files, it displays a message telling you
so ("Processing filespec'"). After it processes all files, GLOBAL produces a
-GLB file; as it works, it displays the name of the file it is building and
displays a dot for each disk block it outputs. Ffor example:

Building MAIN.GLB

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Page 12«3

This file has the same name as the first file you specified on the GLOBAL
command Line.

Below is a sample GLOBAL display:
~GLOBAL MAIN,SUB1,S5UB2,sUB3

== Global Cross Referencer (Version 2.0) ==

Processing MAIN.OBJ
Processing SUBT.0BJ
Processing SUBZ.0BJ
Processing SUB3.0BJ

Building MAIN.GLB....

Global file finished

If GLOBAL found any reference errors, it tells You so. For example:

Global file finished, 2 errors exist

12.3 SAMPLE LISTING DISPLAY

The Llisting file that GLOBAL produces [ists each defined symbol, and what
»0BJ file the symbol was referenced in. The lListing tells you whether the
symbol was referenced as an internal symbol (1) via an INTERN pseudo opcode,
an external symbol (E) via an EXTERN or AUTOEXTERN pseudo opcode, or an
overlay symbol (0) via an OVRLAY pseudo opcode.

Here 1is a portion of what a GLOBAL Llisting file might Look (ike:

Global Cross-Reference (Version 2.0

MSSss
AUUuU
1 BBB
N123
ALPHA I1E.E
BETA I .E.
ZETA 10 ..

The Llisting file above tells us: 1) the symbol ALPHA appeared in an INTERN
statement in the file MAIN.ORJ and in EXTERN statements in the files
SUB1.0BJ and SUB3.0BJ: 2) the symbol BETA appeared in an INTERN statement in
MAIN.OBJ and in an EXTERN statement in SUB2.0BJ; 3) the symbol ZETA appeared
in an INTERN statement in MAIN.OBJ and in an OVRLAY statement in SUB1.08J.

THE GLOBAL CROSS REFERENCE GENERATOR (GLORAL) Page 12-4

12.4 GLOBAL ERROR MESSAGES

You may see the following error messages when using GLOBAL:

?Undefined switch /X - ignored
You specified an invalid switch.
are the /L and /W switches.

The only switches GLOBAL recognizes

?Cannot OPEN filespec - not found
GLOBAL could not find the
logged into the correct account

file you specified. Make sure you are
on the right device.

CHAPTER 13

THE SYMBOLIC DEBUGGER (pDT)

A debugger is a program that helps you to test and examine a new program.
The Alpha Micro system contains two dynamic debugger programs for assembly
language programs: 1) AlphaFIx, a screen-oriented debugging program; and ?)
DDT, a debugging and patching program. For information on AlphaFIX, see the
AlphaFIX User's Manual, (DWM-00100-69). (AlphaFIX users please note
Section 13.4.7.2, below, which discusses using local symbols with both poT
and AlphaFIx.)

The rest of this chapter discusses the operation of DDT. DDT is the AMOS
dynamic debugging and patching program. It allows you to run your program
and to examine or alter program data or flow at any point in the program.
ALL of the examination and modification may be done via symbols, both on
type-in and type-out. pOT automatically expands your program in memory to
accommodate patches. This expansion capability, along with the ability to
define new symbols, makes it easy to patch existing programs. As a matter
of fact, all Alpha Micro System software patches are implemented using DDT.

NOTE: Most DDT commands terminate with an Escape. DDT echoes Escapes as
dollar signs. (That is, when you press the ESCAPE key (sometimes labeled
ALT MODE or ESC on your keyboard), DDT repeats the Escape as a $ symbol.)
Except for our discussion of Local symbols, whenever vou see a dollar sign
symbol in the discussions below, keep in mind that it represents the place
in your command input where you should type an Escape.

13.17 THE ODT COMMAND LINE

You may use DDT on any program, whether it contains executable code or not.
Tts most common use will be with program (.PRG) files produced by the
linkage editor. To invoke DDT, type:

_LDDT filespec

where filespec specifies the file you want to debug. If you omit the
extension, DDT uses the default extension ,[PRG. When ppT s catted, the
first thing it does is check to see if the specified file is already in

THE SYMBOLIC DEBUGGER (DDT) Page 132

memory. If it is, the file is deleted from memory. The program 1is then
loaded into memory ensuring that a fresh copy 1S now resident, and DDT
proceeds to look for a symbol file,

Once DDT has loaded the program file and any associated symbol file, it
prints the base memory address and the size in bytes of the trogram heing
debugged. For example:

«DDT DEVCPY.PRG (EET)
PROGRAM BASE: 32777

PROGRAM SIZE: 400

Now you can begin to enter the DDT commands discussed below. For
information on exiting DDT, see Section 132.9, “Exiting pDpT."

13.2 USING SYMBOL FILES

After loading the actual program to be debugged into memory, DDT searches
for a symbol file. If one is currently in memory, ODT deletes it. DDT then
searches your account for a file with the same name as the specified program
file, but an extension of .SYM. If one is found, it is Lloaded into memory,
and debugging can start. If no symbol file is found, DDT assumes that you
wish to debug without user symbols and enters debug mode without a symbol
table.

13.3 TERMINAL INPUT

Because ODDT must accept characters on an individual basis, it runs in
terminal image mode. This mode disables the wusual functions of RUBOUT,
Control-U, Control-5, Control-q, etc. However, Control-C will still abort
ODT and return you to AMOS. RUBCUT takes on a special meaning in ODT.
Instead of the standard function of erasing the last character typed, RUBOUT
in DDT will cancel the entire current command, and echoes as “XXX'' followed
by a tab.

13.4 EXPRESSIONS

DDT allows both input and output expressions to bhe 1in either numeric or
symbolic form. The majority of commands will accept or display in either
mode, although certain arquments, such as a hreakpoint number, must be
provided as a numeric value.

THE SYMBOLIC DEBUGGER (DDT) Page 1

WA

~3

13.4.1 Input Expressions

Most commands will accept an expression whenever they require input. All
numeric input to BOT is 1in octal. Both symbolic and numeric expressions can
use the plus (+) or minus (=) operators. The following are all valid opoT
input expressions:

123
12343+57725
TAG

TAG+77
TAG+IT

Where TAG and IT are defined symbols.

13.4.1.1 Special Symbols -~ In addition to the symbols defined in the
program being debugged, BOT recognizes several special symbols in input
expressions., In register mode, DDT recognizes the register names R0, R1,
R2, R3, R4, RS, SP, and PC. 1In program-relative mode, ODODT recognizes the
special symbol dot (.) as being equal to the currently open location. bot
allows you to use relative offsets in an expression:

- +40/ Mov 7,.R1 BR _+20
.38

The above example of using dot in a breakpoint command ($B) is one of the
most frequent uses of the special symbol dot.

13.4.1.2 Local Symbols ~ pdT correctly displays Ulocal symbols if the
appropriate symbol table file is available. (If your version of ppT
displays local symbols as garbled RADS0 names that begin with a colon, you
have an obsolete version of BpT.) (For information on using local symbols in
yOUr source programs, see Sections 4.7 and 6.1.60)

NOTE: Local symbols take the form nnng. In the examples below, notice that a
dollar sign preceding a character indicates a normal DDT command in which
the dollar sign designates an Escape (for example: $A indicates Escape-A).
When a dollar sign follows 3 character (e.g., 10%), we are talking about a
Local symbol. t

ODT searches for local symbols by looking backward from the current open
location to the first non~Local symbol and then scanning forward from that
location to the next non-local symbol. The local symbol you are Looking for
must fall within that region.

To access a local symbol, you must first set the current location counter to
a Llocation 4n the region containing the local symbol. (Remember that a
local symbol oniy has scope betwean two non-local symbols. This 1is 1its
"region.") You will probably want to simply ooen the location at the

THE SYMBOLIC DEBUGGER (DDT) Page 13-4

non~local symbol that appears just before the local symbol; then you can
access the symbol that is local to it. For example: The %A command displays
a string of ASCII characters at the current location or at the location of
the symbolic argument supplied: '

LABELSA

tells the 3A command to use the location at "LABEL", a non-local symbol. If
we want to see the ASCII characters at the local symbol 10% which Lies
between LABEL and LABEL1, we would first open the non-local symbol that
precedes 10%:

LABEL/

Now we can access 10%, which is local to the non-local symbol LABEL by
entering the Llocal symbol "10%" followed by the command "Escape-A':

10334

DDT also accepts a local symbol when assembling an instruction, searching
for it in the range where the instruction is being assembled.

NOTE FOR ALPHA FIX USERS: FIX also correctly displays local symbols. Any of
the FIX commands that allow you to specify non-local symbols may also be
used to access local symbols. Just follow the non-local symbol with a
space; then enter the symbol you want to access that 1is local tao that
non~local symbol. For example:

>S START 108

tells F1X to search for the symbol 10% that is local to the mon-local symbol
START.

13.4.2 Qutput Expressions

DT outputs data in both symbolic and numeric format. When in
program-relative mode, DDT displays memory locations in symbolic form: in
register mode, it displays register contents in octal. ALL numeric output,
even when combined in a symbolic output expression {(such as JMP TAG+12) will
be in octal unless you have set J.HEX in your job status word wvia the SET
HEX command, or you are executing a command which explicitly displays data
in another radix (such as $D, the decimal typeout command).

THE SYMBOLIC DEBUGGER (DDT) Page 13-5

13.5 DDT MODES

PDT has three modes in which it operates: program-relative mode, absolute
mode, and register mode. The normal mode, and the ome in which DDT initally
comes up, 1S program-relative mode. 1In this mode, addresses are assumed to
be relative to the base address of the program being debugged. Therefore,
an expression of 12" refers to location 12 relative to the program hase,
not absolute location 12,

In absolute mode, all addresses are taken to represent absolute memory
locatiens. In the example above, '12" woutd refer to absolute memory
location 12, regardless of the fact that that location is outside of your
memory partition as well as outside of the program being debugged. Absolute
mode is entered via the TAB command, and left via the $R command.

In register mode, expressions refer to the registers instead of memory
locations. Register mode may be entered by using one of the special symbols
RO-R5, SP, or PC. Any of these symbols followed by a command which opens a
location will enter register mode. Register mode may be left via the 3R
command.

13.6 DDT COMMANDS

BOT has a variety of commands to allow you toc examine memory Llocations,
change the contents of locations, display registers, set breakpoints,
single-step, etc. Commands to DDT usually consist of giving a numeric or
symbolic argument fol lowed by a ODT command. Commands consist of single
characters, such as the slash (/) command, and also of an Escape (ALTMODE on
some terminals) followed by a single letter command, such as the Escape~B
command. Escapes in DDT echo as a doltar-sign ($). The dollar-sign is used
in this section to represent an Escape; therefore, when you see a command
such as "$8", that should be interpreted as an Escape fol Lowed by a "8".

Several of the commands refer to opening and closing memory tocations or
registers. When a Llocation or register is said to be "open," it simply
means that DDT will place into the open item any expression entered through
your terminal followed by a command that closes the location. This is the
method by which memory or register contents are modified. When a Location
is "closed," you may no longer modify it by entering an expression without
first opening the location again.

13.6.1 Opening a Location or Register (/)

The stash command (/) displays the current contents of a memory location or
register and leaves that location open for modification. The slash command
takes a symbolic or numeric argument immediately preceding the slash. The
contents of the opened {item will be displayed in symbolic form. The
contents may be examined in other formats via other commands such as equal
(=), Escape-D ($D), etc. The sltash command will not open locations outside

THE SYMBOLIC DEBUGGER (DDT)

of the program being debugged unless DOT
shows a few examples of using the slash

TAG/ MOVI 7,R1
TAG+12/ SET QFLG(B)
R1/ 46623

examine

Page 13-4

is in absolute mode.
command:

The following

locaticn TAG
location TAG+12
register R1

examine
examine

13.6.2 C(Closing a Location (Carriage-Return)

The carriage-return (FEET) command closes
other commands which close a lecation,
number or symbolic expression which will
Note that the expressicn given prior

more than one word of data, in which case the extra words are placed in

Llocations immediately following the open

13.6.3 o»isplay a Value in Octal (=)

The egual (=)

octal unless you have SET HEX, in whi
hexadecimal. The equal command may be u
numeric, or may be wused to compute

following are all common uses of the equ

TAG/ MOVI 7,R1 = 004166
TAG=3252

26662+15252=44134

.=24233

13.6.4 Opening the Next Location (Line-
The Lline~feed (LF) command functions the
except that it opens the next location
Depending on vyour terminal, to enter a
on your terminal or the key lLabeled "Lf"

If the contents of the current location

form, LF will advance to the Llocat
displayed, regardless of length. This a
program, without regard to opcode lengt
displayed in octal (via the command) t
word. If new 'data is entered prior

data entered will determine the next Loe

In register mode, a Line-feed will step
past PC, RO will be reopened,

the current Location. As with

it may be immediately preceded by a
be placed into the open lecation.
to the closing command may generate
the
one.

command displays the contents of the currently open item in

ch case the display will be 1in
sed to convert a symbolic typeout to

the wvalue of an expression. The
al. command:

display contents inm gctal
find value of symbol

compute an expression

display current Location addr

Feed)

same as the carriage-return command
after c¢losing the. current one.
line-feed, press the down-arrow key
or "LINEFEED.,"

have been displayed in symbolic
ion following the entire instruction
Llows you to easily step through =
h. If the current location has been
he LF command will step to the next
to the LF command, the Length of the
ation opened.
to the next register. If

you step

THE SYMBOLIC DEBUGGER (ODT) Page 13-7

13.6.5 Opening the Previous Location (")

The up-arrow (™) command will close the current location and open the
location immediately preceding the current one. Unlike LF, up-arrow does
not automatically open a location on a valid opcode boundary; up-arrow
always backs up one word.

(NOTE: This command is not the key Llabeled with an up=arrow on your

terminal keyboard-- it 4% the m~n symbol, the circumflex.)

13.6.6 Opening a Location Indirectily ¢

The at~-sign (3) command treats the contents of the current open location as
a8 program relative address and opens that location.

13.6.7 Opening an Absolute Location Indirectly (TAB)

The TAB (Control-I) command treats the contents of the current open location
3S an absolute address and opens that location. It also sets ODT into
absolute address mode. DDT will remain in this mode until you execute an $R
command.

13.4.8 Starting a Program (%G)

The Escape~G ($G) command starts the program being debugged at retative
address Q. DDT echoes a tab after the $G, and waits for one Line of {input
terminated by a carriage-return, prior to beginning actual execution of the
program. This line of inmput is passed to the program just as if it had been
entered following the command if the program were being run without DDT.
The proceed ($P) and single-instruction ($X) commands are not Llegal until an
$G command has been entered. You may execute an 3¢ command at any time to
restart the execution of the pProgram. This assumes, of course, that the
program being debugged is self-initializing so that the same copy can be run
more than once.

13.6.9 Setting Breakpoints ($R)

The Escape-B (3$B) command sets or Lists breakpoints within the program. DDT
allows up to eight breakpoints to be sat in the program. Each breakpoint is
assigned a number from 0 to 7. The 3B command accepts two arguments: the
numeric or symbolic program-relative address at which you wish to set a2
breakpoint, and the breakpoint number which You wish to place at this point.
The pregram-relative address is given first, immediately preceding the
Escape. The breakpoint number is given after the Escape, immediately
preceding the B. Both of the arguments are optional. If the address is

THE SYMBOLIC DEBUGGER (pDT) Page 13-8

omitted, the breakpoints are Listed on your terminal. If the breakpoint
number is omitted, the first available breakpoint is assigned. The
following list should make things clear:

B8 Lists all active breakpoints by number and symbolic or
numeric address,
ExB Lists breakpoint x, if it is active.

TAGSB Sets a breakpoint at address TAG. The first inactive
breakpoint is used. If no breakpoint is available a '2"
is printed on your terminal.

TAGSxB Sets a breakpoint at address TAG. Uses breakpoint x
whether it was previously in use or not.

DDT will not allow odd address arguments or breakpoint numbers greater than
7 for 38, or for the $C command below.

13.6.10 Clearing Breakpoints ()

The Escape~{ ($C) command clears one or all of the breakpoints currently
set. It accepts two arguments in the same manner as £B.

$C Clears all active breakpoints from the table.

$xLC Clears breakpoint x, if it was active.

TAGSC Clears the breakpoint at address TAG, if such a breakpoint
exists,

TAGSxC Functions the same as $xC.

13.6.11 Proceeding From a Breakpoint (3P)

The Escape-P (3P) command proceeds from the Last breakpoint. This command
is only valid if a breakpoint has been reached in the program. When
executed, $P causes program execution to resume until another breakpoint s
encountered or the program exits.

The 3P command accepts an optional argument before the Escape-P. This
argument is a one word value telling 50T how many times to execute the
current breakpoint before breaking again. Thus the command 53P tells DT to
pass through this breakpoint five times before breaking again. If this
argument is not given, DDT assumes a value of one. Using this argument s
often useful if a breakpoint has been placed within a loop, and you wish to
have DDT break only after several iterations of the Loop.

THE SYMBOLIC DEBUGGER (DDT) Page 13-9

13.6.12 Executing Single Instructions ($X and \)

The Escape-X ($X) and backslash (\) commands are identical. Both cause the
execution of a single instruction. These commands are valid only after a
breakpoint has been reached. They are usually used to monitor the execution
of a small section of a program, allowing the examination or modification of
registers and memory locations between each 1instruction. IMPORTANT NOTE:
You are not allowed to single-step through a supervisor call (also known as
a '"monitor call').

13.6.13 Setting Program-Relative Mode (%R)

The Escape~R (3R) command enters program-relative mode once you have been in
absolute or register mode.

13.6.14 Displaying data 4n Decimal (3D)

The Escape-D ($D) command displays a location or series of locations in
decimal. This command accepts one of tyo possible arguments, but not both.
One of the arguments represents the expression to translate and the other 1is
the number of locations to translate. The following table should explain

the format:

$D Displays the currently open lLocation in decimal.

$xD Displays x words in decimal, starting with the currently
open Llocation.

exp$Dd Displays the decimal value of exp. Exp can be numeric,
symbolic, or an opcode expression. As many words as are
needed to display the entire expression are ysed.

13.6.15 Displaying Data in Octal ($=)

The Escape-equal ($=) command displays a location or a series of Locations
in octal. It is identical in format to the $D command.

13.6.16 Displaying pata in Hex ($H)

The Escape~H ($H) command displays a location or a series of logations 1in
hexadecimal. It is identical in format to the $D command.

THE SYMBOLIC DEBUGGER (DDT) Page 13-10

13.6.17 Displaying pata in RADSO (%)

The Escape-asterisk (%) command displays the contents of the current
Location in unpacked RADS0 format.,

13.6.18 Displaying pata as ASCII Characters (')

The Escape-quote ($'") command displays the contents of the current location
as twe ASCII characters.

12.46.19 Displaying pata as Bytes ($#)

The Escape-pound sign ($#) command displays the contents of the current
location as two 8-bit bytes. The Low order byte of the word is displayed
first. Typeout is in octal.

13.6.20 Displaying a String of ASCII Characters (3A

The Escape-A ($A) command displays a string of bytes as ASCII characters,
This command terminates its typeout when a null byte is found, and adjusts
the current location to the next even address following the null byte. The
command accepts two formatss:

$A Pisplay ASCII data starting with the current open
location.
TAGSA Display ASCII data starting at relative address TAG.

13.6.21 Displaying the Base Address and Size (3M)

The Escape-M ($M) command displays the absolute base address and the size in
bytes of the program being debugged. This is the same information typed
when DDT is first started.

13.6.22 pefining New Symbols (:)

The colon (:) command allows you to define new symbols and insert them into
the symbol table. The location being given a label nmust be within the
program, not outside of jt. Symbols are, as usual, one to six RADSO
characters long, with the first character always alphabetic. A symbol may
be defined by merely typing the label name followed immediately by a colon,
as in:

TAG:

THE SYMBOLIC DEBUGGER (DDT) Page 13-11

The value assigned to the symbol is the Llocation of the Llast examined
address, Once the symbol has been defined, it may be referenced
symbolically by you throughout the program. The colon command is most often
used during program patching (see Section 13.7, "Using DDT To Patch
Programs"). New symbols are automatically inserted -<nto your symbol table.
Once you have exited from DDT, you can resave the symbol (.SYM) file so that
the newly defined symbols are available next time you wuse DDT on the
program.,

12.6.23 Examining Register Contents (%)

The percent (%) command examines the contents of a register without entering
register mode. It is often used to display the contents of a register as
you single-step through a program, without having to enter and exit register
mode. The format for the percent command is "¥%xx=", where xx is the CPU
register that you want to display. The register argument must be in
standard register notation (i.e., R1, R2, R3, R4, R5, SP, or PC). The
contents of the register are displayed in octal. ‘

13.7 USING DDT TO PATCH PROGRAMS

You will often use DDT to patch an existing program. This is often useful
if you do not have the source code handy, or if you do not wish to go
through a time-consuming reassembly of your program. pDT provides for
patching through the use of the colon command to define symbols, and through
automatic expansion of the program area. Patches may be placed at the end
of the program after the last valid Llocation in the program; DODT will
automatically expand the program to fit the patches. Program patches may be
done symbolically through the normal symbolic entry mode, and through the
use of the colon command. A symbol may not, however, be referenced before
you define it. If a label is defined at the start of the patch, the patch
may be referred to symbolically throughout the main program.

13.8 DDT ERRORS
If DDT does not understand your input, it displays a "?'.
Other error messages include-:

?Cannot OPEN filespec - not found

where filespec i1s the file You want to debug., Make sure that you are
logged into the proper account and device.

THE SYMBOLIC DEBUGGER (hDT> Page 13-12

?Cannot single step through sve
You cannot Use the ¥ command to single-step trhough a supervisor
call, You must skip over the call by placing a breakpoint after the
call and its arguments: then use the $f command to skip to that
Location. At that noint you can resume single-stepping.

?D0T Internal huserr _
A bus error cccurred within the pdT broaram itself. This error was
not caused by your program,

?Buserr at monitar RC ialalela
A bus “error occurred, but was not caused by DDT. Your program is
probably at fault., The number that app=ars in the message tells you
what memory address uas loaded inmto the Program Counter when the
error occurred.

13.9 EXITING DDT

To leave DDT, type a Control-C. »DT will save the altered program and
symbol table 4in memory, allowing vyou to use the SAVE ‘command to make a
permanent copy of either the modified program or symbol table. You should
never save a program that has been partially run: it 45 a good idea to use
DDT on the program once again, put in the patches, and save 1it, without
running it, This ensures that there are no data storage areas that have
been altered from their craginal state. 1If the program exits on its own
while being run, you should NEVER save it 4f breakpoints were ysed anywhere
in the program. Breakpoints are not cleared until the program goes back to
DbT. Running through breakpoints when not under control of DDT can have
disasterous results,

APPENDIX A

THE ASCII CHARACTER SET

The next few pages contain charts that List the complete ASCII character

set. We provide the octal, decimal and hexadecimal representations of the
ASCII values.

Note that the first 32 characters are non-printing Control-characters,

THE ASCII CHARACTER SET

Page A-2

THE CONTROL CHARACTERS

CHARACTER OCTAL DECIMAIL HEX MEANING
NULL ono 0 a0 Null (fill character)
SOH 001 1 M Start of Heading
STX Nna2 2 02z Start of Text
ETX n03 3 03 End of Text
ECT n04 4 N4 End of Transmission
ENG _ 005 5 05 Fnguiry
ACK 006 'S Né Acknowledge
BEL ony? 7 07 Bell code
BS 010 8 08 Back Space
HT 011 9 ne Horizontal Tab
LF 012 10 NA Line Feed
VT 013 (N ns Vertical Tab
FF 014 12 0c Form Feed
CR 015 13 0b Carriage Return
50 016 14 NE Shift Qut
SI 017 15 0F Shift 1In
DLE 020 16 10 bata Link Escape
DC1 021 17 11 Device Control 1
DC2 022 18 12 bevice Control 2
DC3 023 19 13 Device Control 3
DC4 024 20 14 Device Control 4
NAK 025 21 15 Negative Acknowledge
SYN 26 22 14 Synchronous Idle
ETB 027 23 17 End of Transmission Rlocks
CAN 030 24 18 Cancel
EM 031 25 19 End of Medium
58S 032 26 1A Special Sequence
ESC 033 27 1B Escape
Fs 034 28 1C File Separator
GS 035 29 10 Group Separator
RS 036 30 1E Record Separator
us 037 31 1F Unit Separator

THE ASCII CHARACTER SET

PRINTING CHARACTERS

Page A-3

CHARACTER QCTAL DECIMAL HEX MEANING
SP 040 32 . 20 Space
! 041 33 21 Exclamation Mark
" 042 34 22 Quotation Mark
043 25 23 Number Sign
% 044 36 24 Dollar Sign
“ 045 37 25 Percent $Sign
& 046 38 26 Ampersand
! 047 39 27 Apostrophe
(050 40 28 Opening Parenthesis
p] (151 41 29 Closing Parenthesis’
* 052 42 2A Asterisk
+ 053 43 2B Plus
054 44 2c . Comma
- 055 45 . 2D ‘Hyphen ar Minus
. nsé 46 2E Period
/ as7v 47 2F Slash
0 0460 48 30 lero
1 061 49 21 Hne
2 062 50 32 Two
3 063 51 23 Three
4 064 52 34 Four
5 065 53 35 Five
6 066 S4 34 Six
7 067 5% 37 Seven
8 070 56 38 Eight
9 071 57 39 Nine
: 72 58 3A Colon
: 073 59 3B Semicolon
< 074 &0 3C Less Than
= 075 61 3D Sign
> 076 62 3E Greater Than
? 077 63 3F Question Mark
) 100 64 40 Commercial At

THE ASCII CHARACTER SET

Page A—4

CHARACTER QCTAL DECIMAL HEX MEANING
A 101 A5 41 Upper Case Letter
B 102 66 42 Upper Case Letter
C 103 67 43 Upper Case Letter
D 104 68 4 Upper Case Letter
E 105 49 45 Upper Case Letter
£ 106 70 46 Upper Case Letter
G 107 71 47 Upper Case Letter
H 110 72 4R Upper Case Letter
I 111 73 49 Upper Case Letter
J 112 T4 4La Upper Case Letter
K 113 75 48 Upper Case Letter
L 114 74 4C Upper Case Letter
[115 77 4D Upper Case Letter
N 116 78 4E Upper Case Letter
0 117 79 4F Upper Case Letter
p 120 80 50 Upper Case Letter
Q 121 81 51 Upper Case Letter
R 122 82 52 Upper Case Letter
) 123 83 53 Upper Case Letter
T - 124 84 54 Upper Case Letter
1 125 85 55 Upper Case Letter
v 126 864 56 Upper Case Letter
W 127 87 57 Upper Case Letter
X 130 g8 58 Upper Case Letter
Y 131 89 59 Upper Case Letter
z 132 90 S5A Upper Case Letter
£ 133 91 5B Opening Bracket
\ 134 92 5¢C Back Slash
] 135 93 5D Closing Bracket
" 136 A SE Circumflex

137 95 5F Underline

- 140 96 &0 Grave Accent
a 141 Q7 61 Lower Case Letter
b 142 o8 62 Lower Case Letter
c 143 @9 63 Lower Case Letter
d 144 100 b4 Lower Case Letter
e 145 101 65 Lower Case Letter
f 146 102 66 Lower Case Letter
g 147 103 67 Lower Case Letter
h 150 104 68 Lower Case Letter
i 151 105 49 Lower Case Letter
i 152 106 A Lower Case Letter
k 153 107 68 Lower Case Letter
L 154 108 6C Lower Case Letter
m 155 109 6D Lower Case Letter
n 156 110 &E Lower Case Letter
0 157 111 6F Lower Case Letter

THE ASCII CHARACTER SET

Page A-5

CHARACTER OCTAL DECIMAL HEX MEANING
p 160 112 70 Lower Case Letter
q 161 113 71 Lower (ase Letter
r 162 114 72 Lower Case Letter
s 163 115 73 Lower Case Letter
t 164 116 74 Lower Case Letter
u 165 117 75 Lower Case Letter
v 166 118 IL:) Lower Case Letter
W 167 119 7 Lower Case Letter
X 170 120 78 Lower Case Letter
¥ 171 121 79 Lower (Case Letter
2 172 122 TA Lower (ase Letter
{ 173 123 78 Opening Brace
I 174 124 7C Vertical Line
} 175 125 D Closing Brace
176 126 7€ Tilde
DEL 177 127 7F Delete

APPENDIX B

SUMMARY OF PROGRAM SWITCHES

The sections below List the option request switches wused by the warious
components of the Alpha Micro assembly Language programming system:

MACRO
LINK
SYMBOL
LIB
GLOBAL

For more information on a particular option request, see the chapter in this
book that discusses the appropriate program.

B.1 THE MACRO ASSEMBLER - MACRO

/B text Generates bottom footer title on each listing page using the
rest of the command Line following the switch. /B must be
the last switch on the command Line.

/C Includes conditionals in the Listing.

/E Writes to the Listing only those Lines that contain an
error.

/H Lists binary code in hexadecimal instead of octal in the
Listing.

/L Generates an assembly Listing file. Creates the output file

with the same name as your source file, but a .LST
extension.

/0 Uses current object file by omitting Phases 1 and 2.

/R Generates a cross reference, which appears at the end of the
assembly Llisting. -

SUMMARY OF PROGRAM SWITCHES

Page B-2

/T Prints the Listing on your terminal instead of writing it to

a disk file.

/V¥{a¥:X Allows you to specify a value on the MACRO command Line

which can be examined during the assembly process.

a

specifies the type of value specified, and X is the value.

/X Lists in your assembly Listing all macro expansions.

NOTE: You do not have to specify the /L switch when you use the /B, /C, /E,

/H, /R, /T, or /X switches to tell MACRO to generate a listing.

You may combine any of the above switches as desired 1in a single

command

Line by entering them after a single / character at the end of the command

Line. For example:

=MACRO NEWDVR.MAC/RT (RED)

B.2 THE LINKAGE EDITOR - LINK

/E Include equated symbols in the symbol table file. (You must

/E with the /M or /S switch.) (Operation switch.)
/L -Designates a Library file.
/M Generates a load map (.MAP) file. (Operation switch.)
/N Suppress /P switch. (Operation switch.)

/0 Designates an optional file.

use

/P Generates program (.PRG) and overlay (.OVR) files. The default

switch. (Operation switch.)

/R Designates a required file. The default switch. Cancels the /L

and /0 switches.
/5 Generate a symbol table (.SYM) file. (Operation switch.)

You may specify multiple switches if you precede each switch with
For example:

LLINK MAIN,SUB1/M/S (D)

a

slash.

SUMMARY OF PROGRAM SWITCHES Page B-3
B.3 THE SYMBOL TABLE FILE GENERATOR - SYMBOL
/E Include equated symbhols in the symbol table file. You may also
use this switch with /M to tell SYMBOL to include equated
symbols in the load map. (Operation switch.)
/L Designates a library file.
/M Generate a load map (.MAP) file. (Operation switch.)
/N Suppress /S switch. (Ope}ation switch.)
/0 Designates an optional file.
/P Generate program (.PRG) and overlay (.OVR) files. (Operation
switch.)
/R Designates a required file. The default switch. Cancels the
affect of a /L or /0 switch.
/S Generate a symbol table <(.S3YM) file. The default switch.

(Operation switch.)

You may specify multiple switches if you precede each switch with a slash.

For example:

=SYMBOL MATIN,SUB1/M/S

B.4 THE OBJECT FILE LIBRARY GENERATOR - LIB

The only LIB switch at this time 1is the /L switch which tells LIB to

generate a Llibrary listing. This Listing Llooks similar to a

Load map

listing (see Section 10.4., '"The Load Map File."), and lists all object

files in the library file and all TNTERNed symbols.

1f you specify an output file (e.g., LIB LIST=MYLIB/L) LIB creates the
listing with the name and extension you specified (the default extension is
-LST). If you do not specify an output file (e.g., LIB MYLIB/L), LIR sends

the Llibrary listing to your terminal disnlay.

8.5 THE GLOBAL CROSS REFERENCE GENERATOR - GLOBAL
Line width options (default is 80 characters):

/W Wide Listing (same as /W:130). Produces a listing
file that may have up to 130 characters on a line.

Juin specifies characters per line, where n specifies
the numher of characters.

SUMMARY OF PROGRAM SWITCHES

Page length options (default is 60 Lineg):
/e Long Llisting (same as /L:80).

/len Specifies lines per page, where n specifies the
number of Llines.

Each switch must begin with a slash. Ffor example:

GLOBAL/W/L MAIN,SUB1,sUB2

Page B-4

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

$ symbol

-6LB file
JIPF file o 0 0
LIB file o o . o . . .
ST file o o 0 . . L.
SMAC file o 0 L L L L.
MAP file oL oL L L L.
08 file & 0
0VR file
PRG file o
SSYM file o . L. . ..
STMP fite o, L L L . .

Argument concatenation
ASCII zharacter set . .
ASECT o & v v o v o . .
Assembled program . . .
AUTOEXTERN

BLKE
BLKW . o . . o
BYTE . . . oo

CALL
Comments
Condition codes
Conditional assemhly .
Condition codes . . .
1
Example
L
IFF o o o o o o . ..
IFT o o v o v o o . .
IFTF . . .«
Multi-Lline format . .
Mestina
Mesting example . . .
Sinale-Line format .
Subconditional rules
Subconditionals . . .
CoPY o
Copy file
Search defaults . . .

Index

12-1

2=3, 12~2

Pty

2-3, 5-1n, 10-8, 11-1
2=-2, 11-2

2-1, 5-2, 9
2=3, 10-4, 10-90
2=1, 9=1, 10-1, 10-8, 12-1
2=-2, 5-12, 9-1
2-2, 9=1, 10-1
2-3, 10-4, 13-2
2-4

A=5

4-1, 5-R

=4

2-2

5«10

5-8

5-8

5-7

5-14

-5, A=4

7-2

b, 7=1

7=2?

7-7

7-4

7-1

7-3

7=3

7-3

7-1

773

7-7

7-1

7-3

7-3

1-1, 2-1, 5-1, 5~0
5-1

5-2

Page Index-1

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

CREF
Crass reference

Cndes
Sample ., . .

]
Abhsolute open
ASCII typeout
Rreakpoints

Byte typeout
Ctosing locations
Command ldine
Commands
Decimal typeout
Definina symhols
Display ASCTI characters . .
Disnlay octal data
Displaying base address . . .
Error messages
Examinina leocations
Examining registers
EX1ting v o 4w 0 0 o o o w . .
Expressions
Hex typeout
Indirect open . o o . 2 . . .
Local symbols
Modes o & . o o o v o o . . .
Octal typeout
Opening the next location . .
Opening the previous location

Operation
Patchina nrogqrams
RADSH typeout . .

Sinale step . . .
Special symbols .

Starting the prooram

Debugger
DEFINE .

END . . .
ENDC . .
ENDM | .
ENDMX . .

Error messaasas

o0T . .
GLOBAL
LIB . .
LINK .
MACRO .
 SYMBOL
'ESCAPE
EVEN . .

-1, 2-3, 10=4, 12-1, 13=3

12-7
13-10

13-7 to 13-R

13-10
13-4
131
135
13-9
13-10
13-10
13-6
13-10
12-11
13-5
12-11
13-12
13-2
13-9
13-7
13-3
13-5
13-9
13-6
13-7
131
1311
13-10
13-9
13-2
13-7
13-1
6-2

DN O

”~

Paae Index-?

13-5 to 13-12

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANLAL Page Index-3

Expression evaluation

&
Expressions ¢ 4=
EXTERN . . & . . o & & 5
External symhols 5§

FETCH o« o & & o o o . . . -« « 5-10
Files

Assembly cross reference . . . Q-7

Assembly Llisting 2-2, =%, 9-4

Global cross reference 2-3

Inter-phase work 2-4

Library « o o o . o 23, 10-3, 1N-6, 11-1

Library Llisting 11-2

Lead map & o 4 2=3, 10-3

Obiect 10-1, 11-1, 12-1
Optional 10-3, 10-4
Overlay . . . o o 2-72

Program . o 0 . L . . . 2=2

Required 10-3, 10-4
Resolved symbol 2=2, 104, 13-7

Source . L oL L 0L 2=-1, 9=
Temporary work 24

FIX @ o i i i e i e e e e e . 2-1, 2-3, 13-1
Local symbols 12-4

GLOBAL o v 2=1, 2-3, 12-2
Command Line 1721
Continuation lines 12-2
Error messages 12-4
Operation 12-7
Options « & & o o o 12-1
Sample disptay, . . . 192-2
Sample listing, . . . 17-7

Global CREF file 2=-3

Glohal cross reference 12-2

GLOBAL options 12-7
Lana listing 12-2
Wide listina 12-2

L -1, 7-3%

L 73

L O 1

L - e . 73

Index modes o 82

Inter-phase work files 2-4

INTERN 5-9 to 5-10, 10-4

Internal symbols 50

Labels o &« . & A3

LEA o o o s w s L L . . . L. - 8-1

LTB & w v v v o v s e e s . 2=1, 2=3. 5-10, 11-1
Command line, . . . 11-1
Continuation Lines 11=7

AMOS ASSEMBLY LANGUAGE PROGRAMMER 'S MANUAL

Error messages . ., . - e .
Exceptions «¢\) . _
Inclusions
input specification
Library files
Listing ontion
Output specification . . .
Sample display
Updating a Library
Library files
Library Llisting
Library undating
LINK . . o o o o 0
Command line
Continuation lines
Error messages
Operation
Optional files
Options &
Sample display
LINK options
Eguated symbols
Generate program file . . .
Generate symhol table . . .
Library file
Load map file
Optional fite . . .,
Reguired file . o
Subpress program aeneration
LIST « .. - » o .
Listing file
Load map file
Sample
Local symbols,
Location counter -

Machine instruction format -

MACRO
Command Lline
Cross refarence
Error Codes
Listing format
Operation . .,
Options
Sample cross reference . .
Sample display . « o . . .

MACRO options
DPisplay Listing on terminal
Generate a listing
Generate cross reference .
List code in hexadecimal .
List conditionals
List errors

11-4
11-2
11-2
11-2
10-8
11-2
11-1
11-3
11-1
2-3, 5=10, 10-7, 11-1
11-2
11-3

Page Index-—4

2=1 to 2-2, 4-5, 5-9 to 512, 10-1, 10-4

10-2
10-3
10-9
10-1
10-3
10-° to 10-3
10-3

10-3

10-3

10~3

10-3

10-3

10-3

10-3

10-3

5-4, 9-6

2-2

2-3, 10-9
10-9

bmb, 4=3, 13-3
4-5 -

3-2

i i

~0\0\0‘~€J\I0\0‘00
VIO N = DN 0~ ™

0
{

00-‘??\0

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

List macro expansions .
Listing footers
Parameterized assembly
Use current object file
Macros
' operator
Araument concatenation
Call arquments
Calls . & & o o o . . .
Comments
DEFINE
befinition
dummy arguments
ENDM . L o0 L. L L L.
ENDMX
Examples
Expression evaluation .
Labels
Local symbols
Multi~Line definition .
NCHR . o . o . & & . .
Nested calls
NEVAL « . . o & .+ o . .
L A
NTYPE & . . .
Real arguments ., . . .
Single line definition
\ operator
MAYCREF . . .+ + &« & & . .
Monitor calls &
FETCH o & . . .
GETMEM

o]]
NEVAL o & v v o o o o . .
NOCREF . . & . o o « . .
NOLIST & v v v v o o . .
NOSYM
NSIZE o v v v 4 o o o .
NTYPE . . & . . v w . . .
Numbers
NVALLE o L L . o o L . L.

Object file
Obiect file Library . . .
OBUNAM . . o,
OFFSET & . . .
_Operation switches . , .
Operators o« o v 4« o« & - .
Optional files
Ouarlay files
Overlays
OVRLAY

9-3
5-2
7~1, 9-3
9-3
41
6-5
6=5
6=9
3-4, 6-8
b4
6-2
3~4, 6-1
A~3
b6-2
b6~6
6~8, &=11
6=5
-3
6-3
h=2
b=6
6-11
56
6—6
6=6
-9

00=w—\1i!1'3~3~3\
Lo ¥, IRV, B G]
O
~t

rd = f

-1, 13-9
=19, 5-12
6~6

b=6é

5-5, 9=7
5-4, Q=4
5-5

b4

6-6
L4

5-A, 9=4
2-1

5=10, 11-1
5-3, 9-4, 10-5
5-14

10-2

LR

10--7

2=2

5-12

2-2. 5-% to 5-10, 5-12

Page Index-5

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page Tndex-—4

PAGE L. - s e o
Parameterized assemhly option . .
e . .
Position independent code
Program file
Pseurdo opcodes
ASCIT - s = .
ASECT - .
Assembly control
AUTOEXTERN - o =
BLKB
BLKW . . o . L L. ...
BYTE . . . o o o o
O
Convenience &
CORY . . o e« 1
CREF 5
Data aeneration &
DEFINE é
5
7
&
6

9-6
Oy,

~

1§ 1 1 I]

R’ IR« '« QR S S T V) SV [N N S]
JaN I o e} ~ NN
T
(¥,]

Al
A
i
~

!
=P NN O A

1, %=4, 5-1, 5-9

~

i
Al
O M
"IJ._\

END . . L.
ENDC . L. . L L. L L
EMDM . . . L L. L . L. - o =
ENDMX « o .
o e .
Extended conditional jumps . .
EXTERN -
IF o 6 o v o 0w L. .
L .
L
L o
INTERN 5-
LIST . . o o o o v 0
MAYCREF -
NCHR
NEVAL &
NOCREF -« & o ©5=§
NOLIST 524
NOSYM -+ « o 5~§
NSIZE h-b
b6

é

2

-\j\]\.’n..n\.n
2

N % N
Jr
!
—
—
h
—
-
I
S~

NN -

j\l.’l"!\fl
fu LN Y R e
LY
I

NTYPE o
NVALU L L. s
OBJNAM 5
OFFSET &=
OVRLAY, ... 22,
PAGE 5-4,
POP i 5-1%
PST & e o i h e e e e e e .. Be14
PUSH . &- .. 5212
RADSO =&
RADIX &
RSECT . . o v o v v o v e e Ly
RTN o . o L o o oL L. L. L s5=14
SYM . . L . e e 5
WORD %

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page Index-7

PST & & & 4 v i i i s s i o s .. 514
PUSH o . o o o o 0 o000 s s . 513

RADSO . . . v & . . o . . L. .. 131D
RADSQ character set 31, 4-1, 5-8
Y
Radix changing 4
Re~entrant code « . . . 1
REGIStErs . . . 4 v 4 4w w o o . b=t
Relocatable code 1
ASECT & v & & 4w & e . s e e w . B
Legal addressing modes 8
RSECT & . & & ¢ 4 v v v . o . . 5B
RSECT & & v 4 4 4 4 4 s e e w u . 5-
L

Segmenting programs
Source file
Source format . . « & . +
Subconditionals
Rules & & v 4 v 4 4 4 & o4 v o .
SVEB v 4 i i h h i s e e e e el
SYM & ke e e e h e e e e e
SYMBOL & . 4 . e ...
Command line
Continuation Llines
Error messades . . . o o « o .
Options . . & & 4 & 4 v & o « .
Sample display 10-6
Symbol files & 2=-3, 13-2
SYMBOL options ¢ 10-54
Equated symbols 10-6
Generate program file 10=5%
Generate symbol table 10-6
Library file ¢ v o« . . 10-6
Load map file . . . « & + .+ . . 10-6
Optional file 10-6
Reguired file 106
Suppress symhol table 10-6
Symbolic equates (=) 3=3
SYS.MAC & v & v o Lo w s s L. 11, 344, 5-1, 5-12, 61, 6-8, 7-5

2-3, 10-4

_ =3 2 _amm*.{:-\j-\lw!\)u"

DO-‘.?O
[o 3 e o NIV, LN

TCALL v & 4w 4 i h h h e e . . e 5-14, 8=1
Temporary work files . . ., . . . 2-4
TEFMS 4 4 v 4 4 s d a4 e oaom e h=2
TIMP v v s . s L s i d s .. 5=14, 8-1

Updatina a library 11-3
User symbols 3=1

NORD " 4 & & = = = = @ B & & = = S—? «

