
DWIV1—DD100—43

REV BOO

SOFTWARE IV1ANUAL

AMOS
ASSEMBLY LANGUAGE

PROGRAMMER'S MANUAL

alphamicro

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page ii

First printing: April 1979
Second printing: 30 April 1981

'ALpha Micro', 'AMOS', 'AIphaBASIC', 'AM—lOO',
'ALphaPASCAL', 'ALphaLISP', and 'ALphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This manual refLects AMOS Versions 4.5 and later

01981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

C—2MD—4/81

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page iii

PRE FACE

This manual covers the procedures for writing assembly language programs forthe Alpha Micro AM—ion and AM—100/T based computer systems. We also discussthe operation of the programs. that make up the AMOS assembly program
development system. We assume that you are familiar with assembly languageprogramming techniques in general, and with the AM—lao machine instructionset in particular.

The WD16 Microcomputer Programmer's Reference Manual, (DWM—OOlOO—04),describes the instruction set for the AM—lOD and AM—lOO/T CPUs. Forinformation concerning interfacing with AMOS via the AMOS monitor caLls,refer to the AMOS Monitor Calls Manual, (DWM—OO100--42).

NOTE: Because the AM—100 and the AM—iOO/T CPUs use the same instruction set,
all references to "AM—iOU" in this manual also apply to the AM—100/T.

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page V

Table of Contents

PREFACE i-il
CHAPTER 1 INTRODUCTION

1.1 NOTE TO USERS OF PREVIOUS VERSIONS OF
MACRO, LINK, SYMBOL AND DDT 1—2

1.2 THE CONTENTS OF THIS MANUAL 1—5
1.3 READER'S COMMENTS FORM 1—6
1.4 CONVENTIONS USED IN THIS MANUAL 1—6

PART I INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

CHAPTER 2 FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM

2.1 ,MAC — SOURCE FILES 2—1
2.2 .OBJ — INTERMEDIATE OBJECT FILES 2—1
2.3 .PRG — BINARY PROGRAM FILES . .. 2—2
2.4 .OVR — BINARY OVERLAY FILES 2—2
2.5 .LST — PROGRAM LISTING FILES 2—22.6 .LIB — LIBRARY FILES 2—3
2.7 .GLB — GLOBAL CROSS REFERENCE FILE 2—3
2.8 .MAP — LOAD MAP FILE 2—32.9 .SYM — RESOLVED SYMBOL FILES 2—3
2.10 .IPF — INTER—PHASE WORK FILE 2—4
2.11 .TMP — TEMPORARY WORK FILES 2—4

CHAPTER 3 MACRO SOURCE PROGRAM FORMAT

3.1 MACHINE INSTRUCTIONS 3—2
3.2 DATA GENERATION STATEMENTS 3—2
3.3 SYMBOLIC EQUATE STATEMENTS 3—3
3.4 ASSEMBLY CONTROL STATEMENTS 3—4
3.5 CONDITIONAL ASSEMBLY DIRECTIVES 3—4
3.6 MACRO DEFINITIONS AND MACRO CALLS 3—4
3.7 COMMENT LINES AND BLANK LINES 3—5

CHAPTER 4 TERMS AND EXPRESSIONS

4.1 CHARACTER SET 4—1
4.2 TERMS 4—2
4.3 EXPRESSIONS 4—2
4.4 NUMBERS 4—4
4.5 REGISTER SYMBOLS 4—4
4.6 ASSEMBLY LOCATION COUNTER 4—5
4.7 LOCAL SYMBOLS 4—6

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page vi

CHAPTER 5 ASSEMBLER PSEUDO OPCODES

5.1 ASSEMBLY CONTROL PSEuDO OPCODES

5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9
5.1.10
5.1.11

5.2 DATA 6
5.2.1
5.2.2
5.2.3
5.2.4

5.3.2
5.3.3
5.3.4
5.3.5

5.4 CONVE

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5

EVEN
RADIX
N VA LU

END

ENERATI
BYTE
WORD

ASCII
RAD5O

Programs
AUTOEXTERN
INTERN
EXTERN
OVRLAY

NIENCE PSEUDO OPCODES
Extended Conditional
PUSH — POP
CALL — RTN
OFFSET
PSI

5—1

5—3

5—4

5—4

5—4

5—5

5—5

5.—s

5—5

5—6

5—7

5—7

5—7

5—8

5—8

5—8

5—9

CHAPTER 6 USER DEFINED MACROS

6.1 MACRO

6.1.1
6.1.2
6.1.3 The Dummy Argument
6.1.4
6.1.5
6.1.6
6.1.7

Labels
Local Symbols
Comments
Special Macro Operators
6.1.7.1 Argument
6.1.7.2 Expressi

6.1.8 Suppressing Macro
6.1.9 NCHR, NTYPE, NEVAL

6.1.9.1 NCHR

6.1.9.2 NTYPE
6.1.9.3 NEVAL
6.1.9.4

6—4

5.1.1 COPY

OBJNAM
PAGE

LIST — NOLIST
ASECT — RSECT
SYM — NOSYM
CREF — NOCREF — MAYC RE F

ON PSEUDO OPCODES

5.2.5 BLKB — BLKW
5.3 SEGMENTATION PSEUDO OPCODES

5.3.1 Segmenting Assembly Language

Jumps

5—9

5—10
5—10

5—11

5—12
5—12

5—13
5—13
5—14
5—14
5—14

DEFINITION
Macro Definition Formats
The Macro Source Statements

6—1

6—2

6—2
List 6—3

6—3

6—3
6—4

Concatenation C')
on EvaLuation (\)

Expansion — ENDMX
and NSIZE

6—5

6—5

6—6

6—6
6—6
6—7

6—7
NSIZE 6—7

6.1.10 Sample Macro Definitions 6—8

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page vii

6.2 MACRO CALLS 6—8
6.2.1 Name
6.2.2 Real Arguments

6.2.2.1 ReaL Argument
Label
Comments
Nested Macro Calls
Sample Macro Calls

CHAPTER 7 CONDITIONAL ASSEMBLY DIRECTIVES

7.1 7—1
7.2 7—2
7.3 7—3
7.4 7—3

8.1 VALID ADDRESSING MODES
8.1.1 Index Modes

8.2 RE—ENTRANT CODE
8.2.1 Using Base Registers

PART II USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

THE ALPHA MICRO ASSEMBLER (MACRO)

9.1 THE MACRO PHASES
9.2 COMMAND LINE

9.2.1 Filespec
9.2.2 Assembler Options
9.2.3 Parameterjzed Assembly Option

9.3 SAMPLE ASSEMBLY DISPLAY
9.4 THE ASSEMBLY LISTING

9.4.1 AssembLy Listing Format
9.4.2 Listing Control Pseudo Opcodes
9.4.3 Generating a Cross Reference

9.4.3.1 Cross Reference Control
Pseudo Opcodes

9.4.3.2 Cross Reference Listing
Format

9.4.3.3 Sample Cross Reference
Listing 9—8

ERRORS 9_9
Error Codes 9—9
Error Messages 9—10

6.2.3
6.2.4
6.2.5
6.2.6

6—9

6—9

6—9

6—10
6—11
6—11
6—11

Format

CONDITIONAL DIRECTIVE FORMATS
CONDITION CODES
SUBCONDITIONALS
NESTING 0F CONDITIONALS

CHAPTER 8 WRITING RELOCATABLE AND RE—ENTRANT CODE

CHAPTER 9

8—1

8—3

8—3

8—3

9—1

9—2
9—2

9-2
9—4
9—5

9—6

9—6

9—6

9—7

9—7

9.5 MACRO
9.5.1
9.5.2

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Pane viii

CHAPTER 10 THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE
GENERATOR (SYMBOL)

10.1 LINK
10.1.1 LINK Command Lint

10.1.1.1 Continuation
10.1.1.2 LINK Options

10.1.2 Sample LINK Display
10.1.3 LINK Errors

10.2 THE SYMBOL TABLE FILE GENERATOR
10.2.1 SYMBOL Command Line

10.2.1.1 Continuation Li
10.2.1.2 SYMBOL Options

10.2.2 Sample SYMBOL Display
10.3 LIBRARY AND OPTIONAL FILES

10.3.1 Library Files
10.3.2 Optional Files

10.4 THE LOAD MAP FILE
10.5 LINK AND SYMBOL ERROR MESSAGES

THE OBJECT FILE LIBRARY GENERATOR (LIB)

11.1 LIB COMMAND LINE
11.1.1 Continuation Lines
11.1.2 LIB Ootion Switch (IL)

11.2 SAMPLE LIB DISPLAY
11.3 UPDATING A LIBRARY
11.4 LIB ERROR MESSAGES

(SYMBOL) 10—1.
10.-s

nes

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL)

12.1 GLOBAL
12.1.1
12.1.2

12.2 SAMPLE
12.3 SAMPLE
12.4 GLOBAL

COMMAND LINE
Continuation Lines
GLOBAL Options

GLOBAL DISPLAY
LISTING DISPLAY
ERROR MESSAGES

12—1

12—2

12—2

1 2—2
I 2—3

12—4

Lines

10—1

10—2
10—3
10—3

10—3
10—4

10—6

10—6
10—6
10—7

10—s

10—8
10—9
10—9

11—1
11—2
11—2

11—3
11—7

CHAPTER 11

CHAPTER 12

CHAPTER 13

11—4

THE SYMBOLIC DEBUGGER (DDT)

13.1 THE DDT COMMAND LINE
13.2 USING SYMBOL FILES
13.3 TERMINAL INPUT
13.4 EXPRESSIONS

13.4.1 input Expressions
13.4.1.1 Special Symbols
13.4.1.2 Local Symbols

13.4.2 Outout Expressions
13.5 DDT MODES
13.6 DDT COMMANDS

13.6.1
13.6.2

13—1

13—2
13—2

13—2
13—3
13—3

13—3
13—4
13—5
13—5

Opening a Location or Reqister (I) ... 13—5
Closinq a Location

-

(Carriaqe—Return) 13—6

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page ix

13.6.3 Display a Value in Octal () 13—6
13.6.4 Opening the Next Location

(Line—Feed) 13—6
13.6.5 Opening the Previous Location C) ... 13—7
13.6.6 Opening a Location Indirectly () ,.., 13—7
13.6.7 Opening an AbsoLute Location

Indirectly (TAB) . 13—7
13.6.8 Starting a Program ($G) 13—7
13.6.9 Setting Breakpoints ($B) 13—7
13.6.10 Clearing Breakpoints ($C) 13—8
13.6.11 Proceeding From a Breakpoint ('tP) 13—8
13.6.12 Executing Single Instructions

($X and \) 13—9
13.6.13 Setting Program—Relative Mode (SR) ... 13—9
13.6.14 DispLaying Data in Decimal ($D) 13—9
13.6.15 Displaying Data in Octal ($) 13—9
13.6.16 Displaying Data in Hex ($H) 13—9
13.6.17 Displaying Data in RAD5O ($*) 13—10
13.6.18 Displaying Data as ASCII

Characters ($") 13—10
13.6.19 Displaying Data as Bytes ($#) 13—10
13.6.20 Displaying a String of ASCII

Characters ($A) 13—10
13.6.21 Displaying the Base Address and

Size (SM) 13—10
13.6.22 Defining New Symbols (:) 13—10
13.6.23 Examining Register Contents (%) 13—11

13.7 USING DDT TO PATCH PROGRAMS 13—11
13.8 DDT ERRORS 13—11
13.9 EXITING DDT 13—12

APPENDIX A THE ASCII CHARACTER SET

APPENDIX B SUMMARY OF PROGRAM SWITCHES

B.1 THE MACRO ASSEMBLER — MACRO B—i
B.2 THE LINKAGE EDITOR — LINK B—?
8.3 THE SYMBOL TABLE FILE GENERATOR — SYMBOL 8—3
8.4 THE OBJECT FILE LIBRARY GENERATOR — LIB B—3
B.5 THE GLOBAL CROSS REFERENCE GENERATOR — GLOBAL B—3

INDEX

CHATER 1

The AM—100 and AM—lOOn based computer systems support a flexible andefficient assembly language develooment system under the AMOS monitor. Thissystem includes the assembler, Linkage editor, symbol fiLe generator, objectfile library generator, global symbol cross reference generator, andsymbolic debugger programs.

The assembler is a muiti—nass macro assembLer with conditional assemblydirectives, library copy function, and external segment links. The linkageeditor is used to link multi—segment programs together and to create a
runnable program file. The ooerating system supports seqment overlaysthereby aLlowing a Large program to he logically divided into smalLer
segments and executed sequentially. The debugger programs accept aspecially created symbol file as input and allow the program to he tracedand debugged in symbolic instructions using all the labels as they wereentered in the source program. The library generator provides a mechanismfor developing and maintaining a library file that contains frequently usedroutines, making them accessible to all programmers on the system, All
components of the assembly language development system run under control ofthe standard AMOS monitor, -

There currently exist over 70 monitor calls in macro form that the assembly
languaqe programmer uses to communicate with the AMOS monitor and to makeuse of the routines it has to offer. These macro calls are predefined in afile called SyS.MAC located in account C?,?] on the AMOS System)isk. Theprogrammer uses a sinqle copy statement to include this complete library ofpredefined functions in his assembly lannuaqe program and then refers to themonitor calls by their macro names; this makes for an easy—to—usecommunication link to the system resources. SYS.MAC also includes equate
statements for many of the predefined system variables including the jobtable entries for the user's impure job variables.

INTRODUCTION Page 1—2

If your programs are to be compatibLe with the AMOS system architecture, you
must write them in totaLly reLocatable code. A relocatable proqram may be
loaded anywhere in RAM and executed without modifying any addresses within
the program itself. There are machine instructions which assist in writing
totally relocatable code, and by obeying a few simple restrictions the task
of writing assembly language programs for the AM—la') and AM—bolT becomes
almost foolproof.

We will not delve into the rules for re—entrant programming in
here since it -is an advanced programming technique and regui
rules that are not machine dependent. There are numerous
subject and all general practices apply to the programming of
Micro computer system. There are a number of features in the
set which do lend themselves quite nicely to writing re—entrant
of which are detailed in Chapter 8.

1.1 NOTE TO USERS OF PREVIOUS VERSIONS OF MACRO, LINK, SYMBOL AND DDT

If you are familiar with versions of MACRO, LINK, SYMBOL,
released before AMOS Versions 4.5 and later, you would
summary of what changes were made to these programs with
If you are new to the AMOS system, olease skip on to Secti

THE OBJECT FILE LIBRARY

One of the most important changes made was the mt
program LIB, the object file library generator.
combine collections of .OBJ tiles into an object
you use LINK or SYMBOL to link your program, you
Library file from which routines wilt, be linked
program references symbols in that library file.
library files, you may update existing libr
replacing existing modules or adding new modules,
Library listing file that tells you what object
Library. For more information on LIB and the use
to Section 10.3, "Library and Optional Files,"
Object File Library Generator (LIB)."

LOCAL SYMBOLS

MACRO, DDT, and FIX now support the use of local symbols. A brief
discussion of local symbols occurs in Section 4.7, "Local Symbols." For
information on the use of local symbols within macro definitions, see

Optionally, you may write programs which are re—entrant
these programs or subroutines into system memory to he
without requiring a separate copy for each user. (To
memory, you must modify the system initializatio
information on the system initialization command
Operator's Information" section of the AMOS Software
Packet.)

and then incorporate
shared by all users

add programs to system
n command tile. For
file, see the 'System
Update Documentation

great detail
res specific
books on the

the Alpha
instruction
code, some

and DDT that were
probably like a

AMOS Release 4.5.
on 1.2, below.

roduction of the new
You can now use LIB to

file Ubrary. Then when
can optionally specify a

into your program if your
Besides generating new

ary files by deleting or
and you may obtain a

files are in a specific
of library files, refer
and Chapter 11, "The

INTRODUCTION Paqe 1—3

Section 6.1.5, "LocaL SymboLs," and for a discussion on accessing LocaL
symbols through DDT and ALphaFIX, see Section 13.4, "Expressions.'

CHANGES TO MACRO:

The macro assembler now gives a new assembly display which provides more
information. (For example, if MACRO is automatically EXTERN1ng symbols,it lists those symbols alphabetically in Phase 2. For information on
automatically EXTERNing undefined symbols, see AUTOEXTERN, below, in
the section on Pseudo Opcodes.) If you forgot to end your file with an
END statement, MACRO now tells you so.

MACRO supports two new option request switches that allow you to: 1)
request a symbol cross reference listing; and, 2) use the parameterized
assembly option.

The cross reference listing (which appears at the end of a regular
assembly listing) contains an alphabetic List of all symbols, tells you
which lines of your source program they appeared on. and whether the
symbols are label definitions, equate definitions, are INTERNed,
EXTERNed, or are overlays. The listing also tells you which symbols were
never defined. The cross reference then gives a similar listing for all
macro definitions and references. For information on the MACRO cross
reference, see Section 9.4.3, "Generating a Cross Reference."

The parameterized assembly option allows you to specify a value at the
time you assemble your program which your program can analyze. This
feature is very useful when used with the conditional assembly directive
pseudo opcodes. For more information, see Section 9.2.3, "The
Parameterized Assembly Option."

LINK and SYMBOL

Both LINK and SYMBOL have changed quite a bit. They both now support a
number of option request switches. By comhininq these switches, LINK and
SYMBOL can be made to nerform the same functions. (For example, LINK can
generate a symbol table file, and SYMBOL can generate a resolved programfile.)
LINK and SYMBOL both support library files and optional files.

The LINK options are:

Designate a file as a library file.
Designate a file as an optional file.
Designate a file as a required file (the default).
Generate a load map file.
Generate a symbol table fiLe.
Include equated symbols in the symbol table file.
Generate a program file (the default).
Suppress program generation.

INTRODUCTION Page 1—4

NOTE: An "optionaL tile" contains only one .OBJ file, and is linked in
only if references are made by your program to symbols in that file. For
information on optional files, see Section 10.3, "Library and Optional
Files." A load map file contains a map of how the linked together items
will be loaded into memory when you execute the program file. It also
contains additional information on each item. See Section 1O4, 'The Load
Map File," for more information.

The SYMBOL •options are:

Designate a file as
Designate a file as
Designate a file as
Generate a load map file.
Generate a symbol table file (the default).
Include equated symbols in the symbol table fiLe.
Generate a program file.
Suppress symbol table file generation.

GLOBAL generates a global symbol
files. This listing tells you wh
and which files the symbols were
the MACRO cross reference in
collection of .OBJ files to determ
files; the MACRO cross reference
symbols within a single file.)
Reference Generator (GLOBAL)," for

PSEUDO OPCODES

cross reference for a collection of .OBJ
ich files the symbols were defined in
referenced in. (NOTE: This differs from
that GLOBAL is meant to be used for a
me the symbol references between those

gives detailed information on the
See Chapter 12, "The Global Cross

more information.

This manual now documents the search pattern MACRO uses in looking for
the copy file specified by the COPY pseudo opcode. Please see Section
5.1.1, "COPY."

Several new pseudo opcodes have been added:

OBJNAM — Allows you to modify the name and extension
output files created by MACRO, LINK, and SYMBOL.

given to the

LIST, NOLTST — Allow you to suspend and re—enable output to the
assembly listing.

CREF, NOCREF, MAYCREF — Allow you to suspend and re—enable output
the cross reference portion of the assembly listing.

to

NVALU — Allows your program to make use of the value supplied on the
MACRO command line via the /V parameterized assembly option switch.

AUTOEXTERN — Tells MACRO to automatically EXTERN any undefined
symbols.

a library file.
an optional file,
a required file (the default).

GLOBAL

INTRODUCTION
Paqe 1—5

ENDMX — Terminates macro expansion.

You may find information on aLl of these pseudo opcodes except ENDMX by
referring to Chapter 5, "Assembler Pseudo Opcodes," For information onENDMX, see Section 6.1.8, 'Suppressing Macro Expansion — ENDMX."

FILES

Several new fiLes are now created by the AMOS assembly language system:

.LIB files — Library files generated by LIB.

.GLB fiLes — Global cross reference listing created by GLOBAL.

.MAP files — Load map files generated by LINK and SYMBOL.

.TMP files — Temnorary work file generated by LIB.

OTHER FEATURES:

This manual contains information on two previously undocumentedoperators:

The expression evaluation operator, \, for use within macro
definitions (see Section 6.1.7, "Special Macro Operators"); and,

The binary shift operator, (underscore); see Section 4.3,"Expressions."

This book also now includes two Aopendices: "Appendix A, The ASCIICharacter Set," and "Appendix B, Summary of Program Switches,"

1.2 THE CONTENTS OF THIS MANUAL

Part I — INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

Chapters 2 through 8 contain information on the form of your assembLy
language programs. For example, Chapter 4 discusses labels, terms, andexpressions in your assembly language program statements. Chapter 5discusses the pseudo opcodes available to you, and Chapter 6 discusses
how to construct and call macros.

Part II — USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

Chapters 9 through 13 give operating information for the various
components of the Alpha Micro assembly language programming system:

MACRO The macro—assembler
LINK The linkage editor
SYMBOL The symbol table generator
LIB The object file library generator
GLOBAL The global cross reference generator
DDT The dynamic debugging and patching program

INTRODUCTION
Page 1—6

Appendix A gives the compLete ASCII character set, with vaLues specified indecimal, octaL, and hexadecimaL. Appendix B gives a brief summary of aLloption request switches used by MACRO, LINK, SYMBOL, LIB, and GLOBAL.

1.3 READER'S COMMENTS FORM

Please note the Reader's Comment Form at the back of this manual. We wouldvery much appreciate any comments or criticisms you may have concerninq this
book. Any suggestions for future documentation projects are also welcome.

1.4 CONVENTIONS USED IN THIS MANUAL

To make our examples concise and easy to understand, we've adopted a numberof graphics conventions throughout our manuals:

Number Base Unless otherwise noted, aLl numbers are decimal (base 10).
PPN A Project—programmer number. This number identifies a userdisk account (e.g., [100,2]). We also represent an account

number as [p,pn].

Filespec A fiLe specification. Identifies a file. It usualLy has theelements:

Devn: Fi lename.Fxt[p,pn]

where •'Devn:" is a device specification that identities alogical unit of a physicaL device, "filename" gives the nameof the tiLe, and "ext" specifies the tile's extension.
C) Optional elements of a command line. When these symbols

appear in a sample command line, they designate eLements that
you may omit from the command line.

Underlined characters indicate those characters that AMOSPrints on your terminal display. For example, in the latter
chapters of this manual you may see an underlined dot,
which indicates the AMOS monitor prompt symboL.

Carriage return symbol. This symbol marks the pLace in yourkeyboard entry to press the RETURN key.

Indicates a Control—character. For exampLe, if you type aControl—C, you see it echoed on your terminaL as C.
$ Escape symbol. This symboL marks the place in your keyboardentry to press the ESCAPE key (sometimes labeled ALT MODE or

ESC)

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PART I

INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

These chapters introduce the experienced assembly lanquaqe oroqrammer to
assembly lanquaqe proqrammjnq for the AM—mO and AM—100/T based computer
systems.

CHAPTER 2

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM

This section describes the files that are used during the normal course ofbuilding and testing an assembLy language program. We will refer to thesefiles by their extensions; i.e, a .MAC file is any file with an extensionof "MAC'. All files described here wilL not necessarily be used by all
orogrammers during any one programming session, but you will eventually run
across all of them at one time or another so you might as well know briefly
what they are used for and how they are created.

2.1 .MAC — SOURCE FILES

.MAC files are the original ASCII source files that you create using the
EDIT or VUE program. .MAC files are input files for the assembler program
(MACRO) which makes one or more passes over them depending on the assembLy
options selected. If you want to make any changes to a program, you make
the changes to the .MAC fiLe by using the EDIT or VIlE program; you then
reassemble and relink it. Files that you include with the COPY assembly
pseudo opcode must also be ASCII source files with an extension of .MAC.

2.2 .OBJ — INTERMEDIATE OBJECT FILES

.OBJ files are the direct out
assembled binary code, symbo
unresolved external symbol re
for anything by themselves
several other programs to get
itself. The linkage editor
creates a fully resolved and
format. The library generat
into an object file library.
creates a global symbol c

(SYMBOL) reads the .OBJ files
defined symbols and their
used by the symbolic debugger

put of the assembler (Phase 2) and contain the
I references, internal symbol definitions, and

ferences. .OBJ files are not directly usable
but must first be processed by one or more of

a finished file that has a direct use by
program (LINK) reads one or more .OBJ files and
runnable binary program file in memory image
inq program CUB) combines specified .OBJ files

The GLOBAL program reads .OBJ files and
ross reference file. The symbol file program
and creates a file which contains all user
resolved addresses. (This symbol table file is
programs DOT and FIX.) The assembler itself

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM Page 2—2

also rereads the .OBJ file during Phase 3 together with the .MAC source fiLeto create the ASCII list fiLe.

2.3 .PRG — BINARY PROGRAM FILES

.PRG fiLes are created by the linkage editor program (LINK) and are the endresult of the assembly process. The .PRG -file is a binary memory image ofthe assembled program which is loaded into user RAM when the program isrequested for execution. (That is, the .PRG tile is the final, fully
assembled and resolved machine language program of which the .MAC file wasthe source.)

The .MAC fiLe from which the .PRG file was generated must have been writtenusing the rules for totally reLocatable code so that the .0RG fiLe may be
dumped into any memory location and executed without modification. One or
more .OBJ tiles may have been input to the linker for the creation of the
singLe .PRG file. Once you have tested the .PRG program file, you may placeit into the System Library Account, DSKO:[1,4], where it will become
available to all, users on the system.

2.4 .OVR ' BINARY OVERLAY FILES

If the program contains overlay segments which do not all reside in memory
he linkage editor generates one .PRG main segment fiLe
.OVR overlay segment files. LINK generates each overlay
an OVRLAY assembler pseudo opcode. The .PRG program

responsible for the calling and executing of each of the
during the running of the program. Your program may
overlay segments as does the assembler itself, which

ys. Overlay files have the same memory image format as
les except that they are resolved at an effective address
so that they will not completely overlay the controlling

direct responsibility of the programmer;
overlays, see Section 5.3.5, "OVRLAY."

2.5 .LST — PROGRAM LISTING FILES

An optional output of the assembler is a complete resolved listing of the
source program with the associated binary code that was generated. MACRO
creates this list file during Phase 3 of the assembly process; you may
generate it directly from the .MAC and .OBJ files by bypassing Phases 1 and
2 with the /0 assembly switch. -The .LST file is formated ASCII; you may
display it via the TYPE command or examine it by either the EDIT or VUE
programs. Or, you may print the list file using the PRINT command.

at the same time, t
and one or more
file in response to
segment will be
other .OVR segments
selectively bypass
contains six overla
the .PRG program fi
other than zero
segment. This addressing is the
for more information on creating

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM Page 2—

The .LST file may optionally contain a full symbol cross reference if youuse the /R assembly switch. (See Section 9.2 for information on the /0 and/R MACRO switches.)

2.6 .LIB — LIBRARY FILES

The .LIB file is a library file. (A library file contains a collection of.OBJ files that are linked into the main program as required.) The LIBprogram allows you to generate and maintain object file libraries. The LINKand SYMBOL programs accept these library (.LIB) files as input andautomatically include any object files from such a library necessary toresolve external references. See Chapter 11 for information on creating andmaintaining program libraries.

2.7 .GLB — GLOBAL CROSS REFERENCE FILE

The GLOBAL program reads a group of .OBJ files and creates an alphabeticcross reference .GLB file that lists all global symbols in the files, and
shows which files define them and which files accept them as externaLlydefined symbols. (For information on GLOBAL, see Chapter 12.)

2.8 .MAP — LOAD MAP FILE

Both the Linkage editor LINK and the symbol table file generator SYMBOLgenerate a loadS map file in response to the optional /M switch. The loadmap (.MAP) file shows how the assembled and linked object files will belocated in memory when the program is loaded into memory prior to execution.
It also gives information about each object file linked into the finaL .PRGfile. For information on the load map, see Section 10.6, "The Load MapFi le.''

2.9 .SYM — RESOLVED SYMBOL FILES

The .SYM file is a direct output of the symbol file generation program
(SYMBOL) which takes one or more object (.OBJ) files and creates a symboltable with all user defined symbols and their resolved machine addresses.The .SYM file is used as input to the debugger programs DDT and FIX whichmay then operate with references to the user symbols in the proqrarn insteadof absolute machine addresses. In a system where the program is alwaysoffset by some amount in memory, this is almost essential if you are to beable to trace the execution flow of a program under test. The .SYM file isin a special oacked binary form and, as such, is not much good for anythingexcept input to DDT and FIX. (NOTE: The LINK orogram can also generate a.SYM symbol table file.)

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM Page 2—4

2.10 .IPF — INTER—PHASE WORK FILE

The .IPF file is a temporary work file built during the assembLy process byPhase 1 of the assembler to carry information on to Phase 2. The .IPF fileis packed binary junk and the only reason we mention it here is that if thesystem crashes during an assembLy you may find one Left on your disk. Eraseit; it is useless and just takes up space. There is no problem if it exists
and you don't find it, since the next assembly of the same program willerase any .IPF file it finds during Phase 1 before attempting to create anew one.

2.11 .TMP — TEMPORARY WORK FILES

The LIB program creates a temporary work file named Jobnam.TMP ("Jobnam" isthe name of your job). As with the .IPF fiLe, you should never see thisfile unless something goes wrong. The next time you run LIB, the .TMP file
should disappear.

CHAPTER 3

MACRO SOURCE PROGRAM FORMAT

A macro source program is a singLe .MAC file composed of a sequence of ASCIIsource statement lines. Each Line must be complete in itself since there isno provision for multiple—line statements. Each statement may be one of thefoLLowing, depending on its function:

1. VaLid machine instruction
2. Data generation statement
3. SymboLic equate statement
4. Assembly control statement
5. ConditionaL assembLy directive
6. Macro definition
7. Macro call
8. Comment or blank Line

The maximum Line length is 100 characters. Each Line is terminated by acarriage—return and Line—feed pair which the editor provides when you pressthe RETURN key. Unless otherwise specified, all of the above Lines maycontain an optionaL comment fieLd following the actual statement; thiscomment field starts with a semicolon C;) and extends to the end of theline The assembler treats spaces and tabs (Control—I) as equaL; they areused to delimit fields within statements. Tabs are useful to keep statementfields aligned and make for clean Listings. Tabs are an important part ofgenerating readable code.

NOTE: This manual refers to the term "user symbol" several times duringlater discussions, so we will define it at this point. A user symbol is anyname defined by you within your program. tt must be unique to that program,and must be from 1—6 characters in length. Legal characters for a usersymbol include the alphabetic characters A—Z, the numeric characters 0—9,and the two special symbols "." and "$". The first character of a usersymbol must he non—numeric. MACRO folds all lower case characters to uppercase. Symbols are packed RAD5O and stored as two words in the symbol tableduring the assembly Process along with their current assiqned value andattribute flags.

MACRO SOURCE PROGRAM FORMAT Page —?

3.1 MACHINE INSTRUCTIONS

One machine statement is allowed per line and is assembled into a single
machine hardware instruction which aenerates one, two, or three words of
binary code deoendinq on the instruction and addressing modes used. The
general format of a machine instruction statement is:

flabel:). Concode3 4'operands} {;comments)

The label field is optional and is used to give a symbolic name to the
current instruction being assembled. It must terminate with a colon. The
label may be any vaLid user symbol that has not been previously defined.
The value of the label may he either absolute or relocatabLe dependinq on
the current assembly status. Relocatable symbols will be resolved during
link—edit time by adding the label value to the current program relocation
bias (calculated by LINK). More than one label may appear on the same
statement line separated by colons; in this case, each label is given the
same value as the current location. Any symbol used in a label field may
not be redefined later in the program. A label may appear as the only item
on a line in which case it is assigned the address of the next byte of
generated code.

The opcode field is required and contains one of the machine instruction
opcodes in mnemonic form such as MO'IJ, CLRB, TST, ADD, etc. (Refer to the
WD1Ô Microcomputer Programmer's Reference Manual, (OWM—OO100—04), for a

complete description of all the machine instructions available in the AM—lOG
system.) The opcode field terminates with a space, tab, semicolon or
carriage—return. If a label field was used, a space or tab between the
colon and the opcode is optional but recommended.

The operands field is required on those instructions that have either one or
two operands. The operands field is separated from the opcode field by one
or more spaces or tabs, If the instruction being used requires two
operands, the operands are separated from each other by a comma. Leading
spaces are always ignored in the operands field while the operands
themselves terminate with a space, tab, comma, semicolon or carriage—return.

The comments field is optional and is defined by a leading semicolon. The
comments field then extends throuqh the remainder of the line up to the
carriage—return. Any valid ASCII characters are legal in the comments
field.

3.2 DATA GENERATION STATEMENTS

Data generation statements resemble machine instructions in format and
generate binary data within the program flow. The data generated is
normally not interpreted during program run as executable instructions but
rather as constant data such as ASCII messages to be typed or numeric values
to be used by those instruction being executed. The general format of the
data generation statement is:

MACRO SOURCE PROGRAM FORMAT
Page 3—3

(label:) (operator) (operands) C;comments}

The label field is optional and follows the same format and rules as themachine instruction label field. The operator field contains the specificdata generation mnemonic for the type of data desired. We discuss thesecodes in Section 5.2, "Data Generation Pseudo Opcodes." The operands fieldcontains the actual data to be generated by the statement and its formatdepends on the type of operator in use. Some operators such as WORD andBYTE allow multiple operands within the same statement so that the amount ofbinary data generated by the one statement is variable, If a label is used,its value is always that of the address into which the first byte of datawill be assembled. As with machine instructions, the comments field isoct i ona I.

There is a special default type of data generation statement which youshould be aware of. If no operator is present, MACRO assumes the statementis a WORD statement and it interprets the operands field as such. Theassembler works in the following manner when analyzing statements:
1. Leading symbols terminated by colons are processed as labels andstored in the assembler symbol table.

2. The next symbol is first scanned for a match in the macro tablewhich consists of all macros previously defined in the program.
3. If the operator symbol is not a macro name, it is then matchedagainst the table of machine instruction opcodes, data generationoperators, and assembly control pseudo opcodes.

4. If none of the above result in a defined operator, the default WORDprocessor is entered and the symbol is assumed to be the heoinninnof the associated operands field for the WORD statement.

3.3 SYMBOLIC EQUATE STATEMENTS

A user symbol may be assigned a value by entering it on a statement linefollowed by an equal—sign (=) and the expression to which it is to heequated. The general format of the equate statement is:

(user symbol) = (expression) -C;comments

The equal—sign may have leading or trailing spaces and tabs if desired forformatting purposes, The expression may he any valid numeric expression butsince all equate statements must be fully resolved during Phase 1, any usersymbols used in the expression must be defined at the time that the equatestatement is encountered. Equate statements may not contain references toexternal symbols. The comments field is optional as in the machineinstruction statement,

MACRO SOURCE PROGRAM FORMAT
Page 3—4

User symboLs that are assigned values in the proqram may be reassioned adifferent value Later in the program by usinq another equate statement toredefine the desired symbol. Labels may not be redefined by equatestatements, however. If the relocation attribute of the evaluatedexpression is zero, the value assigned to the symbol is absolute, If therelocation attribute is non—zero, then the value assigned is relocatable.If the expression contains a reqister symbol, then the equated symbol isalso given a reqister attribute. In other words, the value assigned to theuser symbol pretty much follows the attributes of the expression to which itis equated,

3.4 ASSEMBLY CONTROL STATEMENTS

Assembly control statements cover a wide range of functions that generallyset up or alter the parameters which control the assembly process. They donot themselves generate any binary code but are used for such purposes aslisting format control, numeric radix assignment, and program generation oraddressinq information. The qeneral format for assembly control statementsis:

Cpseudo—opcode} Ca rqument s} C; comment s1

The pseudo opcode is the mnemonic that defines the function to be performed.Chapter 5 lists all pseudo opcodes alonq with an explanation of what eachone does. Some of them require arguments that are needed to set upparameters. These arguments are separated from the pseudo opcode by one ormore spaces or tabs. As in other statement formats, the comments field isoptional. Unless the explanation in Chapter 5 for a pseudo opcode specifies
otherwise, Labels are not normally permitted in assembly control statements.

.5 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly is defined as selectively assemblinq or bypassinqstatements within defined bounds depending on the value of some variable atthe time the assembly is performed. The bounds are made by conditionalassembly directives which specify the variable or variables to be tested andthe condition to be met in order for the assembly to occur. Conditionalassembly directives are most commonly used in coniunction with macrodefinitions to direct the tailorinc, of each macro call as it is encountered.We discuss conditional assembly directives in Chapter 7.

3.6 MACRO DEFINITIONS AND MACRO CALLS

Macros are defined as one or more valid statements which may be called forby using a single symbol (the macro name) within the program anytime afterthe macro has been defined. Macros are always defined by you within yourprogram or within a copy file which is called into your program by the COPY

MACRO SOURCE PROGRAM FORMAT
Page 3—5

statement. The copy file called SYS.MAC is a macro library of over 70 suchmacro definitions which define all the supervisor calls available to yourprograms for communicating with the monitor routines. This library file issupplied on the AMOS System Disk in account [7,7].
Macro calls are those statements which name the defined macro as theoperator of the statement and give the specific arguments to be used by themacro (if any are required). A macro call within the program causes thedefined macro to be included in its tailored form at the point of the call.Macro calls normally cause one or more machine instructions to be assembled
and the respective binary code to be generated.

Chapter 6 defines macro definitions and macro calls more fully.

3.7 COMMENT LINES AND BLANK LINES

Statements which begin with a semicolon (after any Leading spaces and tabs)
are considered comment lines and do not resuLt in the generation of anybinary code or in the alteration of any assembly control parameters. Theyare useful only for documenting the source programs and making them easier
to read and maintain. Blank lines are also considered comment Lines and are
for appearances only in the source file. It is most important to fully
document your programs, so use comments liberaLly.

CHAPTER 4

TERMS AND EXPRESSIONS

This section describes the various terms and components used in MACRO sourcestatements, including the defined character set for the construction ofsymbols and expressions.

4.1 CHARACTER SET

The entire ASCII character set is legal in MACRO source programs except forthe control—characters MACRO transLates lower case characters to upoercase before it checks the syntax of each source line. The characters thatare valid in user defined symbols are limited to A—Z, 0—9, ,'I" andbecause symbols are packed RAD5Q before being stored in the symbol table.The folowing list gives the special characters that are recognized by theassembler when scanning source lines:

LabeL terminator
Comment field indicator

= Equate statement operator
ft Immediate expression indicator
El Deferred addressing indicator

Initial register indicator
Terminating register indicator
Operand field or macro argument separator

• VaLue of the assembLy current Location counter when used as a term
C Initial argument or expression indicator
> Terminating argument or expression indicator
+ Arithmetic addition operator or autoincrement mode indicator
— Arithmetic subtraction operator or autodecrement mode indicator* Arithmetic multiplication operator
/ Arithmetic division operator
& Logical AND operator

Logical inclusive OR operator

TERMS AND EXPRESSIONS
Page 4—2

• SingLe ASCII character term indicator
Double ASCII character term indicator

C Initial RADSO triplet term indicator
I Terminating RADSO triplet term indicator

Universal unary indicator
(Underscore) Binary shift operator

The use of the above legal characters out of context for their desianedpurposes will cause the qeneration of a syntax error (code Q).

4.2 TERMS

A term is the basic unit of data in an arithmetic expression and may be oneof the following:

1. A number as composed of legal diqits within the current radix •ofthe system or as temporarily defined by the inclusion of a leading
temporary radix change operator;

2. A user symbol (as previously defined) which is given an assigned
value either by its use as a label or a direct equate statement;

3. An ASCII conversion defined by the single or double quoteindicators;

4. A RADSO triplet enclosed in square brackets;

5. The period symbol C.) which represents the current value of the
assembly current location counter;

6. An expression or term enclosed within anqle brackets. Anglebrackets are used to alter the normal hierarchy of expression
evaluation which is normally done in qieft—totciQk manner. Anyquantity enclosed within anqle brackets will be evaluated before
the remainder of the expression in which it is found. The action
of angle brackets within a MACRO source expression is the same as
that of parentheses within a normal arithmetic expression such asis used in the BASIC lanquaqe. Angle brackets may also be used to
apply a unary operator to an entire expression such as —<16/A>.

4.3 EXPRESSIONS

An expression is a combination of terms and operators which will evaluate toan unsigned 16—bit value in the decimal range of 0—65535. Negative valuesin the range of —32768 through —1 will be stored properly after evaluationbut will he treated the same as their unsigned counterparts in the range of32768 through 65535.

TERMS AND EXPRESSIONS

The evaluation of any expression also includes the evaluation of the mode of
that expression (absolute, relocatable, and external) and the register
designation of the expression.

Operators are defined as unary or binary. Unary operators precede a singleterm and alter the evaluation of that term alone. Multiple unary operators
may be applied in sequence to the same term and are evaluated in reverseorder. Binary operators combine two terms to give a resultant effective
single term value. Multiple binary operators are illegal.

Expressions are evaluated left to- right under the hierarchy of the operators
which are in use within that expression. Angle brackets may be used to
alter the normal process of evaluation. Unary operators always take
precedence over binary operators and are applied to the associated terms
first.

The lega operators are:

+ Unary plus sign (default if term not preceded by another unary)
— Unary minus sign which negates the associated term value

Unary one's complement ooerator (XOR's the term with all ones)
Temporary radix change to decimal for the associated term
Temporary radix change to binary for the associated term
Temporary radix change to octal for the associated term
Temporary radix chanqe to hexadecimaL for the associated term

+ Binary addition operator
— Binary subtraction operator
* Binary multiplication operator
/ Binary division operator

(Underscore.) Binary shift operator (giv
— tion of A is shifted B number of times.

left; if B is negative, shifts A right.)
& Binary logical AND operator

Binary logical inclusive OR operator

NOTE: Two special operators (\ and ') also exist for use within macrodefinitions. See Section 6.1.7, 'Special Macro Operators," for more
information.

Expressions are evaluated as being absolute, relocatable, or
distinction becomes particularly important since we are
relocatable code for the AM—100 system. The following rules
evaluation of the relocation attribute of an expression:

1. An expression is absolute
relocatable terms. Also,
relocatable term results
within an absolute section
and attributes.

Page 4—3

en A B, binary representa—
If Bis positive, shifts A

external. This
writing totally
apply in the

if its value is fixed and contains no
a relocatable term minus another

in an absolute value. Labels allocated
(ASECT) will be assiqned absolute values

2. An expression is relocatable if its value i

current program base which is relocatable
may have an offset added to it by LINK if

5 fixed
at load
it is

relative to the
time. The value
not within the

TERMS AND EXPRESSIONS
Page 4—4

first segment of a program file. Labels allocated within a
reLocatable section (RSECT) wilL be assiqned relocatable values andattributes. (For information on the ASECT and RSECT pseudoopcodes, see Section 5.1.5.)

3. An expression is defined as external when one or more of its termsis an external symbol reference. This expression wiLl not be fully
resolved until the program file is generated by the linkage editor
(LINK) when the external terms are defined. The final resolutionof an external expression may be relocatable or absolute, depending
on the attributes of the terms involved (both internal andexternaL). The linkage editor also contains all the mechanics for
evaluating the attributes of resolved exoressions. (See Section5.3, "Segmentation Pseudo Oncodes," for information on the EXTERN,
INTERN, and AUTOEXTERN pseudo opcodes,.)

4.4 NUMBERS

Any source item which starts with a digit (0—9) is considered to be a numberand this number will be evaluated under the currently prevailing radixunless preceded by a temporary radix operator or followed immediately by adecimal point. The prevailing radix always starts as octal (base B) at thebeginning of any assembly but may be changed by the RADIX assembly controlstatement. Any number that terminates with a decimal point will beevaluated as decimal (base 10) regardless of the prevailinq radix.Fractional numbers are not allowed in MACRO source statements since allnumbers must evaluate to a 16—bit binary integer value.

The prevailing radix controls the default evaluation of numbers and may beset by the RADIX statement to any value from 2 (binary) through 36. Numbersin a base above 10 (decimal) use the alphabetic characters A—Z to reoresentthe digit values of 10 through 35. The most common system above base 10 is
hexadecimal where the letters A—F represent the decimal digit values 10—15.All numbers must begin with a digit 0—9 to distinguish them from a user
symbol, so the hexadecimal value of F56 must be entered as 0F56.

Negative numbers are preceded by a minus sign; MACRO evaluates them andstores them in two's complement form. You may optionally precede positive
numbers with a plus sign but this is not required.

4.5 REGISTER SYMBOLS

The WD16 chipset (the heart of the AM—100 and AM—100/T systems) containseight 16—bit registers which are symbolically named and used as follows:

TERMS AND EXPRESSIONS
Page 4—5

RO — register 0, generaL purpose
Ri — register 1, generaL purpose
R2 — register 2, generaL purpose
R3 — register 3, general purpose
R4 — register 4, general purpose
R5 — register 5, general purpose
SP — register 6, stack pointer
PC — register 7, program counter

These eight symbols are already defined to the assembLer and must be usedwhen the address mode explicitLy requires a register to be referenced. Theabove register symbols have a register attribute associated with them and
you may equate your own symbols to these registers if you so desire. Theregister attribute will be carried over to this newly defined symbol. Forexample, the equate statement IOPTR=R4 wilL equate the user symbol TOPIR tothe value of 4 and also give it a register attribute so that it may be used
in place of R4 for address modes.

4.6 ASSEMBLY LOCATION COUNTER

During the assembly process, MACRO assigns sequential memory locations toall machine instructions and data constants as it encounters them in thesource program. At any given statement, the next byte to be assigned will
be internally stored in the assembly location counter. This address may beused in expressions by referencing the period C.) as a symbolic term. Forexample, the instruction "JMP .+6" will cause a jump to the address which is6 bytes in front of the first byte of the instruction itself.
The assembly location counter has an attribute associated with it which is
either absolute or relocatable. Initially, it is set up in the relocatablemode and cleared to zero value for the allocation of relocatable binary codeas machine instructions and data constants are assembled. if MACRO
encounters an ASECT statement, MACRO changes the attribute of the assemblylocation counter to absolute which means the address associated with it willnot be adjusted by the LINK orogram. If MACRO encounters an RSECT
statement, MACRO sets the attribute back to relocatable again which meansthat the address associated with it will be adjusted by the LINK orogram tocompensate for the program segment offset. The assembler also maintains two
separate address counters for switching between ASECT and RSECT sections.

Initially, the value of the assembly location counter is set to zero and isincremented as each statement which oroduces binary code is assembled during
Phase 1. You may explicitly change the setting of the assembly Locationcounter at any time by using a direct equate statement that uses the period
symbol instead of a user symbol. For example, the statement ".=500" forcesthe assembly location counter to take on a value of 500 and to begin allassembly allocation from that point.

TERMS AND EXPRESSIONS
Page 4—6

4.7 LOCAL SYMBOLS

MACRO supports Local symbols of the form nnn$, where nnn may be any numberfrom 0 through 65535, decimal. A program using locaL symbols will requireless symbol table space and will assemble faster than a similar programwithout Local symbols.

(NOTE: LocaL symbols of the form nnnt$ are used within macros and have scope
within a particular macro expansion. For information on this kind of localsymbol, see Section 6.1.5, "Local Symbols.")

A local symbol only has scope between two non—local symbols. For example:

SEND: MOVB (RO)+,R1
BEQ 1$
TTY
BR SEND

1$: RTN

KBD

LEA RO,BIJF
1$: MOVB (R2)+,(RO)+

ANE 1$
RTN

SUBR:

1$ is defined twice in the program above. The first 1$ has a range from thedefinition of SEND up to but not including the definition of RCV. Thesecond 1$ has a range from RCV up to SUBR.

NOTE: You may also define local symbols with an equate ().

CHAPTER 5

ASSEMBLER PSEUDO OPCOOES

A pseudo opcode is so named because aLthough it looks much like a regular
operation code, a pseudo opcode is not a true machine instruction and may or
may not generate actual binary code. Pseudo opcodes are built into the
assembLer and provide a variety of useful functions that make the life of
the programmer easier.

This chapter discusses the MACRO pseudo opcodes available for your use. Weclassify the functions of the pseudo opcodes into four categories: 1)
assembLy control; 2) data cleneration; 3) segmentation; and, 4) convenience.
The sections below discuss each of these types of pseudo opcodes.

Note that other chapters discuss several other pseudo opcodes that are used
in special circumstances. For example, Chapter 6, "User Defined Macros,'
discusses the pseudo opcodes you can use inside of macro definitions. For a
full list of all pseudo opcodes, refer to the index.

5.1 ASSEMBLY CONTROL PSEIJDO OPCODES

AssembLy control statements perform a wide variety of functions which do not
in themselves generate any binary code but, instead, set up or alter certain
parameters which control the assembLy process. Each statement consists of a
defined assembly control pseudo opcode followed by optional arguments as
required by the specific format. These pseudo oncodes are described here
along with the required arguments for each.

5.1.1 COPY

The COPY statement allows another file to be included in the assembled
program at the point where the COPY statement is located. The entire copiedfile is assembled, but you may use conditional assembly statements to omitcertain portions if desired. The most common use of this statement is forthe inclusion of the standard copy file SYS.MAC which defines all system
call macros and system oararneters. (The SYS.P1AC file is in account

ASSEMBLER PSEUDO OPCODES Page 5—2

DSKO:17,7J.) The COPY statement incLudes a fiLe specification that specifies
the tile that is to be copied into the source program during assembly. Forexample:

COPY DEE ; My own set of macro definitions in the file DEF.MAC.

Note that the actual source program is not modified; rather, the assemblermerely gets the input from the copied file and then returns to the originalsource file as it assembLes the source file. A copy file may not includeanother COPY statement within itself although the original file may include
as many individual COPY statements as desired. The fiLespec may actuaLly be
a complete file specification containing a device and account specification.
If you do not specify an extension, MACRO uses the default extension of
.MAC.

If you specify both a device and account, MACRO looks for the copy fiLe in
the specified device and account. However, if you omit either a device or
an account specification, MACRO goes through several steps in trying to findthe specified file:

If you omit both the device and the account specification:

1. MACRO looks for the file in the device and account you are logged
into.

2. If the file does not exist in that account and if the source fiLe
is on a different device than the one you are logged into, MACRO
looks in the account you are logged into on the device containing
the source tile.

3. If the fiLe does not exist in that account either, and if the
source file is in a different account and device than the ones you
are Logged into, MACRO Looks in the account and device of the
source fiLe.

4. FinaLly, MACRO looks in the System MACRO account, DSKO:[7,7].

If you omit just the device soecification:

1. MACRO looks in the specified account on the device containing the
source file.

2. If the file does not exist in that account, MACRO looks in the
specified account on the device you are logged into.

3. FinalLy, if the account specified is [7,7], MACRO Looks in the
System MACRO account, DSKO:[7,7J.

If you omit just the accOunt specification:

1. MACRO Looks in the account containing the source fiLe on the
specified device.

ASSEMBLER PSEUDO OPCODES
Page 5—3

2. If the file does not exist in that account, and if the source fileis in a different account than the one you are logged into, MACROlooks on the specified device in the account you are logged into.
3. Finally, MACRO looks in the System MACRO account, DSKO:E7,7].

You may find it convenient to place copy files into the System MACROaccount, OSKO:C7,7J, since they will then become avaiLable to alL
programmers throuqh the COPY statement.

MACRO does not normally output the source statements in the copied fileduring the listing phase of the assembly since most users do not want the
system copy file (SYS.MAO and other collections of common routines to be
repeated in all program listings. You may override this by using a IL
switch following the filespec in the statement: this will cause the copiedfile to be included in the assembly listing. For example:

COPY MYMAC.MAC/L

As it assembles your program, MACRO reports any COPY statements encountered.
For example: -

Copying from DSKO:SYS, MACI7,73

5.1.2 OBJNAM

The OBJNAM oseudo opcode controls the names of output files produced by
LINK, SYMBOL, and MACRO. It tells these programs how you want to modify the
output file name and extension, If you do not use OBJNAM, MACRO, LINK, and
SYMBOL produce an output file with the same name as the input file and the
appropriate extension.

The OBJNAM statement takes the form:

OBJNAM filnam.ext
or:

OBJNAM exprif,. . .exprN}

where 1<=N<=3. That is, OBJNAM is followed by a filename and extension or by
one to three expressions. If OBJNAM takes the second form, each expressionis either 0 or a RAD5O value. The first expression denotes the first three
characters of the filename, the second expresson denotes the last threecharacters of the filename, and the third expression denotes the three
characters of the file extension,

OBJNAM causes the output file names to be modified as follows (where youhave specified "file" and "ext' in the OBJNAM statement line):

source.OBJ
source.PRG
Source.OVR
source.LST
source.MAP
source • SYM

—>

———>

fi le.OBJ
fi le.ext
fi le.ext
fi Le.LST
fit. e . MAP

fi le.SYM

(omitting the extension)
the name:

TEST. PRG

, the assembLed and linked output file would have

5.1.3 PAGE

The PAGE statement causes your assembly listing to begin a new page before
continuing with the listed output. No action takes place other than this
during assembly.

5.1.4 LIST — NOLIST

You may obtain an assembly listing by using the
LIST and NOLIST pseudo opcodes control which po
appear in the listing file. NOLIST disables listlisting. The LIST and NOLIST pseudo opcodes do
NOTE: MACRO will ignore the LIST and NOLIST pseud
optional /X assembly switch.

5.1.5 ASECT — RSECT

IL assembly switch. The
rtions of your program will
ing, and LIST re—enables
not appear in the listing.

o opcodes if you use the

ASECT statement causes the assembler to generate code for the absolute
ion of the program. This code wilt not be modified during LINK editing
the values assigned to labels will not have the relocatable attribute

The RSECT statement causes the assembler to generate code for therelocatable section of the program. This is the normal section for the
AM—ba and AM—100/T systems which always relocates the program in user
memory. This code will be modified during LINK editing and the valuesassigned to labels will have the relocatable attribute flag set. Twoseparate assembly location counters are maintained during program assembly.

ASSEMBLER PSEUDO OPCODES Page 5—4

If you omit "ext" or if any expression is omitted or is zero, the
corresponding portion of the file name remains unmodified. For example, if
you were assembling DEVCPY.MAC, and specified the OBJNAM statement:

OBJNAM TEST

The
sect
and
flag set.

ASSEMBLER PSEUDO OPCODES

5.1.6 SYM — NOSYM

Page 5—5

The SYM statement causes
object file along with their
output for all following user
SYMBOL program to generate a
programs DDT and FIX. The
noticeable change in the actual

all following user symbols to be output to the
assigned values. The NOSYM inhibits this
symbols. These symbols are later used by the
reference file for the dynamic dehuggger

use of SYM and NOSYM does not cause any
program.

5.1.7 CREF — NOCREF — MAYCREF

To obtain a full cross reference listing, you may specify the JR assemblyswitch. (To see the cross reference listing on your terminal, specify the/RT switch.)

The three pseudo opcodes CREF, NOCREF, and MAYCREF control which portions ofyour program will be processed in creating the cross reference.
CREF enables normal cross referencing. -

NOCREF suppresses from the cross reference listing all defined symbols until
MACRO encounters a CREF or MAYCREF statement.

MAYCREF tells MACRO to suppress all symbols defined from the cross referencelisting if those symbols are never referenced.

For a full discussion of the format of the cross reference listinq, seeSection 9.4., Generating a Cross Reference."

5.1.8 EVEN

The EVEN statement forces the next binary code to be generated on a wordboundary (next even byte) by incrementing the assembly location counter ifit is odd (no change if it is even). This is necessary since allinstructions must lie on a word boundary for proper execution by the AM—lODsystem.

5.1.9 RADIX

The RADIX statement forces a new defauLt radixassembler. The default radix of the system determinesare not preceded by a temporary radix oneratorinterpreted. The statement takes the form:

RADIX n

to be set up in the
how all numbers that
(B,0/H/'o) will be

ASSEMBLER PSEUDO OPCODES Page 5—

where the radix change argument "n' must be a decimal number in the range of
2—36. Radix values above 10 use the letters A—Z to represent the digitvalues of 10—35 inclusively. The default radix of aLl assemblies is base(octal) in the absence of any explicit RADIX statement.

5.1.10 NVALU

MACRO provides a parameterized assembLy facility by allowinq you to use the
/V switch to specify a value on the MACRO command line. The value switch
may take one of these forms:

/V:x x is an octal or hex number (depending on the
prevailing radix settinq)

/VO:x x is an octal number
/VH:x x is a hexadecimal number
/VD:x x is a decimal number
/VA:x x is one or two ASCII characters
/VR:x x is one to three RAD5O characters

The NVALU pseudo opcode aLlows your program to access the vaLue specified in
the /V assembly switch. The NVLU statement takes the form:

NVALU sym

which sets the symbol "sym" to one of the values below, depending on which
/V switch was used:

5 yrn = x
sym0x
5 ym = H Ox
5 ym = Dx
sym= 'x
5 ym =

5ym= [xi

5.1.11 END

The END statement terminates the source file and is included only to give adefined end on the listing. In the absence of an END statement, the
assembLy wilL terminate with the logical end of input fiLe. Note that if an
END statement is encountered anywhere in the source input (incLuding inside
a copied file) the assembly will terminate whether the LogicaL end of the
input, file has been reached or not.

NOTE: As -it assembles your program, MACRO warns you if your program file
does not contain an END statement:

Phase 1: Missing END statement

ASSEMBLER PSEUDO OPCODES
Page 5—7

5.2 DATA GENERATION PSEUDO OPCODES

The MACRO assembler has several, pseudo opcodes which generate specific dataconstants within the program area for use as text messages, constant values,tables, etc. This section lists these pseudo opcodes and gives details onthe data formats which are generated by them. All statements may havelabels in which case the label is assigned the address that will receive thefirst byte of the generated data. All data statements begin allocatingtheir specific data formats at the address specified by the assembly currentlocation counter and generate multiple bytes in sequence, incrementing thecurrent location counter as necessary. Those statements which generate bytedata (BYTE, ASCII, BLKB) may begin and end on any byte address, odd or even.Those statements which generate word data (WORD, RADSO, BLKW) must begin ona word boundary (even byte) or else a boundary error (B) will result. TheEVEN statement may be used at any point where the status of the currentlocation counter is in doubt to insure an even boundary.

5.2.1 BYTE

The BYTE statement generates one or more bytes (eight bits each) of data.The arguments for generating the data consist of expressions separated bycommas. Any legal expression is valid but only the lower byte will bestored after evaluation. Some examples are:

ZER: BYTE 0 ;Generates 1 byte of data containinq zeroBYTE 1,2,3 ;Generates 3 bytes of data containing 1,2,3MULTI: BYTE A—B,TAG*4,SAM ;Generates 3 bytes of data
BYTE 'A,'Q ;Generates 2 bytes of ASCII data

5.2.2 WORD

The WORD statement generates one or more words (16 bits each) of data. Thearguments for generating the data consist of expressions separated bycommas. Any leqal expression is valid which evaluates into a 16—bit value.WORD statements may also be generated by default if the first symbol on aline (after any labels) is not defined as an opcode, pseudo opcode or macroname. Some examples are:

ZER: WORD 0 ;Generates 1 word (2 bytes) of data zero
WORD 1,2,3 ;Generates 3 words of data containing 1,2,3
WORD A—B,'QT,SAM—. ;Generates 3 words of data
SAM ;Generates by default the value of SAM

ASSEMBLER PSEUDO OPCODES
Page 5—8

5.2.3 ASCII

The ASCII statement generates one or more bytes of ASCII data. The arqumentfor generating the data is a string of legal ASCII characters bounded onboth ends by the same character which must not be included in the datastring itself. Any printing character may be used as a deLimiter. OnLy onesuch string may be generated by each ASCII statement. Some exampLes are:

MSG: ASCII /THIS IS A MESSAGE! ;Generates a string of 17 data bytes
ASCII !Q/ ;Generates a single data byte of "Q"

MSG2: ASCII $ I/O TERM $;Generates a string of 10 data bytes

5.2.4 RADSO

The RAD5O statement generates one or more words (16 bits each) of data. Theargument is a string of valid RADSO packable characters bounded on both ends
by the same chpracter which must not be included in the data string, Anyprinting character may be used as a delimiter. The Legal characters for
RAD5O packing are A—Z, 0—9, dollar—sign ($), period (.) and space. One
packed word will be generated for each three characters in the string orfraction thereof with trailing spaces being assumed to filL out the lasttriplet. Some exampLes are:

DDB: RADSO /05K! ;Generates one word of packed data
RAD5O !SAM 00/ ;Generates two words of packed data
RADSO /ABCD! ;Generates two words (same as RAD5O !ABCD /)

5.2.5 BLKB — BLKW

These statements do not actually generate data but are included in this
section because they result in the aLLocation of memory in a defined manner.The BLKB allocates an area of bytes and the BLKW allocates an area of words.In all other respects they operate the same. The argument for each is asingle expression which evaluates to a value between 0 and 65535. Thisvalue is then added to the assembly current location counter (twice if BLKW)
which effectively reserves that block of memory and continues allocating
memory at the new address. Normally this results in a contiguous area ofall zeros since the linker clears all bLank areas when it generates theprogram file. This action does not always happen, however, because thelocation counter may be stepped back into the reserved area in which casethe new data will overlay the reserved block of memory. This is animportant concept in dealing with the absolute section since no data isactually generated by these statements, only memory addresses are reserved.
Some examples are:

DATA: BLKB 44 ;Reserves 44 bytes of memory
BLKB A*B ;Reserves A*B bytes of memory
BLKW 200 ;Reserves 200 words (400 bytes) of memory

ASSEMBLER PSEUDO OPCODES

5.3 SEGMENTATION PSEUDO OPCODES

5.3.1 Segmenting Assembly Language Programs

There are several, reasons for seqmentinq a orogram
methods for doing so, depending
source program takes longer to edit
greater opportunity for total loss i
A larqe program also takes longer to
so. Segmented programs may be organi
portions of the program to be resi
called in from disk only as required.
duplicate symboLs if the program
linked together by LINK. Also,
separately may also be listed separately resulting
less paper used) for each change that is made.

end
a
d
e

Page 5—9

The simplest method for creating a orograrn in segments gains one of theabove advantages. This method makes use of the COPY statement and allows alarge program to be edited as multiple seqments which are then copied intothe main source program by using one COPY statement for each segment. Aschanges are made to the source program, you need only edit the segment whichrequires the changes. The assembly is done, however, on the complete sourceorogram since all copied files are included in the source input. Only oneobject file results and only one single list file can be created. The ILoption on the COPY statement may be used to control those segments that aredesired to be included on the listing itself.
A more complex but flexible method is to break up
segments which may be assembled separately and
later time by the LINK program. Several oboutput of the different segment assemblies
program which creates a fully resolved and
The advantaqes of the COPY method are
advantage of having to assembl.e only those
The LINK process runs much faster and r
assembly process. One of the requirements
in this manner is that all, references to
reside in another segment must be done thr
opcodes, INTERN and EXTERN. Since a
segment is not defined during the assembly
symbol (name of the routine)

The MACRO assembler, toqether with the LINK editor and monitor overlaycalls, support a powerful method of segmenting and overlaying programs forboth convenience during system development and memory conservation duringexecution, This section describes the methods available for the variousoptions and also the assembler pseudo opcodes which help support the system.The pseudo opcodes we will discuss are AUTOEXTERN, INTERN, EXTERN andOVRLAY. This section also briefly discusses the concept of programlibraries.

and also different
on the result desired.

(even small change)
f some isaster strikes t
assembl and more memory
zed in such a manner
dent in memory and other

Segmented programs may
segments are assembled

program segments which

A very large
and gives a

he file links.
in which to do
as to allow

portions to be
also contain

separately and
are assembled

in less listing time (and

the program into logical
then linked together at a

ject (.OBJ) files result as
which are then input to the LINK
runnable Program C.PRG) file.
realized as welt as the added

segments which require changes.
equires less user memory than the
of a program which is segmented
routines and data constants which

ough two special assembler pseudo
reference to a routine in another

of the calling segment, theis said to be "external." it is declared

ASSEMBLER PSEUDO OPCODES
Paqe 5—10

external by the EXTERN statement which tells the assembler that it isdefined and will be resolved by the linkage editor at a later time. Thesegment in which the routine exists then declares that symbol as "internal'via the INTERN statement which tells the assembler to output the symbol witha special code which defines it to the linkage editor for final resolution.
The method of segmenting a program and then creating a single runnable
program with LINK may he extended one step further using a feature in themonitor which aLlows program segments to be caLled in from the disk andoverlay an existing portion of the main program. A segment which is to beused as an overlay defines itself as such by using the OVRLAY statement andgiving the address at which the overlay is to be loaded. The main proqramthen uses a special form of the FETCH supervisor call to load the overlay
segment and then executes it by jumping to a known segment start address.This implementation of overlaying segments is used in the MACRO assembleritself and conserves user memory during execution of large system programs.The LINK program creates one program (.PRG) file for the main segment andone overlay (.OVR) file for each overlay segment in use.

NOTE: Still another method for modularizing programs is the use of libraryfiles. Program libraries allow you to make use of frequently used routinesin many different programs without rewriting those routines each time youneed them.

You may specify one or more library (.LIB) files to LINK which then links in
only those object files in the .LIB file that are necessary to resolveexternal references. For full information on generatinq and maintainingprogram Library files, see Chapter 11, "The Object File Library Generator
(LIe)

5.3.2 AUTOEXTERN

The AIJTOEXTERN pseudo opcode tells MACRO to automatically EXTERN anyundefined symbols; those symbols are then displayed at the end of Phase 2 ofthe assembly. When AUTOEXTERN is in effect you do not have to explicitly
EXTERN symbols.

5.3.3 INTERN

The INTERN statement defines one or more user symbols as internal to theprogram segment so that they will be defined to the linkage editor programfor final resolution. The INTERN statement takes the form:

INTERN syml{,sym2,. . .symN}

Each INTERN statement may be followed by one or more internal user symbolsseparated by commas. As many INTERN statements as required may be used inthe program. There is also no limit to the number of symbols that may bereferenced by each INTERN statement except for the physical line length.

ASSEMBLER PSEUDO OPCODES Page 5—11

Each symbol that is referenced in an INTERN statement must be defined within
the segment either as a label on a routine or constant or as a vaLue by anequate statement. The symboL wilL then be avaiLable to the LINK program forresolving references to it which come from EXTERN statements in othersegments. Any symbol defined as external in a segment that has not beendefined as internaL in another segment wilL resuLt in an undefined errorduring Linkage editing. A symbol may never be defined by more than one
INTERN statement during any one LINK run; i.e., the same symbol cannot
appear as internal in two different segments that wilL eventually be linked
into the same program.

A short hand notation for INTERNing a label or equated symbol extsts.Instead of writing:

INTERN Symbol
Symbo L:

you may now write:

Symbol::

Instead of writing:

INTERN Symbol
Symbol = Expression

you may now write;

SymboL == Expression

5.3.4 EXTERN

The EXTERN statement is used to define one or more user symbols as external
to the segment so that they may be resolved by the Linkage editor program.
The EXTERN statement takes the form:

EXTERN syml{,sym2,. . .symN}

Each EXTERN statement may be foLLowed by one or more user symbols separated
by commas. As many EXTERN statements as required may be used in theprogram. There is aLso no limit to the number of symbols that may he
defined by each EXTERN statement except for the physical Line length.

Each symbol that is defined by an EXTERN statement may be referenced within
the segment just as if it had been defined within the segment as a Label oran equate statement item. There is no limitation pLaced on its use as aterm within any operand expression since the LINK program has complete
expression resolution mechanics buiLt in. There are two restrictions to itsuse within the segment. An externally defined symbol may not be used within
the address operand of any branch instructions (BR, BEQ, BEll etc.) due tothe fact that there is no way to insure that the resulting placement wiLl

ASSEMBLER PSEUDO ORCODES
Page 5—12

fall within the 127—word relative requirement. it may, however, be usedwithin the address operand of the iump (JMP) instruction. The secondrestriction is that an equate statement may not contain any externallydefined symbols in its operand expression since all equates must he fullyresolvable as they are encountered.

The LINK program builds a symbol table from all the symbols referenced inall tNTERN statements in all program segments. It then goes back andresolves all expressions containing symbols defined by EXTERN statements bylooking them up in the table of INTERN symbols. Any symbol defined in anEXTERN statement but not matched by some INTERN symbol will give an errormessage during linkaqe editinq.

5.35 OVRLAY

The OVRLAy statement identifies a program segment as being an overlay fileinstead of a continuation of the main proaram file, It also defines theaddress of the base of the overlay reLative to the base of the main programso that the loading of the overlay segment is done at the proper spot in the
program memory area. The OVPLAY statement takes a single argument which is
a user symbol that must he defined in some other segment in an INTERNstatement. For example:

OVRLAY Sym

NOTE: It is legal to write:

OVRLAY Sym
Sym:

as long as 'sym:" appears at the start of the overlay. (The symbol "sym"is essentially defined twice with the same value.) The OVRLAY address will
be resolved by LINK when the files are processed. Information on the codeused to load the overlay segments into memory will be found in thedescription of the FETCH supervisor call in the AMOS Monitor Calls Manual.Further information on processing of the OVRLAY statement may be found inthe section describing the LINK program processing.

5.4 CONVENIENCE PSEUDO OPCODES

There exist a few pseudo opcodes in the assembler that we refer to asconvenience opcodes for lack of a better term. These opcodes do not reaLlydo anything that cannot already be accomplished by the existing sourcelanguage in some other format, but they are easier to understand and makethe listing more readable when used in the form that has been implementedhere. Some of them are implemented directly in the assembler program itselfwhile others exist as predefined macro calls in the system copy file SYS.MACwhich is normally called by all programs.

ASSEMBLER PSEUDO OPCODES
Page 5—13

5.4.1 Extended Conditional Jumps

One very frustrating thing about editing some new changes into a program iswhen you find that an existing BNE (or other conditional branch) no longerreaches due to the new code extending the address out of the 127—word limitfor branches. The most common solution to this problem is to replace theoffending branch with a branch of the opposite condition followed by a jumpto the desired address. In other words, our ANE TAG could be repLaced by
BEQ .+6 folLowed by JMP TAG which effectively does the same thing. The only
problem here is that this makes the listing somewhat less than clear whentrying to decipher the flow of the program. We have therefore implementedinto the assembler a set of conditional jump opcodes which effectively
generate this two—instruction code sequence for the proper oppositeconditional but which still look very readable in the source Listing. These
opcodes have been Listed here along with the actual WD16 instructions
generated:

JEQ TAG generates AWE .+6 followed by flip TAG
JNE TAG BEG .+6 JMP TAG
JPL TAG BI +6 JMP TAG
JMI TAG BPL .+6 JMP TAG
JLO TAG BHIS .+6 JMP TAG
JHI TAG BLOS .+6 JMP TAG
JLOS TAG BHI .+6 JMP TAG
JHIS TAG BLO .+6 'I

JMP TAG
JLT TAG AGE .+6 JMP TAG
JGT TAG ALE .+6 JMP TAG
JLE TAG BGT .+6 JMP TAG
JGE TAG ALT .+6 JMP TAG
JCC TAG ACS .+6 JMP TAG
JCS TAG BCC +6 JM° TAG
JVC TAG BVS +6 JMP TAG
JVS TAG evc .+6 JMP TAG

Remember that aLthough these opcodes are easier (require less planning) than
the simple branches they do actually generate three words of binary codeinstead of onLy one so, if space is at a premium, use them only when
necessary.

5.4.2 PUSH — POP

The hardware stack in the WD16 is normally referenced by its index register(SP) and transferring words of data to and from the stack is done by MOVinstructions. Many machines have dedicated instructions to push and popdata to and from the stack. In order to make the flow of system programs alittle clearer for those of us used to pushing and poppinci, two macros havebeen implemented in SYS.MAC which recognize the PUSH and POP instructions.
Each takes a normal source address argument but each also has a speciaLdefault format which is used when no specific argument address is desired.These instructions generate the following code:

ASSEMBLER PSEUDO OPCODES Page 5—14

PUSH SRC generates MOV SRC,—(SP) ;Pushes SRC onto stack
PUSH CLR —(SF') ;Pushes a zero onto stack
POP DST MOV (SP)+,DST ;Pops stack into DST
POP TST (SP)+ ;Removes top stack word

5.4.3 CALL — PIN

The normal subroutine calling sequence of the WD16 is the JSR instruction
which Links its arguments through any of the eight registers. The assembler
recognizes the more popular mnemonic opcode CALL for which it generates aJSR instruction. In addition, if no register is specified in the CALL or
RIM instructions, the assembler assumes the most commonly used register PCfor its argument linkage. In other words:

CALL TAG generates CALL PC,TAG
RIM PIN PC

5.4.4 OFFSET

There are many times during the programming of totalLy relocatabLe code
where an address must be expressed and stored as a relative offset from the
location of the constant itself. In other words, the storage of the address
TAG must be in the form of TAG—, which is actually the offset from the
current position of the constant itself to the address defined as TAG. The
value of this constant offset will not change no matter what its position in
memory happens to turn out to be. A good exampLe of the use of relative
address offsets is in the tables associated with the instructions TJMP and
TCALL which must be relative offsets and not direct addresses. The OFFSET
pseudo opcode has been implemented to make the listings a little more
obvious as to intent. The OFFSET opcode takes a single address argument and
generates the relative offset to that address from the current position ofthe constant.

5.4.5 PSI

Although intended only to be used internally to generate the system monitor
macros, the PSI (PSeudo—Instruction) will be defined here as a result of the
numerous inquiries about it. The PSI instruction will generate aninstruction simiLar in format to the double—address instructions (such as
MOV, ADD, SUB etc.) which may he one, two or three words in length depending
on the address modes used. In addition, it allows a 4—bit pseudo opcode tobe specified explicitly in the operand field. BasicaLly, the format is:

PSI opcode,source—address,destination..address

This results in a normaL instruction format with the opcode comprising the
top 4 bits (bits 12—15), the source address comprising the middle 6 bits

ASSEMBLER PSEUDO OPCODES
Page 5—15

(bits 6—11) and the destination address comprising the low 6 bits (bits0—5). Additional index words are generated if required by the addressingmodes in use.

The instruction generated by the PSI statement is never executed directly by
the machine since, in actuality, it duplicates one of the existing legalinstructions, Instead, it follows a specific SVCB instruction and is usedto generate the pseudo—instruction to be executed by the SVCB calling
sequence and thereby results in an easy method for generatinq the standardaddress arguments.

CHAPTER 6

USER DEFINED MACROS

it is often convenient to create your own opcode definitions which when used
in the source program result in the creation of a predefined sequence of one
or more source code statements. These user—created opcodes are called
"macros" in assembly language programming and the Alpha Micro assembLer
supports a flexible macro subsystem. There are two phases that you go
through when using macro calLs. First, you define the macro opcode once in

the program as a series of source code statements along with possibLe dummy
arguments. You only do this once; the macro remains defined throughout the
remainder of the assembly process. Second, you then invoke the macro by a
single source statement giving the macro name along with optional real

arguments that replace the defined dummy arguments in the macro source code
which is generated, Calling the macro in this manner causes the macro
statement to be replaced by the defined sequence of source code statements
that have been custom tailored by the optional real arguments in the calling
statement. You may perform this calling sequence as many times as needed in
the source program with as many different real arguments as desired.

6.1 MACRO DEFINITION

Defining a macro generates no actual binary code in the program hut merely
places the macro definition in a speciaL table in the assembler memory work
area. Calling the macro (which then generates the sequence of source
statements) is the process that actually generates the binary code. If your
program never calls the macro or if the macro does not contain any
code—generating source statements, MACRO oroduces no binary code for the
macro. The use of conditional assembly directives within a macro definition
may result in no code—generating statements for this particular call to the
macro. The fact that no code is actually generated if the macro is never
called is an important concept since it then allows macro libraries to be
created that may contain many macro definitions that are standard for a

particular user system. Those macros that are never called in any specific
program do not generate any code and therefore take up no additional memory.
The system library SYS.MAC contains over 70 such macro definitions that
define the supervisor calls to the monitor.

USER DEFINED MACROS Page —2

6.1.1 Macro Definition Formats

There are two formats avaiLable for use in defining macros. The normal
format aLlows one or more source lines to be qenerated as a resuLt of the
macro call. The single—line format restricts the macro definition to one
line of generated source code but takes up less room on the source Listing.
For several sample macros, see Section 6.1.10, beLow.

The general format for muLtiple—line macros is:

DEFINE name fdummy argument list)
source line 1

source line 2

source line n
ENDM

The general format for a sinqle—line macro is:

DEFINE name (dummy araurnent list) = source line

In both forms above, the macro name is any legal user symhoL; it effectively
becomes the opcode by which the macro is called. This symboL may duplicate
a label in the program or may even redefine an AM—lOG pseudo opcode or a

WD16 machine opcode (e.g., you can redefine the MOV opcode to do an ADD if
you really want to confuse some people). You may only define a macro name
once and an attempt to redefine it later in the program will give
unspecified results.

6.1.2 The Macro Source Statements

The multiple—line macro definition source statements begin with the line
immediately following the DEFINE statement and continue through to but not
including the 8.4DM termination line. NOTE: Every macro definition must end
with the ENDM pseudo opcode.

When the program text calls the macro, MACRO will generate and assemble all
macro source lines just as if they had been explicitly entered directly into
the source program. In the single—line form, the source line begins with
the character following the equal sign and continues through (and including)
the carriaqe—return and line—feed pair which terminates the DEFINE statement
tine.

Macro definitions must not be nsted within other macro definitions. Macro
processing is done on a special prepass scheme which prohibits the
processing of •any DEFINE statements within another DEFINE statement.

USER DEFINED MACROS

6.1.3 The Dummy Argument List

6.1.4 Labels

Paqe 6—3

A Label must not be used on the DEFINE statement line since it has no
meaning. Labels may be used on the calling statements. A Label must not he
used on the ENDM tine or the ENDM tine will not be detected.

MACRO supports local symbols of
number between 0 and 65535, decimal.
scope only between two non—locaL
definitions.

the form nnnS and nnnSt, where nnn is a
Local symbols of the form nnnt have

labels, and may be used outside of macro

Local symboLs of the form nnn$$ are for use onLy within macro definitions.
If a nnn$$ label appears outside of a macro, MACRO wiLl treat the label Like
nnnt except that the label will not appear in the symbol tabLe file (used
for debuqginq purposes). NOTE: You may define a local symbol with an equate
(=).

Below are two sample macros that use local symbols:

; Get address of message
Branch around message

The dummy argument list is optional in both forms of macros
one or more user symbols separated by cQmmas. These symbols
within the actual definition of the current macro and may be
other macro argument lists or may even be other opcodes and d
These dummy argument symbols will never appear as such i
sequence of source statements when the macro is called but wi
by the equivalent real arguments supplied in the calling
dummy argument symbols may appear anywhere in the definition
even as labels. Each time MACRO encounters a dummy argument

and consists of
are unique only
duplicated in

efined symbols.
n the generated
11 be replaced
statement. The
source lines,

when generating
the source lines during a macro call, it replaces the dummy argument with
the corresponding real argument that was supplied by the calling statement.

6.1.5 Local Symbols

R0,10$$
2(1St

DEFINE LEAMSG X

LEA
BR

lOtS: ASCII 'X
BYTE 0
EVEN

ENDM

USER DEFINED MACROS Paqe 6—4

Now we call the macroa

LEAMSG HELLO
TTYL)RO Display HELLO
LEAMSG BYE
TTYL RD ; Display BYE

The example above works correctly even though it generates two occurrences
of 105$ and 205$ because the symboLs are Local to each macro call.

The example below demonstrates that local labels of the form nnn$ can be
passed as arguments to macros, and that they will be distinquished from
Labels of the form nnn$$ even if "nnn" is the same:

DEFINE JGT1O X,Y
CMP X,10
BLE 15$
JMP V

15$:
ENDM

Now we call the macro:

JGT1O RD_si ; expands to:
; CMP RD_flU

BLE 15$
; JMP 1$
; 15$:

DEC RO

1$: RTN

6.1.6 Comments

A comment may follow the dummy argument list in the multiple—line form but
you should not use a comment with the single—line form. You should avoid
comments in the actual generated source lines in the macro definition simply
because MACRO stores the entire source text in work memory as ASCII
characters (including all comments). This may tend to use up work memory to
the extent that you may not have enough memory to finish the assembly.

6.1.7 Special Macro Operators

Two special operators exist that are used only within macro definitions: the
argument concatenation operator C') and the expression evaluation operator
(\)

USER DEFINED MACROS
Page 6—5

6.1.7.1 Argument Concatenation C') — Since dummy arguments must be validuser symbols, the apostrophe C') is a legal delimiter for any dummy argumentwithin a macro definition source line. When an apostrophe immediately
precedes and/or follows a dummy argument in the source text, the apostropheis removed and the substitution of the real argument occurs at that point.This is useful for building symbols with arguments that are to be a part ofthat symbol.

Given the following macro definition and eventual calls:

DEFINE BUILD AA,BB
TAG'AA: MOV R1,Q'AB'7

ENDM

BUILD RA,STS
BUILD T,P

the effective code generated by the two calls would be:

TAGRA: MOV R1,QSTS7
TAGT: MOV R1,QP7

6.1.7.2 Expression Evaluation C\) — The \ operator tells MACRO toevaluate the expression that foLlows and to return its value. (Before local
symbols were supported by MACRO, the \ operator was often used to simulatelocal symbols. For information on true Local symbols, see Section 6.1.5,
"Local Symbols.") You may use an expression of the form:

\expr

(a "V followed by an expression) within a macro definition. MACRO thenevaluates the expression and returns its vaLue as a string. By olacing asymbol in front of the \, you can direct MACRO to append the value of theexpression following the \ onto the end of the symbol. For example:

LABEL\4*4:

evaluates to:

LAB EL 16

and:

STC/$:

evaluates to:

SIC1

USER DEFINED MACROS Paqe 6—6

Symbols generated in this way do take up room in the symbol table.

NOTE: Be very careful that the expression following the \ operator does not
contain any macro arguments; they will not be expanded properly and will
probably cause a syntax error (Q code).

6.1.8 Suppressing Macro Expansion — ENDMX

The ENDMX pseudo opcode ends the expansion of the current macro. This
pseudo opcode is illegal outside of a macro definition. You will find this
pseudo opcode useful when using conditional assembly directive pseudo
opcodes to control macro expansion. (NOTE: ENDMX controls what macro code
is generated at the time of a macro call; it does not affect whether the
macro expansion is included in your assembly listing.)

6.1.9 NCHR, NTYPE, NEVAL and NSIZE

These tour macro directives return a value that specifies the number of
characters in an argument (NCHR), the addressing mode type of an argument
(NTYPE), the value of any extra word generated by the addressing mode
evaluation, or the length of any extra words generated by an addressing
mode. These statements function similarly to the equate statement () in
that they assign a value to a user symbol which may be reassigned as many
times as desired during the course of the assembLy. They are normally used
to control the development of macro source code based on the size and type
of arguments passed to the macro and therefore are defined in this section
deaLing with macros. In actuaLity, you may use them anywhere in the source
program with any valid source code as an argument but they are fairly
meaningless unless used within a macro.

Once the symbol has been assigned a value by one of the NCHR, NTYPE, NEVAL
directives, you may use it by itself or within expressions to control the
development of the macro source code through the conditional assembly
statements.

6.1.9.1 NCHR — The NCHR statement assigns a vaLue to a user symbol that
is equivalent to the number of characters in the argument string, It has
the format:

NCHR symbol,strinq

USER DEFINED MACROS Page 6—7

6.1.9.2 NTYPE — The NTYPE statement assigns a vaLue to a user symbol that
is equivalent to the 6—bit addressing mode of the argument. It has the
format:

NTYPE symboL,arqument

The following is a List of the addressing modes and the vaLues that theywill deliver via the NTYPE statement. The upper case 'P' represents any of
the eight registers (RO—R5, SP, PC) which have a corresponding result value
of 0—7 added to the resulting mode they are used in.

R direct register delivers OR
indirect register delivers 1R

(R)+ autoincrement delivers 2R
(R)+ indirect autoincrement delivers 3R
—CR) autodecrement delivers 4R
—(R) indirect autoincrement delivers SR
X(R) indexed delivers 6R
x(R) indirect indexed delivers 7R
fiX immediate delivers 27
TAG relative delivers 67
aTAG indirect reLative delivers 77

For example, if you use register R4 in indirect addressing mode, NTYPE
returns a 14 (i.e., 1R where R = register 4).

6.1.9.3 NEVL — The NEVAL statement assigns a value to a user symboL thatis equivalent to the value of the extra word generated by one of the
indexed, relative or immediate addressing modes. This word represents the
index auqment for indexed modes, the reLative offset for relative modes or
the immediate value for the immediate mode. It has the format:

NEVAL symboL,argument

6.1.9.4 NSIZE — The NSI7.E statement assigns a value to a user symbol thatis equal to the size of the address form (i.e., 0 if no extra word is
generated, 2 if an extra word is generated). It has the format:

NSIZE symbol,argument

USER DEFINED MACROS Page 6-8

6.1.10 SampLe Macro Definitions

BeLow are several sampLe macro definitions.

A macro calLed AUDIT which generates four instructions:

DEFINE AUDIT
MOV R1,R3
ADD R3,SUM
ASL R3

ADD R3,SIJM
ENUM

A macro called XCHNG which exchanges two memory words:

DEFINE XCHNG MEMA,MEMB
MOV MEMA,R1
MOV MEMB,MEMA
MOV Ri ,MEMB
ENDM

A macro called STKSUB which subtracts a memory word from the top stack word:

DEFINE STKSUB TAG
SUB TAG,SP
ENDM

The same STKSUB macro in the single—line format since onLy one line is used:

DEFINE STKSUB TAG = SUB TAG,asP

For some more complex examples of macro definitions, print out or inspect
the system macro library SYS.MAC that defines all of the supervisor calls
used by the AM—100 computer system.

6.2 MACRO CALLS

The actual generation of the defined source code comes when you call the
macro by its name within the text of your source program. The macro must
have been defined prior to its first reference. Macros are onLy processed
for definition during Phase 1 of the assembly process. Macro calls have the
same format regardless of whether the macro definition is multiple or single
line format:

(label:) name (real arguments) {;commments)

USER DEFINED MACROS Page 6—9

6.2.1 Name

Name represents the name given to the macro definition; this becomes theeffective opcode by which your program calls the macro.

6.2.2 ReaL Arguments

Use real arguments when the definition of the macro has a dummy argumentlist; they actually replace the dummy arguments in the source code text ofthe macro definition. The real arguments reptace the dummy arguments on a
one—for—one basis in exactly the same order as the elements of the dummy
argument list. The first real argument in the call takes the place of eachoccurrence of the first dummy argument in the definition, and so on for allthe arguments. If there are not enough real arguments given in the call tofill all required dummy arguments, the unfilled dummy arguments take on anull value and are effectively replaced with nothing. If there are morearguments in the call then required to fill the dummy arguments in the
definition, MACRO ignores the excess arguments.

6.2.2.1 Real Argument Format — Normally, the real arguments are separatedby commas and the assembler expects this format. Also, leading and trailing
blanks are ignored when processing each real argument in the macro call
statement. Often you may want to include a comma or blank as part of thereal argument without having it act as a delimiter or be bypassed. Any
argument that is enclosed in angle brackets wilt be passed onto the sourcecode generation verbatim including any blanks and commas.

The macro call:

XPURT ONE,TWO,THREE

has three real arguments while the call:
XPURT <ONE,IWO,THREE>

has only one argument which includes the two commas. The call:

XPURT <ONE,TWO>,THREE

has two real arguments of which the first includes one comma.

USER DEFINED MACROS Page 6—10

The system macro TYPE is another good exampLe:

DEFINE TYPE MSG

TTYI
ASCII /MSG/
BYTE 0
EVEN

ENOM

This macro is one of the AMOS monitor caLls and is designed to type out the
ASCII message which appears as the argument to the TYPE macro call. The
BYTE (3 statement insures a null terminator and the EVEN statement insures
that the next instruction is again synchronized on a word boundary.

The call:

TYPE HELLO

will type out the message "HELLO" because all the leading blanks are
* automatically ignored before the argument is processed. The call:

TYPE < HELLO >

will type out the message " HELLO " because the blanks are included in
the argument as a result of the angle brackets. Similarly, the call:

TYPE HELLO, I AM A COMPUTER

will type out the message "HELLO" because the comma will terminate the
argument and the rest of it will be ignored. The call:

TYPE <HELLO, I AM A COMPUTER>

will type out the message "HELLO, I AM A COMPUTER" because the comma is
included in the argument as a result of the angle brackets.

6.2.3 LabeL

The Label is optional and will be assigned the address contained by the
assembly current Location counter. This will normally be the address of thefirst byte of code which is generated by the macro source lines (assuming
that the macro does actually generate code). If the macro does not generate
code, then the label wiLl still be defined but it will represent the address
of the next byte of code that is generated after the macro call.

USER DEFINED MACROS Page 6—11

6.2.4 Comments

As in other statements, comments are optional.

6.2.5 Nested Macro Calls

Macro calls may be nested to a depth of 16 levels. A nested macro isdefined as a macro call within the source statements generated by another
macro call. Arguments may be nassed to nested macros by naming the dummy
arguments the same throughout the levels. Arguments that contain blanks or
commas may be passed through successive levels by enclosing them in one set
of angle brackets for each level of nesting since one set of angle brackets
will be removed from an argument with each nesting level. For example, to
pass the argument A,B through three levels of nested macro calls you would
enter the argument as <<<A,B>>> in the first level macro call.

6.2.6 Sample Macro Calls

Consider this example:

DEFINE TBLADD ARG1,ARG2,ARG3
MOV ARG1,R1
ADD ARG2,R1
MOV R1,ARG1CARC,3)
ENDM

This macro is called TBLADD and requires three real arguments. Assume thefollowing call in your program:

SAM: TBLADD SUMS,ENTRY,R5

The following source statements would be generated:

SAM: MOV SUMS,R1
ADD ENTRY,R1
MOV R1,SUMS(R5)

It is evident from its usage that ARG3 must be a register. Assume that only
two arguments were given in the call:

SAM: TBLADD SUMS,ENTRY

The following source statements would be generated:

SAM: MOV SUMS,R1
ADD ENTRY,R1
MOV R1,SUMS()

USER DEFINED MACROS Page 6—12

Notice that the third instruction would contain an error due to the missing
register term which resulted from the missing third argument, Sometimes amissing argument may be used to advantage by altering the generation of thesource statements with the conditional assembLy statements. Thesestatements (described in the next chapter) can detect the fact that the
argument is missing and be used to selectively omit portions of code.

CHAPTER 7

CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to selectively include or bypasscertain lines or segments of source code based on variable parameters which
are tested during assembly. This allows several different versions of the
same program to be generated from one source file. Conditional assemblydirectives find their widest use within macro definitions where they areused to tailor the macro based on the real arguments used in the macro call.

NOTE: You may find the MACRO oarameterized assembly option especialLy useful
when used with conditional assembly directives. The MACRO /V switch allows
you to provide a value on the MACRO command line which can be examined byyour source program. See Section 9.2.3 for information on this feature.

7.1 CONDITIONAL DIRECTIVE FORMATS

Like the macro definitions, conditional directives follow two general forms.
The normal form allows one or more lines of source code to be selected or
bypassed based on the current status of a variable. The single Line form
performs the same function but is a shorter version and only allows thecontrol of a single line of source code.

The general form of a normal conditional block is:
IF condition,arqument
source line 1

source line 2

source Line n
ENDC

The general form of a sinqle—line conditionaL is:

IF condit ion,argument, source—line

CONDITIONAL ASSEMBLY DIRECTIVES
Page 7—2

Both forms emoloy the IF pseudo opcode to identify the conditional directiveand both forms require a condition code which specifies the type of test tobe performed and an argument upon which to perform that test. The conditioncode is a symbol which identifies the test which is performed at the timethe conditional is encountered during Phase 1 of the assembly process. Theargument may be a symbol, expression or macro argument, depending on thetype of test beinq performed.

Note that the item that distinguishes the two forms is the comma thatfollows the argument in the single—line form. If the comma exists, the
remainder of the line up to and including the carriage—return and line—feedwill be the source line that will either be assembled or bypassed depending
on the result of the conditional test, If the comma does not exist, theconditional assembly will be done on the source line that follows the
conditional directive (IF) line up to but not including the ENDC terminatingline.

7.2 CONDITION CODES

The following is a list of the condition codes that are legal and the typeof condition that the associated argument is tested for. Unless otherwise
specified, the argument is evaluated as an expression and the 16—bit resultof that evaluation is the quantity that is tested to meet the condition.
The conditional source lines are assembled if the argument meets the
condition listed next to the code below.

EQ The argument is equal to zero.

NE The argument is not equal to zero,

Li' The argument is less than zero.

GT The argument is greater than zero.

LE The argument is Less than or equal to zero.

GE The argument is greater than or equal to zero.

bE The argument is completely defined at this point.

NOF The argument contains one or more undefined symbols at thispoint.

B The argument (a string of ASCII characters) is blank or null.

NB The argument (a string of ASCII characters) is not blank or null.

7.3 SUBCONDITIONALS

There are three subconditjonal directives thatnormal conditional processing within a
subconditionaLs (1FF, IFT and IFTF) require no
used within the source code that is between thefollowing functions may be performed
subcondjtionals:

1FF The source lines following the
next subconditional or end of
assembled if the main conditional

1FF
main

test

statement up to the
conditional are

result was false.
lET The source lines following the

next subconditional or end of
assembled

lET
main

statement up to the
conditional are

IFTF The source lines following the IFTF statement up to thenext subconditional or end of main conditional, are
assembled regardless of the main conditional test result.

7.4 NESTING OF CONDITIONALS

Conditionals and subconditionals may be nested to a maximum depth of 16Levels. Any conditionals within a higher level conditional will be bypassed(the test will not be performed) if the result of the higher levelconditional test was false. Subconditionals within outer level conditionalblocks will be tested while those within inner level untested blocks will beignored. Consider the following simple example:

CONDITIONAL ASSEMBLY DIRECTIVES
Page 7—3

allow the alteration of the
conditional block. These

other parameters and must be
IF and ENDC statements. The

through the proper use of

1. Assembly of an alternate block of code when the main conditionalcode is being bypassed due to a failed conditonal test.
2. Assembly of a noncontiguous body of code within the conditional

block depending on the result of the main conditional test.
3. Unconditional assembly of a block of code within a conditionalblock, regardless of the result of the conditional test.

The three subconditionals and their functions are:

CONDITIONAL ASSEMBLY DIRECTIVES
Paqe 7—4

TESI1: IF EQ,3—3 ;True so assemble following code
WORD 33 ;Assembled since EQ,3—3 was trueIF NE,4—4 ;False so bypass following code
WORD 44 ;Not assembled since NE,4—4 was false1FF ;Tested — true since NE,4—4 was false
WORD 441 ;AssembLed since 1FF was trueIFT ;Tested — false since NE,4—4 wasn't true
WORD 442 ;Not assembled since IFT was falseIFTF ;Tested — true regardless of NE,4—4
WORD 443 ;Assembled since IFTF was true
ENDC ;End of NE,4—4 conditional block
ENDC ;End of EQ,3—3 conditional block

TEST2: IF EQ,5—6 ;False so bypass following code
WORD 56 ;Not assembled since EQ,5—6 was falseIF EQ,6—6 ;Not tested since EQ,5—6 was false
WORD 61 ;Not assembled since EQ,6—6 was untested
1FF ;Not tested since EQ,6—6 was untested
WORD 661 ;Not assembled since 1FF was untestedIFT ;Not tested since EQ,6—6 was untested
WORD 662 ;Not assembled since IFT was untestedIFIF ;Not tested since EQ,6—6 was untested
WORD 663 ;Not assembled since IFTF was untested
ENOC :End of EQ,6—6 conditional block
ENDC ;End of EQ,5—6 conditional block

The system macro for the PUSH convenience opcode is a good example of howconditionals may be used to control the code generated by a macro:

DEFINE PUSH SRC
IF B,SRC, CLR —(SP)
IF NB,SRC, MO\/ SRC,—(SP)
ENDM

If the macro is called without an argument (SRC is blank) then the firstconditional is true and the code CLR —(SP) is generated to push a zero wordonto the stack. The second conditional is therefore false and generates nocode. If the macro is called with an argument CSRC is not blank) then thereverse happens and the code MOV SRC,—(Sp) is generated with SRC beingreplaced by the real argument in the calling statement. This causes the SRCword to be pushed onto the stack.

The same PUSH macro could have been alternately coded using subconditionals:
DEFINE PUSH SRC

IF B,SRC
CLR —(SP)
1FF
MOV SRC,—(Sp)
ENDC
ENDM

CONDITIONAL ASSEMBLY DIRECTIVES
Page 7—5

For some more examples of conditionals used within macros, print out orinspect the system Library SYS.MAC which defines all of the supervisor callsused by the AM—lOU computer system. This file is on the System Disk inaccount [7,73.

CHAPTER 8

WRITING RELOCATABLE AND RE—ENTRANT CODE

The Alpha Micro computer system not only supports relocatable programs, butrequires that alL programs written for operation under control of the AMOSmonitor be written in totally relocatable code. This means that a programmay be loaded physically into memory at any location and it will run withoutmodification. No addresses within the program ever need to be modifiedsince all references to memory are made in relation to the current value ofthe program counter register (PC). The program may even be dynamicallymoved about in memory without modification so long as it is not currentlyactive while it is being moved. The code is actually independent of its
position in memory and therefore has often been referred to by othermanufacturers as "position independent code."

Writing relocatable code for the AM—100 system has been simplified by theincorporation of several instructions which make references to the currentposition of the program automatic. The load effective address (LEA)instruction may be used to calculate the current value of any relocatableaddress and to load that current value into any register. The tablereferencing instructions (TJMP and TCALL) both use relative offsets toperform their functions as opoosed to absolute or calculated addresses.

8.1 VALID ADDRESSING MODES

Due to the normally relocatable nature of the AM—iDO instruction set andaddressing modes, writing totally reLocatable code merely involves obeying afew specific restrictions in the course of programming. The most importantof these is to never refer to any absolute address in main memory unless youare sure of its location and contents. Two of the addressing modes willalways generate absolute memory references and must be avoided when writingrelocatable code. Note the following examples:

CLR #TAG
CLR TAG(R4)

WRITING RELOCATABLE AND RE—ENTRANT CODE
Page 8—2

In the first example the absolute address of TAG is stored in immediate modeand then used to indirectly address that absolute memory location. Thisaddressing mode is not relocatable unLess the reference to TAG is areference to a known absolute memory location. in the second exampLe, themast common method of indexing can be shown to be non—relocatable. Normalindexing address schemes take the base of some area (in this case it is TAG)and add an offset from some calculation which is stored in an index register(in this case P4) to develop the target memory address. The value of TAG isstored in the instruction as an absolute value and no offset is ever addedto compensate for relocation of the program. This mode would not berelocatable unless, as in the first exampLe, the reference to TAG is to aknown absolute memory location.

The two above addressing modes are the most commonly made errors thatvioLate the rules for relocatable code. A more subtle mistake is made whena register is set up as an index to a table within the user program to bereferenced Later through the register. Take these examples:

MOV #TABLE,RO
LEA RO,TABLE

The first example stores the address of TABLE as an absolute value due tothe immediate mode addressing. Since the assembly of the program is donestarting at Location zero, the value of TABLE during assembly is really theoffset from TABLE to the base of the program. When the program actuallyruns, it will not be located at zero (the operating system resides in thefirst 12K or so) and the actual address of TABLE will riot be the same as atassembly time. The second example is the proper instruction to be used whensetting up a register to a memory reference. The instruction is coded atassembly time as an offset from the instruction itself to the locationmarked as TABLE and when the LEA instruction is executed, the actual valueof TABLE in its current Location is calculated and loaded into the register.
Addressing modes that involve only register references are totallyrelocatable. These modes are:

Rx direct register
&Rx indirect register
(Rx)+ autoincrement
a(Rx)+ indirect autoincrement
—(Rx) autodecrement
&—(Rx) indirect autodecrement

The two relative addressing modes are also relocatable:

TAG relative
aTAG indirect relative

WRITING RELOCATABLE AND RE—ENTRANT CODE Page 8—3

8.1.1 Index Modes

Index modes can be
and set up procedure.
the index offset I
relocatable and will
with the effective va
index offset is the
will give the desired
the third word (sixth

relocatable or non—relocatable depending on their usage
Generally speaking, if the register is absolute and

s a relative tag in the program, the indexing is not
deliver wrong results. If the register is first Loaded
lue of the relative address within the program and the
absolute component, then the scheme is relocatable and
results, lake the following two examples of clearing
byte) in TABLE:

This is the wrong way:

MOVI 6,R3
CLR TABLE(R3)

This is the right way:

;R3 gets absolute component offset
;absolute Location TABLE(R3) is cleared

;R3 gets current address of TABLE in program
;relocatable Location at TABLE+6 is cleared

Writing re—entrant programs involves a little trick which can be played with
relative code machines. Re—entrant programs distinguish themselves by theirability to be placed into system memory (via the SYSTEM command in your
SYSTEM.INI file) and simultaneously shared by multiple users. A good
example of a re—entrant program is the AIphaBASIC compiler and runtime
package. More than one user may share this program without Loading it into
each of their individual memory partitions. The main problem with writing
re—entrant programs deals with the local variables that must be used as awork space for each user. These individual work spaces must be allocated
within the user's own memory partition and yet must be accessed by the
common re—entrant program. Remember, the re—entrant program must never
store variables within its own program area or else it is no longer
re—entrant.

8.2.1 Using Base Registers

If a table of the named local variables is created using BLKB and BLKWstatements at the beginning of the re—entrant program, the labels assignedto these variables may be used as indexes to the variable area once it has
been allocated within the user's memory space. This concept requires that
one register (RO—R5) be dedicated throughout the program as the base pointfor the local variable area. For an example, let's suppose that yourprogram will require four variables caLled VARA through yARD with thefollowing sizes:

LEA
C LR

R3 ,TABLE
6(R3)

8.2 RE—ENTRANT CODE

WRITING RELOCATABLE AND RE—ENTRANT CODE Page 8—4

AS EC I

The above table wilL be at the beginning of the re—entrant program defining
a local variable area of 14 words (or 28 bytes). The two ".O" statements
surrounding the table are required to insure that the area generates no codebut is merely used to set up the index values assigned to the labeLs VARAthrough yARD. Generation of the actual program code which follows wiLl thenbegin at relative location 0 where it is expected. The ASECT calL sets the
assembLer into absolute mode so that the variables are defined asnon—relocatabLe. The RSECT caLL restores relocation for the following
program code. The program must set up the above variable area by allocating
the required space within the user's memory partition (probably with a
GETMEM caLL) and set the selected index register to point to its absolute
base address (returned by the GETMEM call).

If we assume that you have chosen R5 to be your index to the
and have set it to point to the allocated 14—word block, the
may then be referenced throughout the program execution by
addresses:

VARB(RS) for variable 2

VARC(R5) for variable 3
VARD(R5) for variable

In addition to the above direct addressing method, another
may be set to index an individuaL variable with the foLLowing

R2,VARC(R5) ;index the 16—byte variable 3

The index R2 now points to the specific VARC variable which might be usedfor incremental indexing within itself (perhaps to store 16 1—byte flags).

In summary
particular
addressing
generate.
Programmer

, the best way to learn how to evaluate the relocatablity of a
programming technique is to become thoroughly familiar with the

modes used by the WD16 chipset and the type of code that theyThis information can be found in the WD1Ô Microcomputer
's Reference Manual, (DWM—00100—04).

VARB: BLKW 1

VARC: BLKB 16.
VARD: BLKW

=0
1

RSECT

;variabLe 2 size is
;variable 3 size is 16

word
bytes

LEA

variable area
four variables
the following

index (say R2)
statement:

Remember that in the above scheme,
example) must never be destroyed in the
not be able to reference any of the van

the base index register
program execution or else
ables.

R5 in this
you will

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PART II

USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

These chapters describe the use of:

MACRO The macro assembler.
LINK The linkage editor
SYMBOL The symbol tabLe generator
LIB The object file library generator
GLOBAL The qiobal symbol cross reference generator
DDT The dynamic debugginq and patching program

For information on the screen—oriented assembly language program debugger
AIphaFIX, see the AIphaFIX User's Manual, (OWM—OO100—69).

CHAPTER 9

THE ALPHA MICRO ASSEMBLER (MACRO)

This chapter discusses the Alpha Micro assembler program, MACRO.

After writing your source code (the .MAC file), you must assemble it. The
assembler translates your assembly Language program into machine language
(the .OBJ tiLe). The linkage editor (discussed in the next chapter)
processes the .OBJ files to resolve all symbol references and to create the
finaL, executable program (.PRG or .OVR) file.

This chapter gives information on the operation of the macro assembler
program.

9.1 THE MACRO PHASES

The assembLer actualLy runs in five distinct phases that are selectively
called depending on what functions are needed. A brief summary of their
respective functions follows:

PHASE 0 — tnterprets the command line and sets up parameters in the
common area for use by successive phases.

PHASE 1 — Reads the source (.MAC) file and performs Pass 1 of a
standard two—pass assembly process by expanding macros,
buildinq the user symbol table, and generating the
interphase work (.IPF) file.

PHASE 2 — Reads the interphase (.TPE) file and performs Pass 2 of a
standard two—pass assembly process by resolving symbols
and generatino the object code (.OBJ) file. MACRO then
deletes the interphase work file.

PHASE 3 — Reads the source (.MAC) tile and the object (.OBJ) file
and creates a list (.LST) disk file or outputs the
assembly listing to the terminal.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9—2

PHASE 4 — ActuaLly not part of the assembler but an automatic call
to the LINK program to read the object (.OBJ) file and
create a runnable program (.PRG or .OVR) file. Only occurs
if there were no internal or external symbol references in
the program. (If Phase 4 is not called, you wiLl Later
have to use LINK to link this file with the other files
that contain the symbols that will resolve the externaL
and internal references.)

9.2 COMMAND LINE

The general format for the assembler command Line is:

.MACRO filespecf/switches.

9.2.1 Filespec

The /switches option request
characters. A switch alters t
switches, MACRO performs an
creates an object file but no
program is a sinole segment
statements), then MACRO enters
.OVR) program file.

may ootionally
and device

is a slash followed by one or more alphabetic
he normal assembly process. If you enter no

assembly on the specified source file and
list file (i.e., Phase 3 is bypassed). If the(i.e., it contains no INTERN or EXTERr4
Phase 4, which creates an executable (.PRG or

You may select one or more of the assembly options below by specifying the
appropriate switch on the MACRO command line:

lB text Generates a bottom footer line on every page of the listingusing the rest of the text on the command line following thelB switch as title information. For example:

.MACRO DEVCPY/B Version AOO

generates a listing file of which every page contains thebottom line title: "Version AOO.' /9 must be the Last switch
on the command line.

IC Includes conditionals in the listing.
normally suppressed.) (Conditionals are

Filespec specifies the source file you want to assemble; it
be a complete file specification containing accountspecifications.

9.2.2 Assembler Options

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9—3

/E Writes to the assembly Listinq only those lines that containan error.

/H Lists binary code in hexadecimal instead of octal in theassembly listing.

IL Generates a list file by calling Phase 3 during theassembly. Creates the output file with the same name asyour source file, hut a .LST extension. (You may modify thename of your listing file by using the OBJ WAN pseudo opcodein your source program—— see Section 5.1.2, "OBJNAM.")

/0 Uses the current object file by omitting Phases 1 and 2.

/R Generates a cross reference, which appears at the end of the
assembly listing. See Section 9•4z, "Generating a CrossReference," for information on the cross reference listing.

IT Prints the assembly listing on your terminal instead ofwriting it to a disk file.
IV{a}:x Allows you to specify a value on the MACRO command line

which can he examined during the assembly process, "a"specifies the type of value specified, and X is the value.See Section 9.?., "Parameterizecj Assembly Option," for moreinformation.

Lists in your assembly listing all macro expansions. (Macro
expansions are normally suppressed.

NOTE: You do not have to specify the IL switch when you use the IS, IC, IE,/H, IR, IT, or IX switches to tell MACRO to generate a listinq.
You may combine any of the above switches as desired in a sinole commandline by entering them after a single / character at the end of the commandline. For example:

.MACRO NEWDVR.MACIRTED

The command line above tells MACRO to generate a listing file for NEWOVR.MACthat contains a cross reference and to output that listinq to the terminal.
The most common method of assembling new programs is as follows:

1. Assemble the program with the command:

.MACRO filesoec

This wiLl allow you to count any errors that occur during Phases 1and 2.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9—4

2. If no errors occur, create a list file with:
.MACRO fiLespec/LOjj

or, optionaLLy, List it on the terminal with:

.MACRO filespec/TO

or, get a cross reference with the listing:

.MACRO filespec/RO@

3. If there were errors, List them alone with:

.MACRO fi lespec/TOE fl

Correct the errors and go back to Step 1.

4. If the program has only one segment, then MACRO automaticalLy calls
Phase 4 which creates the .PRG or .OVR program file; otherwise, you
will need to use the LINK or SYMBOL program to generate the final
orogram file—— see the next chapter for information on LINK and
SYMBOL.

9.2.3 Parameterized Assembly Option

MACRO provides a parameterized assembLy facility by allowing you to use the
/V switch to specify a value on the MACRO command line. The value switch
may take one of these forms:

/V:x x is an octal or hex number (depending on the
prevailing radix setting)

/VO:x x is an octal number
/VH:x x is a hexadecimal number
/V0:x x is a decimaL number
/VA:x x is one or two ASCII characters
/VR:x x is one to three RADO characters

The NVALU pseudo opcode allows your program to access the value specified in
the /V assembly switch. The NVALU statement takes the form:

NVALU sym

which sets the symbol "sym' to one of the values below, depending on which/\J switch was used.:

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9—5

S ym = x

symOx
sym='HOx
s ym = Dx
sym= 'x
sym"x
sym=[x]

You may find this feature especially useful when using conditional assembly
directive pseudo opcodes to select which portions of code to assemble.

9.3 SAMPLE ASSEMBLY DISPLAY

BeLow we show a sample assembLy display:

LMACRO SAVTXT.MAC/LJ

== Macro Assembler Version 1.1 ==

Processing SAVTXT.MAC

Phase 1: Copying from DSKO:SYS.MACr7,71
Work area: 3916 bytes, 3614 used

Phase 2: Object file finished
Phase 3: Listing file finished
Phase 4: Program file finished [Program size = 60. bytesi

If MACRO is automatically EXTERNin0 any symbols, it tells you so in Phase 2(listing the symbols alphabetically). For example:

Phase 2: Object fiLe finished
EXTERNs were generated for the following symbols:

GETNUM PRTNUM

In the case above, MACRO automatically EXTERNed the symbols GETNUM and
PRTNUM. MACRO automatically EXTERNs symbols if those symbols are undefinedand if the AUTOEXTERN pseudo opcode appears in your source file.
Notice that even if your proqram is a single segment, MACRO will not callPhase 4 to link your program if MACRO was not able to resolve all symbolreferences in your program (that is, if EXTERNs were generated). You willneed to use LINK or SYMBOL to Link your program with the other file(s) thatcontain the symbols referenced by your main program.

If you ask for a cross reference listing, you see the followinq messageduring Phase 3:

Phase 3: Cross reference file finished

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9—6

9.4 THE ASSEMBLY LISTING

By specifying the appropriate assembly switches, you can direct MACRO tocall Phase 3 of the assembly process to create a list file which is sent toa disk file or to your terminal. The listing is formatted and contains both
the source of your proqram and binary code that is generated by the
assembly.

p.4.1 Assembly Listing Format

Each page contains a page number and a title that gives the name of the
program that has been assembled and the account number that the tile was
assembLed in. Unless otherwise controlled by DAGE statements, each pagecontains 54 Lines of source data. Each page is terminated by a form—feedcharacter. If the system date has been set (via the monitor level DATE
command), the date appears at the top of each page of the listing. If youspecified the /8 assembly switch, MACRO outputs to each page a oage footer
containing the text specified on your MACRO command line.

Each data line on the listing contains four sections:

1. Columns 1—5 list the error codes on the line that generated theerror. (For a list of the MACRO error codes, see Section Q.5,
"MACRO Errors..")

2. Columns 8—13 list the current address of the generated data if anydata code was generated. Or, these columns give the value of theassignment if this is an equate statement.

3. Columns 16—37 list the generated binary data (maximum of the firstthree words) in octal (or hex if /H assembly switch was used).

4. Columns 40—132 list the source line.

9.4.2 Listing Control Pseudo Opcodes

Several pseudo opcodes exist that control your assembly listing; you willplace these pseudo opcodes in your source program. We list them brieflybelow. For more information on each pseudo opcode, see Chapter 5.

OBJNAP'l — Allows you to modify the name of your assembly
listing disk file.

LIST — Re—enables output to the listing file.
WOLIST — Turns off output to the assembLy listing file.

(LIST and NOLIST are ignored if you use the /X
switch.)

PAGE — Begins a new page in the assembly listing.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9—7

9.4.3 Generating a Cross Reference

You may use the /R switch to generate a cross reference as part of theassembly listing. To see the cross reference on your terminal, use the /RTswitches. You may specify the /0 switch to bypass assembLy Phases 1 and 2if an object (.OBJ) fiLe for the current source file already exists.
NOTE: For information on using the GLOBAL command to generate a global crossreference, see Chapter 12.

9.4.3.1 Cross Reference Control Pseudo Opcodes — The CREF, MAYCREF, andNOCREF pseudo opcodes control the generation of the cross reference listing:
CREF Enables normal cross referencing.

NOCREF Suppresses from the listing all defined symbols until
MACRO encounters a CREF or MAYCREF oseudo—op.

MAYCREF Suppresses from the Listing alL defined symbols if
those symbols are never referenced.

9.4.3.2 Cross Reference Listing Format — The cross reference Listing issimilar to an ordinary assembLy listing except that it also includes thefollowing:

1. A column of sequence numbers appears at the left of the listing.
2. At the end of the assembly listing, an alphabetic Listing of eachsymbol appears giving, in numeric order, the sequence numbers ofthe lines in which each symbol apears. These sequence numbers aresometimes followed by a code of the form —X, where X identifies thetype of symbol. X may be one of the followinqt

L — a label definition
E — an equate definition
I — an INTERNed symbol
X — an EXTERNed symbol
0 — an OVRLAY.

Also, a single quote C') appears after symbols that were neverdefined. (MACRO wiLl automatically EXTERN such symbols if the
AUTOEXTERN pseudo opcode is present in your source program.)

3. A similar listing of macro definitions and references follows thesymbol listing. (The sequence number corresponding to a macrodefinition is flanged by a "—M" code.)

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9—8

9.4.3.3 SampLe Cross Reference Listing — Remember that the
reference appears at the end of a regular assembly listing. Below is asample of what the cross reference portion of the assembly listing for asmall program, MATH.MAC,

MATH [110,5]
ACCUM 394 434
ADD 423
DIV1 429
EXIT 365 375
GETEXP 364—L

NUMERR 393 416 567—L
OPRERR 407 411 583—L
0PRTBL 468 613—L
PARSE 383—L
PRTNUM' 441 450
START 354—L
SUB 425
S..RDX 30—E
SUAL 615 616—E 618

643 643—E

CROSS REFERENCE LISTING
520 530 542 543

459 597—L

619 619—E 623

PAGE 001
553 554

626 627

MATH 1110,5]
BYP 181—M 366k[173—M 457fl-MS0M4
OPERAT 331—M 613
TYPECR 292—tI 451

CROSS REFERENCE LtSTING
3S3 39S 41E 494

589 597

621 629
567 583

reference above identifies equated syrnbo
It aLso identifies the GETNIJM and PRTNUM

Is and macro
symbots as

might Look like:

520—L

cross

55.5—L

530—L
309

503
PAGE 002

637

Notice that the cross
definition symbols.
undefined or automatically EXTERNed symbols.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9—9

9.5 MACRO ERRORS

MACRO displays two types of error messages: errors codes that appear in your
assembly listing and error messages that appear on your terminal screen as
you assemble the program.

9.5.1 Error Codes

Below are the error codes that can appear in your assembly listing. Eachcode appears on the line of the source program in which the error occurred.

A Branch address was out of the 127—word range.

B Boundary error — a word operand was on an odd byte
address. (See Chapter 5 for information on the EVEN
pseudo opcode.)

C Conditional statement syntax error.

D Duplicate user symbol. (Symbol defined more than once.)

I Illegal character in source line.

M Missing term or operator in operand or expression.

N Numeric error which indicates a digit out of the current
radix range.

P An expression that had to be resolvable on the first pass
was not.

0 Questionable syntax — this is a general catch—all error
code.

R Register error — a register expression was not in the
range of 0—7.

T Source line or operand terminated improperly.

Ii Undefined user symbol during Pass 2

V Value of an absolute parameter was out of its defined
range.

X Assembler system error — pease notify Alpha Micro.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9—10

9.5.2 Error Messages

You may see several error messages during the program assembly:

INVALID CONTROL PARAMETER \IALUE
You used the /V assembly switch to specify a value on the MACRO command
line, hut something was wrong with the format of the option request.For example, the value after the /v switch was missing or incorrect.

?Cannot OPEN Devn: — invalid filename
There is something wrong with the format of your command line. For
example, you may have tried to use an assembly switch but forqot toplace it at the end of the file specification. ALL switches must
appear at the end of the command line.

?FiLe specification error
FissomefingwFng with the format of your command line. Forexample, you typed MACRO followed by a RETURN (omitting the filespecification).

?MACn.OVR not found
where n is a number from 1) to 5. MACRO cannot find one of the overlays
that are a part of MACRO. Make sure that the missing file is in
account DSKO:[1,4]. If the file is not there, contact the System
Operator.

?Copy file filespec not found
where tilespec is the file specification you supplied to the COPY
pseudo opcode. For detailed information on the search pattern MACRO
now uses to search for the copy file, see Section 5.1.1, "COPY."

?Expression stack error
This is an internal MACRO error. You should never see it—— but if youdo, check your source program to see if you made any errors in
specifying expressions.

[SYNC ERROR]
MACRO generates a listing file by reading the source tile and the
object file and synchronizing the source lines with the resolved object
data to come up with the listing line data. If these two files get out
of sync, there is no way that the listing may proceed and the message
[SYNC ERROR] appears on your terminal. MACRO will then close the listtile at the point of the sync error, but the line that caused the errorwill not have been included. A sync error of this sort means one of
two things: either you have an out—of—date object file that you are
usinq with the /0 switch, or you have found an undiagnosed assembler
bug. These bugs usually occur when you get fancy with nested macros
and conditionals that have a valid error buried down deep within.

THE ALPHA MICRO ASSEMBLER (MACRO)
Paqe 9—11

NOTE: The most probable cause for this error is that you are using anabject file that was generated by a different version of MACRO than theone you are using now. If you see no obvious errors in your program,try generating a listing without the /0 switch (thus bui'ding a newobject file). If you stilt, get [SYNC ERROR], report the problem toAlpha Micro.

CHAPTER 10

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL)

This chapter contains information on the linkage editor LINK and the symboltable generator program SYMBOL. We discuss both of these programs at thistime because LINK and SYMBOL are very similar and, with the proper selectionof option switches, can be made to perform virtually the same functions.LINK takes one or more object files produced by the assembler and resolvesall external symbol references. The file that LINK produces is the final,executable program tile. SYMBOL takes one or more object files and producesa symbol table file for that program. As we will see later, LINK and SYMBOLcan also perform other functions.

Besides discussing how to link .OBJ files, this chapter also discusses theuse of LINK and SYMBOL with library (.LIB) files. For more information onobject tile libraries, see Chapter 11, "The Object File Library Generator(LIB) ."

10.1 LINK

The assembler itself does not produce a file that is directly usable as anexecutable program. (Unless of course, your program is a single segmentfile that contains no EXTERNed, INTERNed, or AUTOEXTERNed symbols, in whichcase MACRO calls LINK as Phase 4 of the assembly.)

The assembler output file is an object (.OBJ) file that is not fullyresolved and which contains symboL definitions and embedded cross—segmentcommands.

It is the linkage editor (LINK) that resolves the object tile. LINK readsone or more of these object files and creates one runnable program (.PRG)tile which the operating system can load into memory and run. Furthermore,if the program contains overlay segments, LINK resolves them and creates oneoverlay (.OvR) file for each one. These overlay files are loaded intomemory upon command during the running of the program and allow memoryconservation for Larqe programs such as the assembler itseLf.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10—2

We mentioned previously that if your program has only one segment, MACROautomatically calls the linkage editor to create a program file (as Phase 4of the assembly). In this case, no further action is necessary and you areready to run the program. If, however, the program is comprised of morethan one segment, you must run the LINK program yourself, specifying the
name and order of the segment files involved.

10.1.1 LINK Command Line

The general format of the LINK command is:

.LINK C/switches }filesPec1C,filespec2,...filespecN.{/5witches}eD

where filespec selects an object file. The default extension is .OBJ. Thefirst -file specified may not be a library file or an overlay file. If a
filespec includes a device and account specification, LINK searches for thefile in that account. If you omit a device and account specification, LINKsearches for the file first in the account and device you are logged into;
secondly, in your project library account (account IP,0]); and, finally, in
the System Macro Library account, DSKO:[7,7].

LINK treats switches in the same way that a standard AMOS wildcard command
does; this means that the files affected by the option switches you use can
depend on where you place the switches. Any switch that appears in front of
a filespec becomes the defauLt switch and thus affects the rest of the
filespecs on the command line (unless canceled by a subsequent switch). Any
switch that appears at the end of a filespec affects onLy the files selected
by that specification. For example, suppose you want to use the /0 switch to
identify one or more .OBJ files as optional files:

LLINK FILBCK,/O DIRBCK,TAPBCKfl

selects the files DIRBCI(and TAPBCK as optional files because the /0 switch
precedes the filespec DIRBCK, and thus becomes the default. The commandline:

.LINK FILBCK,DIRBCK/O,1APBCK

selects only the file DIRBCK as an optional file because the /0 switch
follows the DIRBCK filespec and appears before the next comma in the commandline.

NOTE: Special switches (identified as "operation switches" in thediscussions below) affect ALL filespecs specified on the command line no
matter where you pLace the switch. For example, it doesn't matter where you
place the /M switch on the command line—— it affects all files selected by
the filespecs on the command line.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10—3

10.1.1.1 Continuation Lines —
more files than wilt fit on the
the next line by terminating the
to accept files as long as the
comma.

If the program you want to link contains
command tine, you may continue the files on
Last filespec with a comma. LINK continues
last filespec on the line terminates with a

10.1.1.2 LINK Options

/E Include equated symbols in the symbol table tile.
/E with the /M or IS switch.) (Operation switch.)

(You must use

IL Designates a library file. See Section 10.3, "Library andOptional Files," for information on library tiles.
/M Generate a load map (MAP) file. See Section 10.4, "The LoadMap File," for a discussion of the load map. (Operation switch.)

IN Suppress /P switch. (Operation switch.)
/0 Designates an optional fiLe. See Section 10.3, "Library

Optional Files," for information on optional files.
and

/P Generate program (.PRG) and overlay (.OVR) files.
switch. (Operation switch.)

The default

/R Designates a required file. The default switch. CanceLs the ILand /0 switches.

IS Generate a symbol table (.SYM) file. (Operation switch.)
You may specify multiple switches by preceding each switch with a I. (Seethe command line below.)

10.1.2 Sample LINK Display

Below is a sample LINK display. Note that we are using the IL switch tospecify a library file, and are usinq the /M switch to qenerate a load map.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10—4

.LINK MATH,UTILIT.LIB/L/M

== Linkaqe Editor Version 2.0 ==

Processing MATH.OBj [Base = 0, Size = 348. bytes]

—— Optional and Library Request ——

Processing UTILIT.LIB(NUM) [Base = 534, Size = 144. bytes]

Proqram and Map files finished. [Program size = 492. bytes]

Notice that LINK tells you the size (in decimal bytes) of each module. Ifyou specify a library file, LINK tells you which of the object files in thelibrary file are being linked in. (In the sample above, LINK Linked in theNUM routine from the UTILIT.LIB library file.)

10.1.3 LINK Errors

LINK reads each of the files specified and creates the necessary program andoptional overlay files. LINK displays any error messages on the terminal ifit encounters any errors during processing. The most common error is theundefined global symbol error which means you have an EXTERN symbol in one
segment which is not defined in another segment by an INTERN statement.LINK does not generate a program file if it cannot find one or more of theseqments in its assembled object (.OBJ) form. For a list of the LINK errormessages, see Section 10.5.

10.2 THE SYMBOL TABLE FILE GENERATOR (SYMBOL)

The object files output by the assembler contain complete information on thesymbols used in your program, as well as the actual generated code. To makethis list of symbols available to the debugger programs, you must use theSYMBOL program. Just like LINK, the SYMBOL program takes one or more .OBJfiLes and creates an output file, in this case a symbol (.SYM) file. DDTand FIX use this file to provide symbolic debugging of programs.

Unlike the program file, the symbol file is not qenerated automatically evenif only one program segment is used. You must explicitly run SYMBOL if youwish to create a symbol file.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10—5

10.2.1 SYMBOL Command Line

The format for calling SYMBOL is identical, to the LINK command line:

.SYMBOL f/switches }filespec1f,filspec?,...filespecN}{/switches}

where filespec selects an object file. The default extension is .OBJ. Thefirst file specified may not be a library file or an overlay file. If afilespec includes a device and account specification, SYMBOL searches forthe file in that account. If you omit a device and account specification,SYMBOL searches for the file first in the account and device you are loggedinto; secondly, in your project library account (account CP,0]); and,finally, in the System Macro Library account, DSKO:C7,7J.

SYMBOL treats switches in the same way that a standard AMOS wildcard commanddoes; this means that the files affected by the option switches you usedepends on where you place the switches. Any switch that appears in frontof a filespec becomes the default switch and thus affects the rest of thefilespecs on the command line (unless canceled by a subsequent switch). Anyswitch that appears at the end of a filespec affects only the files selectedby that specification. For example, suppose you want to use the /0 switchto identify one or more .OBJ files as optional files:

.SYMBOL MAIN,/O SUB1,SUB2

selects the files SUB1 and SUB2 as optional files because the /0 switchprecedes the filespec SUB1, and thus becomes the default. The command line:

.SYMBOL MAIN,SIJB1/o,SIJBP

selects only the file SUB1 as an optional file because the /0 switch follows
the SUB1 filespec and appears before the next comma in the command line.

NOTE: Special switches (identified as "operation switches" in thediscussions below) affect ALL filespecs specified on the command line nomatter where you place the switch. For example, it doesn't matter where youplace the IM switch on the command line—— it affects all files selected bythe filespecs on the command line.
The output of SYMBOL is placed into a file named filespec.SYM, wherefilespec is the first file specified on the SYMBOL command line. No symbolfile will be generated if one or more of the specified files is not found inits assembled object (.OBJ fite) form. (NOTE: You may use the OBJNAM pseudo
opcode within your .MAC file to modify the name used for the SYMBOL outputfile. See Section 5.1.2, "OBJNAM.")

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10—6

10.2.1.1 Continuation Lines — As with LINK, if the program contains morefiles than will fit on the command line, you may continue the filespecifications on the next Line by terminating the last filespec with acomma. SYMBOL will continue to accept filespecs as lona as the lastfilespec on the line terminates with a comma.

10.2.1.2 SYMBOL Options

/E IncLude equated symbols in the symbol table file. You may alsouse this switch with /M to tell SYMBOL to include equatedsymbols in the load map. (floeration switch.)

IL Designates a library file. See Section 10.3, "Library andOptional. Files," for information on library files.
fri Generate a load map (.MAP) file. See Section 10.4, "The LoadMap File," below, for a discussion of the toad map. (Operationswitch.)

IN Suppress /5 switch. (Operation switch.)

/0 Designates an optional file. See Section 10.3, "Library andOptional Files," below, for information on optional files.
/P Generate program (.PRG) and overlay (.OvR) files. (Operationswitch.)

/R Designates a required file. The default switch. Cancels theaffect of a IL or /0 switch.
/5 Generate a symbol table (.SYM) tile. The default switch.(Operation switch.)

You may specify multiple switches by preceding each switch with a I. (Seethe command line below.)

10.2.2 Sample SYMBOL Display

Below is a sample SYMBOL display. Note that we are using the IL switch tospecify a Library file, and are using the /M switch to generate a load map.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10—7

.SYMBOL MAIl-f ,UTILIT.LIB/L,M RET

== Linkage Editor Version 2.0 ==

Processing MATH.OBJ

—— Optional and Library Request ——

Processing IJTILIT.LIB(NUM)

Symbol and Map files finished.

If you specify a library file, SYMBOL tells you which of the object files inthe library file it is including in the symbol table file. (In the sampleabove, SYMBOL included the NUM routine from the UTILIT.LIB library fiLe.)
NOTE: If you compare this display with that of the LINK program (Section10.1.2, "Sample LINK Display," above), you will notice that it is verysimilar. In fact, LINK and SYMBOL can be made to perform exactly the samefunctions. If we had specified the /P switch and the IN switch -(specifyinq
that we wanted a .PRG tile generated and did not want a symbol table file),the display above would have looked exactly like the LINK display in Section10.1 .2.

10.3 LIBRARY AND OPTIONAL FILES

Both LINK and SYMBOL support the use of library files and optional fiLes.
Most programmers have been faced at one time or another with the task ofhavinq to write a standard routine again and again for multiple programs.Library and optional files heLp you to avoid this situation by allowing yourprograms to contain references to previously written routines in an objectfiLe Library or an optionaL file.
Besides making your life easier by making it possible for you to writefrequently used routines only once, library and optional files also help to
standardize programs by providing the same error checking, input checking,message display, etc., for multiple programs.

LINK and SYMBOL place any object files from a library file and any optionalfiles at the end of your program in the order that they are needed toresolve external references.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10—8

10.3.1 Library FiLes

A library file is a file produced by the LIB program (discussed in the nextchapter). The library fiLe contains a group of .OBJ files. The purpose ofgenerating a library fiLe is to gather together a group of subroutines thatare frequently used by programs on your system. These routines are theneasily accessed by all programmers on the system by usinq the EXTERN or
AUTOEXTERN pseudo oncodes in their source programs and specifying therequired routine. Unlike usinq the COPY pseudo opcode, which physically
incorporates the entire source file specified by the COPY statement intoyour assembled program when you assemble it, using a library file causes
only those subroutines within the library file that are referenced by your
program to be linked into your orogram.

For example, if a Library file contains the foll.owinq object files: SWTCH,
SPACE, STRCHK, and GETLIN, and the program you link with the library file
only references the routine GETLIN, only the object code for that routinewill be linked into your program.

IMPORTANT NOTE: You should note that the entire .OBJ file that is a
component of a library file will be linked in if your program references asymbol in it; not just that portion of the .OBJ file required by your
program. For example, suppose you create a Library file (using LIB) that
contains the followinq .OBJ files: STRCHK, GETLIN, and GETNUM. If your
program references a symbol within the GETNUM object fiLe, the entire GETNUM
file is Linked in even if it also contains several other routines. For this
reason, you should limit each .OBJ file that is a component of the libraryto only one subroutine.

You may not specify the library file first on the LINK or SYMBOL commandline. (This is because to resolve symbol references, LINK and SYMBOL must
first access the file that makes those references before it accesses thefile that defines them.)

10.3.2 Optional Files

By using the /0 switch with LINK or SYMBOL, you may request that thespecified file (called an "optional file") be included in the linked program
if the optional file is needed to resolve any external references in one ofthe other files being linked. If such a reference exists, the optional filewill be incorporated into your program; otherwise, it wilt not. Unlike alibrary file, an optional file only contains the contents of a single .OBJfile. An optional file may not be an overlay.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10—9

10.4 THE LOAD MAP FILE

A load map shows how the modules linked together will be loaded into memorywhen the program is invoked for execution. Using the /M switch with LINK orSYMBOL, you may ask that a load map file be generated. A load map file hasthe name of the first file specified on the LINK or SYMBOL command line andthe extension .MAP.

A load map lists each object file used in the order that it was used. Foreach object file, the load map gives the following information:

1. The file's offset from the beginning of the proqram;

2. the size of the file in decimaL bytes;

3. in alphabetic order, all the symbols defined in that file and theirreLocated values after the linking process. If the symbols arerelocatable relative to the base of the program, the load map flagsthem with a "r" symbol.

For example, the following LINK command line:

.LINK MATH,NUM/M

generated the load map file below, MATH.MAP:

[Linkage Editor Version 1.0]
Program Load Map

Module Base Size Symbol Value Symbol Value Symbol Value

MATH 000000r 348. ACCUM 000520r ADD 000330r BASCHG 000262r
BASE CU]0516r DIVI (]00362r EXIT 000Sl4r
GETEXP 00000ór GETOPR 000224r MULT 000344r
NUMERR 0004O6r OPRERR 000446r OPRTBL 000522r
PARSE 000024r START 000000r SUB 000336r

NUM 000534r 144. CHGTBL 000706r GETNUM 000534r PRTNUM 000616r

10.5 LINK AND SYMBOL ERROR MESSAGES

?Comrnand error
There was something wrong with your command Line. For exampLe, youtried to use LINK or SYMBOL without specifying a file on which to work.

?Fatal error — Insufficient memory
You must increase the size of your memory Partition; there was notenouqh room to perform the procedure you specified.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) age 10—10

?Undefined switch /x — iqnored
Refer to Appendix B, "Summary of Program Switches," to make sure thatyou specified a vaLid switch.

?Fatal error — Overlays of code are not permitted
Next expected address is xxxxay co e a dress is xxxx

Your program is trying to overlay previous code. Check your .MACprograms to make sure that your overlay references are correct.
?xxxx undefined

An external symbol is undefined. This is a very common error. Youhave referenced a symbol which has not previously been defined (e.g.,you have made a reference to a label that does not exist). Make surethat an EXTERN statement in one segment is defined by an INTERNstatement in another segment.

?Fatal error — First fiLe must not be a library
To enable LINK or SYMBOL to correctly resolve external references to alibrary, you must specify the program that references that librarybefore you specify the library file itself.

?Fatal error — Attempt to specify overlay xxx as optional
You may not use the /0 switch to designate a file as optional if thatobject file is an overlay.

?Fatal error — Overlay symbol "xxxx" in seqment yyyye me in a p revious inp ut seqm en t
You may not reference an undefined overlay. In other words, LINK istrying to process a supposed overlay file, but has seen no referencesto the overlay in a previous file. Without such a reference, LINK
cannot construct the overlay, so it aborts and returns you to AMOScommand level.

?Fatal error — First file must not be an overlay
To enable LINK or SYMBOL to correctly resoLve external references to anoverlay, you must specify the program that references that overlay
before you specity the overlay file itself.

?Fatal errpr — Expression stack error
An error occurred when LINK or SYMBOL evaluated some expressions inyour files. This indicates an internal error—— you should never seethis error message.

?Fatal error — Expression stack overflow
You exceeded the number of nested expressions that LINK or SYMBOL canhandle. Try to find the exceedingly complex expression in your sourcefile and simplify it.

CHAPTER 11

THE OBJECT FILE LIBRARY GENERATOR (LIB)

One of the more aqgravatinq Programming tasks is rewriting a utility programthat you've used many times before and that you know you will use many timesin the future. Many kinds of routines are so useful that you need themagain and aqain in many different proqrams: e.g., routines that check forASCII characters, that input and output characters, that sort data, etc.
The purpose of the library file is to collect toqether these frequently usedroutines where they can be accessible to your program files when you linkthem into final, executable programs. Not only do library files help you toavoid writing and rewriting the same routines over and over, but they canalso give help to every other programmer on the system. An added benefit oflibrary files is that they tend to heLp standardize programs on the systemby providinq standard input, output, error checking, and message displayroutines used by everyone on the system.

The Alpha Micro object fiLe library generator, LIB, constructs Library filesout of .OBJ files. Each of the .OBJ files which is built into the libraryfile is a separate routine that can be accessed by your programs. The finallibrary file has a .LIB extension and can he used by both LINK and SYMBOL.

11.1 LIe COMMAND LINE

The LIB command line takes one of two forms:

.LIBf/L3 outPut=input1{,input2,...inputN}
or:

.LIB(/L) inout{,input2,.. .inputN1
(The second format is equivalent to: LIe inout=inout-c,input2,...inputN} ifyou do not use the IL switch; otherwise, it is equivalent to:TRM:=inoutc,inout2,. . .inputN}.)

"Output' is an output file specification; it specifies the name of yourlibrary file. The output file has the extension .LIB and the name specifiedby the output or inout specificationS

THE OBJECT FILE LIBRARY GENERATOR (LIB) Page 11—2

"Input" specifies the .OBJ files you want to place in the library. Theinput specification can take the followinq forms:

fi lespec
fi lespec\iteml
file spec (it eml ,it em?,. .. I temw)
file spec (it eml,it em?,. . . it emN)

The \ symbol designates an exception. For example, in the command line:

LLIB MYLIB\SuB1,NEwslJB,READIT

tells US that we want to modify the existing library MYL.IB (the "inout"specification) by removing the object file SuSi, and adding NEWSUB andREAD IT.

The parentheses specify a qroup of object files. For example:

.LIB MYLIB\(SUB1,NEWSIJB,READIT)GETNUM

tells LIB to modify the existing library MYLIB by deleting the collection ofobject files SUB1, NEWSUB, and READIT, and to add the object tile GETNIJM.

LIe looks for the specified files in the account and device specified. Ifyou omit the device and account specification from the fiLespec, LIBsearches first in the account and device you are logged into; then yourproject library account on the device you are loqged into (account 1P,O1);finally, LIB searches in the System Macro Library account, DSKO:C7,7).

11.1.1 Continuation Lines

As with LINK and SYMBOL, you may enter as many filespecs as you wish on asmany lines as you wish as Long as you end the last filespec on the line with
a comma.

11.1.2 LIB Option Switch (IL)

The only LIB switch at this time is the IL switch which tells LIB togenerate a library listing. This listing looks similar to a load maplisting (see Section 10.4., "The Load Map File."), and lists all objectfiles in the library file and all INTERNed symbols.

If you specify an output file (e.g., LIB LIST=MYLIB/L) LIB creates thelisting with the name and extension you specified. (The default extensionis .LST.) If you do not specify an output file (e.g., LIB MYLIB/L), LIesends the library listing to your terminal display.

THE OBJECT FILE LIBRARY GENERATOR (LIB)
Page 11—3

11.2 SAMPLE LIB DISPLAY

Suppose we are creating a new library called USEFUL from the .OBJ filesERRMSG, GETLIN, and FORMAT:

.LIB USE FUL=GETLIN, FORMAT ERRMSG RET

== Object File Librarian Version 1.0 ==

Processing GETLIN.OBJ
Processing FORMAT.Oj
Processing ERRMSGT

Library file finished

As LIB processes each new .OBJ file, it telLs you so.
Suppose we want to add a routine to an existing Library. The sample displaymight Look like this:

.LIB USEFUL,LIN5Jz

== Object File Librarian Version 1.0 ==

Processing USEFUL.LIB(GETLIN)
Processing USEFUL.LIB(FORMAT)
Processing USEFUL.LIB(ERRMSG)
Processing LINSIZ.OsJ

Library file finished

We've sucessfully added the new routine LINSIZ to our old library thatalready contained the object files GETLIN, FORMAT, and ERRMSG. Notice thatLIB tells you as it processes each .OBJ file contained within the libraryfile.

11.3 UPDATING A LIBRARY

Replacing one or more of the .OBJ files that make up a library file can be abit tricky. If you simply try to add a new version of an existing .OBJ filewithout deleting the old one first, probLems can result because bothversions of the object file will be in the library. The recommendedprocedure is to first delete the old routine, and then to add the new one.For example, if we wish to replace the old version of FORMAT with a new one,we enter:

.LIB USEFUL\FORMAT, F0RMAT

THE OBJECT FILE LIBRARY GENERATOR (LIe)
Page 11—4

which first deletes the file and then adds it. Assume that our smalllibrary only contains three rout ines, GETLIN, ERRMSG, and FORMAT. The LIBdisplay in response to this command line would look like this:
== Object File Librarian Version 1.0 ==

Processing USEFUL.LIB(GETLIN)

Processing FORMAT.OBJ

Library file finished

Notice that LIB tells you what routines are contained in the library.

11.4 LIe ERROR MESSAGES

You may see the following error messages when you use LtB:
?Command error

LIB dfff not understand your command line. For example, you enteredLIe followed by a RETURN. Make sure that your file soecificationsare in standard form.

?Undefined switch /X — ignored
where X is the switff you supplied. LIB currently uses only oneoption switch, IL, to produce a library listing. Make sure that youdid not type a / by accident when you wanted to type a backslash.

90BJ files are not libraries —— they can not be restrictedwith a modifier
only use the "\" file restrictor and the '0" file inclusionsymbols if you are modifying a library.

?Listinq aborted
LIB was not able to finish the library listing. For example, anerror occurred while LIe was trying to access a file.

?The following module was not found — xxx
You tried to modify an existing library, but the object files youspecified were not present in the library file. Make sure that youdid not accidentally use the \ restrictor symboL.

?Fatal error — xxx is an overlay
You may not specify an overlay as an element of an object filelibrary.

CHAPTER 12

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL)

The GLOBAL program takes a group of object (.OBJ)alphabetic global cross reference which listsfiles, and shows which files define those symbolsthem as externally defined symbols.

In other words, GLOBAL produces a listingreference of all symbols that have been referencOVRLAY statement so that you can see in whichoccur. (NOTE: GLOBAL produces a cross reference
collection of .OBJ files. Remember that you canlisting as part of your assembly listing forfor an individual .OBJ file by specifying theassemble the file.)

files and produces an
all global symbols in the
and which tiles accept

file that contains a cross
ed in an INTERN, EXTERN, or
.OBJ files these references
of all global symbols for a
also see a cross reference

all, global and local symbols
MACRO /R switch when you

is Particularly useful when you want to find out what references aresymbols between files. The /R assembly switch is most useful whenmore detailed information about a sinqle .OBJ file.

.GLOBAL{/switches) filespec1,filespecff lespecN7
where switches are optional and affect the format of the information in thelisting file. Filespecl,..filespecN is a list of file specifications thatselect the .OBJ files for which you want the global cross reference.
If you omit the extension from a file specification, GLOBAL uses the defaultextension of .OBJ.

GLOBAL
made to
you want

NOTE: GLOBAL does not support library files.

12.1 GLOBAL COMMAND LINE

The GLOBAL command line takes this form:

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Paqe 12—2

GLOBAL produces the listing file in the account and device you are loqqedinto with the name of the first file specification on the command line and a.GLB extension.

12.1.1 Continuation Lines

If there are too many file specifications to fit on one line, you may endthe command line with a comma. LOPAL continues to accept filespecifications as long as the last filespec on the line ends with a comma.If the last filespec on the line ends with a comma, GLOBAL prompts you withan asterisk for more filespecs. For example:

.GLOBAL MAIN,SIJB1,SIJB2,5u83,5uB4 RET
SUB5,SuB6 fl

12.1.2 GLOBAL Options

You may request the following options by includinq the appropriate switcheson your command line:

Line width options (default is 80 characters):
1W Wide listing (same as /W:130). Produces a listingfile that may have up to 130 characters on a line.
/W:n Specifies characters per line, where n specifies

the number of characters.

Page length options (default is 60 lines):
IL Lonq listing (same as /L:80).
/L:n Specifies lines per page, where n specifies the

number of lines.

Each switch must begin with a slash. For example:

..GLOBAL/w/L MAIN,8uB1,SUBP

12.2 SAMPLE GLOBAL DISPLAY

As GLOBAL processes the specified files, it displays a message telling youso ("Processinq filespec"). After it processes all files, GLOBAL produces a.GLB file; as it works, it displays the name of the file it is building anddisplays a dot for each disk block it outputs. For example:

Building MAIN.GLB

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Page 12—3

This file has the same name as the first file you specified on the GLOBALcommand tine.

Below is a sample GLOBAL display:

LGLOBAL MAIN,SUB1,SUB2 SUB !fl
== Global Cross Referencer (Version 2.0) ==
Processing MAIN.OBJ
Processing SUB1.OBJ
Processing SUB2.ij
Processing SUB3.OBJ

Building MAIN.GLB...,

Global file finished

If GLOBAL found any reference errors, it tells you so. For example:
Global file finished, 2 errors exist

12.3 SAMPLE LISTING DISPLAY

The listing file that GLOBAL produces Lists each defined symbol, and what.OBJ file the symbol was referenced in. The Listing tells you whether thesymbol was referenced as an internal symbol (I) via an INTERN pseudo opcode,an external symbol (E) via an EXTERN or AUTOEXTERN pseudo opcode, or anoverlay symbol (0) via an OVRLAY pseudo opcode.

Here is a portion of what a GLOBAL listinq file might look like:
Global Cross—Reference (Version 2.0)

MSs
AUUU
I BBB
N123

ALPHA I E . F
BETA I . E

The listing file above tells us: 1) the symbol ALPHA appeared in an INTERNstatement in the file MAIN.OBJ and in EXTERN statements in the filesSUB1.Ogj and SUB3.OBJ; 2) the symbol BETA appeared in an INTERN statement inMAIN.OBJ and in an EXTERN statement in SUB2.OBJ; 3) the symbol ZETA appearedin an INTERN statement in MAIN.OBJ and in an OVRLAY statement in SUB1.OBJ.

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Paqe 12—4

12.4 GLOBAL ERROR MESSAGES

You may see the following error messages when usinq GLOBAL:

?Undefined switch /x — ignored
You specified an invaliftswitch The only switches GLOBAL recognizesare the IL and 1W switches.

?Cannot OPEN fi lespec — not found
GLOBAL could not find fhe file you specified. Make sure you arelogged into the correct account on the right device.

CHAPTER 13

THE SYMBOLIC DEBUGGER (DOT)

A debugger is a program that helps you to test and examine a new proqram.The Alpha Micro system contains two dynamic debugger programs for assemblylanguage programs: 1) AIphafiX, a screen—oriented debugging program; and 2)DOT, a debugging and patching program. For information on AIphaFIX, see theAlphaFrX User's Manual, (DWM—OO100—69). (AlphaFIX users please noteSection 13.4.1.2, below, which discusses using local symbols with both DOTand AIphaFIX.)

The rest of this chapter discusses the operation of DOT. DOT is the AMOSdynamic debugging and Datching program. It allows you to run your Programand to examine or alter program data or flow at any point in the program.All of the examination and modification may be done via symbols, both ontype—in and type—out. DOT automatically expands your program in memory toaccommodate patches. This expansion capability, along with the ability todefine new symbols, makes it easy to patch existing programs. As a matterof fact, all Alpha Micro system software patches are implemented using DOT.
NOTE: Most DOT commands terminate with an Escape. DOT echoes Escapes asdollar signs. (That is, when you press the ESCAPE key (sometimes labeledALT MODE or ESC on your keyboard), DOT repeats the Escape as a symbol.)Except for our discussion of local symbols, whenever you see a dollar signsymbol in the discussions below, keep in mind that it represents the placein your command input where you should type an Escape.

13.1 THE DOT COMMAND LINE

You may use DOT on any program, whether it contains executable code or not.Its most common use wilL be with program (.PRG) fiLes produced by thelinkage editor. To invoke DOT, type:

.001 filespec
where filespec specifies the file you want to debug. If you omit theextension, DOT uses the default extension .PRG. When DOT is called, thefirst thing it does is check to see if the specified file is already in

THE SYMBOLIC DEBUGGER (DOT) Page 1—2

memory. If it is, the file is deleted from memory. The program is thenloaded into memory ensuring that a fresh copy is now resident, and DOToroceeds to look for a symbol file.

Once DOT has loaded the program file and any associated symbol file, itprints the base memory address and the size in bytes of the program beinqdebugged. For example:

.001 DEVCPY.PRGfl
FROGRAM BASE: 32777
PROGRAM SIZE: 400

Now you can begin to enter the DOT commands discussed below. Forinformation on exiting DOT, see Section 13.9, "Exiting DOT."

13.2 USING SYMBOL FILES

After loading the actual program to be debugged into memory, DOT searchesfor a symbol file. If one is currently in memory, DOT deletes it. 001 thensearches your account for a file with the same name as the specified programfile, but an extension of .SYM. If one is found, it is loaded into memory,and debugging can start. If no symbol file is found, DOT assumes that youwish to debug without user symbols and enters debug mode without a symboltable.

13.3 TERMINAL INPUT

Because DOT must accept characters on an individual basis, it runs interminal image mode. This mode disables the usual functions of RUBOUT,Control—U, Control—S, Control—Q, etc. However, Control—C will still abortDOT and return you to AMOS. RUBOUT takes on a special meaning in DOT.Instead of the standard function of erasing the last character typed, RtJBOUTin DOT will cancel the entire current command, and echoes as "XXX" followedby a tab.

13.4 EXPRESSIONS

DOT allows both input and output expressions to be in either numeric orsymbolic form. The majority of commands will accept or display in eithermode, although certain arguments, such as a breakpoint number, must beprovided as a numeric value.

will accept an expression whenever they require input.DOT is in octal. Both symbolic and numeric expressionsor minus (—) operators. The following are all valid

123

13.4.1.1 Special Symbols — In addition to the symbols defined in theprogram beTa LggeW5I recognizes several special symbols in inputexpressions. In register mode, DoT recognizes the register names P0, Ri,R2, R3, P4, PS, SP, and PC. In program—rplai mode, DOT recognizes thespecial symbol dot C.) as being equal to the currently open location. DotalLows you to use relative offsets in an expression:

The above example of using dot in a breakpoint command (SB) is one of themost frequent uses of the special symbol dot.

13.4.1.2 Local Symbols — DOT correct ly displays Local symbols if thefile is available. cit your version of DOTdisplays local symbols as garbled RADSO names that beqin with a colon, youhave an obsolete version of DOT.) (For information on using local symbols inyour source programs, see Sections 4.7 and 6.1.6.)

DOT searches for local sym
location to the first non—loca
location to the next non—local
must fall within that region.

To access a local symbol, you must first set the current Location counter toa location in the region containing the local symbol. (Remember that alocal symbol only has scope between two non—local symbols. This is its"region.') You will probably want to simply open the location at the

THE SYMBOLIC DEBUGGER (DOT)

13.4.1 Input Expressions

Most commands
numeric input to
use the plus (+)
input expressions:

Page 13—3

12343÷57725
TAG

TAG+77
TAG+IT

Where TAG and IT are defined symbols.

All
can
DOT

•÷40/ MOV 7,R1 BR .+20

NOTE: Local symbols take the form nnn$.
dollar sign preceding a character indic
the dollar sign designates an Escape
When a dollar sign follows a character
local symbol.

bols by
I symbol
symbol.

In the examples below, notice that a
ates a normal DOT command in which
(for example: SA indicates Escape—A).
(e.g., 10$), we are talking about a

looking backward from the current open
and then scanning forward from that
The local symbol you are Looking for

THE SYMBOLIC DEBUGGER (DOT)
Page 13—4

non—local symbol that appears just before the local symbol; then you canaccess the symbol that is local to it. For example: The SA command displaysa string of ASCII characters at the current location or at the location ofthe symbolic argument supplied:

teLLs the SA command to use the location at "LABEL", a non—localwe want to see the ASCII characters at the local symbol 10$between LABEL and LABEL1, we would first open the non—local
precedes 10$:

Now we can access 10$, which is local to the non—local symbol LABEL byentering the locaL symbol "10$" followed by the command "Escape—A':

DDT also accepts a locaL symbol when assembling an instruction,
for it in the range where the instruction is being assembled.

NOTE FOR ALPHA FIX USERS: FIX also correctly displays
the FIX commands that allow you to specify non—local
used to access local symbols. Just follow the
space; then enter the symbol you want to access t
non—Local symbol. For example:

tells FIX to search for the symbol 10$ that is local to the non—local symbolSTART.

13.4.2 Output Expressions

DOT outputs data in both symbolic and numeric format. When inprogram—relative mode, DOT displays memory locations in symbolic form; inregister mode, it displays register contents in octal. All numeric output,
even when combined in a symbolic output expression (such as JMP TAG+12) willbe in octal unless you have set J.HEX in your job status word via the SET
HEX command, or you are executing a command which explicitly displays datain another radix (such as SD, the decimal typeout command).

LABEL$A

LABEL!

symbol
which
symbol

- If
lies
that

10 $5 A

searching

as START 10$

local symbols. Any of
symbols may also be

non—local symbol with a
hat is local to that

THE SYMBOLIC DEBUGGER (DOT) Page 13—5

13.5 DDT MODES

DOT has three modes in which it operates: program—relative mode, absolutemode, and register mode. The normal mode, and the one in which ODI initallycomes up, is program—relaiv mode. In this mode, addresses are assumed tobe relative to the base address of the program being debugged. Therefore,an expression of "12" refers to location 12 relative to the program base,not absolute location 12.

In absolute mode, all addresses are taken to represent absolute memorylocations. In the example above, •12 would refer to absolute memorylocation 12, regardLess of the fact that that location is outside of yourmemory partition as well as outside of the program being debugged. Absolutemode is entered via the TAB command, and left via the SR command,

In register mode, expressions refer to the registers instead of memorylocations. Register mode may be entered by using one of the special symbols
RO—R5, SP, or PC. Any of these symbols followed by a command which opens alocation will enter register mode, Reqister mode may be left via the SR
command.

13.6 DOT COMMANDS

DOT has a variety of commands to allow you to examine memory locations,
change the contents of locations, display reqisters, set breakpoints,
singLe—step, etc. Commands to DOT usually consist of giving a numeric orsymbolic argument followed by a DDT command. Commands consist of single
characters, such as the slash (I) command, and also of an Escape (ALIMODE on
some terminals) followed by a single letter command, such as the Escape—B
command, Escapes in DOT echo as a dollar—sign Cs). The dollar—sign is usedin this section to represent an Escape; therefore, when you see a command
such as "$8", that should be interpreted as an Escape followed by a "B".

Several of the commands refer to opening and closing memory locations orregisters. When a Location or register is said to be "open,' it simply
means that DOT will place into the open item any expression entered throughyour terminal followed by a command that closes the location. This is the
method by which memory or register contents are modified. When a locationis "closed," you may no longer modify it by entering an expression without
first opening the location again.

13.6.1 Opening a Location or Register CI)

The slash command (I) displays the current contents of a memory location orregister and leaves that location open for modification. The slash command
takes a symbolic or numeric argument immediately preceding the slash. Thecontents of the opened item will be displayed in symbolic form. The
contents may be examined in other formats via other commands such as equal(), Escape—D ($0), etc. The slash command will not open locations outside

THE SYMBOLIC DEBUGGER (DDT) -

13.6.2 Closing a Location (Carriage—Return)

The carriage—return () command closes
other commands which close a location,
number or symbolic expression which wilL
Note that the expression given prior
more than one word of data, in which case
locations immediateLy following the open one

TAG! MOVI 7,R1 = 004166
TAG=3252
26662+15252=44134

=24233

rage LO

the current location. As with
it may be immediately preceded by a

be placed into the ooen location.
to the closing command may generate
the extra words are placed in the

display contents in octal
find value of symbol
compute an expression
display current Location addr

in
in

t to
The

13.6.4 Opening the Next Location (Line—Feed)

The line—feed (LF) command functions the
except that it opens the next location
Depending on your terminal, to enter a
on your terminal or the key labeled "LF"

same as the carriage—return command
after closing the, current one.

line—feed, press the down—arrow key
or 'LINEFEED.'

If the contents of the current location have been displayed in symbolicform, LF will advance to the location following the entire instruction
displayed, regardless of length. This allows you to easily step through aprogram, without regard to opcode length. If the current location has beendisplayed in octal (via the = command) the LF command wiLl step to the nextword. If new 'data is entered prior to the LE command, the length of thedata entered will determine the next location ooened.

In register mode, a
past PC, RO will be

line—feed will step to the next register. If you step
reopened.

TAG/
TAG+1 2/
Ri /

of the program being debugged unless DOT is in absolute mode. The followingshows a few examples of using the slash command:

MOVI 7,Ri
SET QFLG(B)
46623

examine
examine
examine

location TAG
location TAG÷12
register Ri

13.6.3 Display a Value in Octal (=)

The equal (=) command displays the contents of the
octal unless you have SET HEX, in which case the

currently open
display will behexadecimal. The equal command may be used to convert a symbolic

numeric, or may be used to compute the value
typeou

of
following are all common uses of the equal command:

THE SYMBOLIC DEBUGGER (DOT)
Page 13—7

13.6.5 Opening the Previous Location C)
The up—arrow C) command will close the current location and open thelocation immediately preceding the current one. Unlike LF, uD—arrow doesnot automatically open a location on a valid opcode boundary; up—arrowalways backs up one word.

(NOTE: This command is not the key labeled with an up—arrow on yourterminal keyboard—— it iTThe symbol, the circumflex.)

13.6.6 Opening a Location Indirectly (ED
The at—sign (ED command treats the contents of the current open location asa program relative address and opens that location.

13.6.7 Ooening an Absolute Location Indirectly (TAB)
The TAB (Control—I) command treats the contents of the current open locationas an absolute address and opens that location. t also sets DOT intoabsolute address mode. DOT will remain in this mode until you execute an SRcommand.

13.6.3 Starting a Program ($6)

The Escape—G ($6) command starts the program being debugged at relativeaddress 0. DOT echoes a tab after the $6, and waits for one line of inputterminated by a carriage—return, prior to beginning actual execution of theprogram. This line of input is passed to the program just as if it had beenentered following the command if the program were being run without DDT.The proceed ($p) and single—instruct0 (U) commands are not legal until an$6 command has been entered. You may execute an $6 command at any time torestart the execution of the program. This assumes, of course, that theprogram being debugged is self—initializing so that the same copy can be runmore than once.

13.6.9 Setting Breakpoints (SB)

The Escape—B ($9) command sets or lists breakpoints within the program. DOTallows up to eight breakpoints to be set in the program. Each breakpoint isassigned a number from 0 to 7. The SB command accepts two arguments: thenumeric or symbolic program—relai address at which you wish to set abreakpoint, and the breakpoint number which you wish to place at this point.The program—relati address is given first, immediately preceding theEscape. The breakpoint number is given after the Escape, immediatelypreceding the B. Both of the arguments are optional. If the address is

THE SYMBOLIC DEBUGGER (DOT)
Page 13—8

omitted, the breakpoints are Listed on your terminal, If the breakpointnumber is omitted, the first available breakpoint is assigned. ThefoLlowing List should make things clear:

SB Lists aLL active breakpoints by number and symbolic ornumeric address.
$xB Lists breakpoint x, if it is active.
TAG$B Sets a breakpoint at address TAG. The first inactive

breakpoint is used. If no breakpoint is available a "7"is printed on your terminal.
TAGSxB Sets a breakpoint at address TAG. Uses breakpoint x

whether it was previously in use or not.

DOT wilL not allow odd address arguments or breakpoint numbers greater than7 for $6, or for the $C command below,

13.6.10 Clearing Breakpoints (SC)

The Escape-.C (SC) command clears one or all of the breakpoints currentlyset. It accepts two arguments in the same manner as SB.

Clears all active breakpoints from the table.
SxC Clears breakpoint x, if it was active.
TAG$C Clears the breakpoint at address TAG, if such a breakpoint

exists.
TAG$xC Functions the same as SxC.

13.6.11 Proceeding From a Breakpoint (SP)

The Escape—P ($P) command proceeds from the last breakpoint. This commandis only valid if a breakpoint has been reached in the program. Whenexecuted, $P causes program execution to resume until another breakpoint isencountered or the program exits,

The $P command accepts an optional argument before the Escape—P. This
argument is a one word value telling DOT how many times to execute the
current breakpoint before breaking again. Thus the command 5$P tells DOT to
pass through this breakpoint five times before breaking again. If this
argument is not given, DOT assumes a value of one. Using this argument isoften useful if a breakpoint has been placed within a loop, and you wish to
have DOT break only after several iterations of the loop.

THE SYMBOLIC DEBUGGER (DDT)

13.6.12 Executing Single Instructions ($x and \)
The Escape—x ($x) and backslash (\) commandsexecution of a single instruction. Thesebreakpoint has been reached. They are usualof a small section of a program, allowing th
registers and memory Locations between each
You are not aLlowed to single—step through
a 'monitor call').

are identical. Both cause the
commands are valid only after a

ly used to monitor the execution
e examination or modification ofinstruction. IMPORTANT NOTE:
a supervisor call (also known as

The Escape—R ($R) command enters program—relati mode once you have been inabsolute or register mode.

13.6.14 Displaying Data in Decimal (tD)

The Escape—D (SD) command displays a Location or series of locations indecimal. This command accepts one of two possible arguments, but not both.One of the arguments represents the expression to translate and the other isthe number of locations to translate. The following table should explainthe format:

Displays the currently open location in decimal.
$xD Displays x words in decimal, starting with theopen location.
expSD Displays the decimal value of exp.

symbolic, or an opcode expression.
needed to display the entire express

Exp can be
As many word

ion are used.

currently

n urn e r i c,
S as are

13.6.15 Displaying Data in Octal (5=)

The Escape—equal (5=) command displays a location or a series of locationsin octal, It is identical in format to the SD command.

13.6.16 Displaying Data in Hex (SN)

The Escape—H
hexadecimal.

(SH) command displays a location or a series ofIt is identical in format to the SD command.
locations in

Page 13—9

13.6.13 Setting Program—Relti Mode ($R)

THE SYMBOLIC DEBUGGER (DDT)
Page 13—10

13.6.17 Displaying Data in RADSO (S*)

The Escape—asterisk (5*) command displays the contents of the currentLocation in unpacked RAD5O format.

13.6.18 Displaying Data as ASCII Characters Cs")
The Escape—quote ($") command dispLays the contents of the current Locationas two ASCII characters.

13.6.19 Displaying Data as Bytes ($#)

The Escape—pound sign ($#) command displays the contents of the currentlocation as two 8—bit bytes. The low order byte of the word is displayedfirst. Typeout is in octal.

13.6.20 Displaying a String of ASCII Characters (SA)

The Escape—A (SA) command displays a string of bytes as ASCII characters.This command terminates its typeout when a nulUbyte is found, and adjuststhe current Location to the next even address following the null byte. Thecommand accepts two formats:

Display ASCII data starting with the current openlocation.
TAG$A Display ASCII data starting at relative address TAG.

13.6.21 Displaying the Base Address and Size (SM)

The Escape—M (SM) command displays the absolute base address and the size inbytes of the program being debugged. This is the same information typedwhen DDT is first started.

13.6.22 Defining New Symbols C:)

The colon C:) command allows you to define new symbols and insert them intothe symbol table. The location being given a label must be within theprogram, not outside of it. SymboLs are, as usual, one to six RADSOcharacters long, with the first character always alphabetic. A symbol maybe defined by merely typing the label name followed immediately by a colon,as in:

TAG:

THE SYMBOLIC DEBUGGER (DOT)
Page 13—11

The value assigned to the symbol is the location of the last examinedaddress. Once the symbol has been defined, it may be referencedsymbolicalLy by you throughout the program. The colon command is most oftenused during program patching (see Section 13.7, "Using DOT To PatchPrograms"). New symbols are automatically inserted into your symbol table.Once you have exited from DOT, you can resave the symbol (.SYM) file so thatthe newly defined symbols are available next time you use DOT on theprogram.

13.6.23 Examining Register Contents (U
The percent (7.) command examines the contents of a register without enteringregister mode. it is often used to display the contents of a register asyou single—step through a program, without having to enter and exit registermode. The format for the percent command is "%xx&', where xx is the CPUregister that you want to display. The reqister argument must be instandard register notation (i.e., Ri, R2, R3, R4, R5, SP, or PC). Thecontents of the register are displayed in octaL.

13.7 USING DOT TO PATCH PROGRAMS

You will often use DOT to patch an existing program. This is often usefulif you do not have the source code handy, or if you do not wish to gothrough a time—consuming reassembly of your program. DOT provides forpatching through the use of the colon command to define symbols, and throughautomatic expansion of the program area. Patches may be placed at the endof the program after the last valid location in the program; DDT willautomatically expand the program to fit the patches. Program patches may bedone symbolicaLly through the normal symbolic entry mode, and through theuse of the colon command. A symbol may not, however, be referenced beforeyou define it. If a label is defined at the start of the patch, the patchmay be referred to symbolically throughout the main program.

13.8 DOT ERRORS

If DOT does not understand your input, it displays a "?".
Other error messages incLude:

?Cannot OPEN filespec — not found
where filespec is the file you want to debug. Make sure that you areLogged into the proper account and device.

THE SYMBOLIC DEBUGGER (DDT)
Page 13—12

?Cannot single step through SVC
YOU cannot use the $X command to single—step trhough a supervisorcall. You must skip over the calL by placing a breakpoint after thecaLl and its arguments; then use the $p command to skip to thatlocation. At that point YOU can resume sinqle—stepoing

?DDT Internal buserr
A bus error occurrea within the DOT program itseLf. This error wasnot caused by your prop ran.

?Buserr at monitor PC nnnnrroroccured, but was not caused by DDT. Your program isprobably at fault. The number that appears in the message tells youwhat memory address was loaded into the Program Counter when theerror occurred.

13.9 EXITtNG DOT

To leave DOT, type a Control—C. DOT will save the altered program andsymbol table in memory, alLowing yOU to use the SAVE command to make apermanent copy of either the modified program or symbol table. You shouldnever save a program that has been partially run; it is a good idea to useDOT on the program once again, put in the patches, and save it, withoutrunning it. This ensures that there are no data storage areas that havebeen altered from their orqinal state. If the orogram exits on its ownwhile being run, you should NEVER save it if breakpoints were used anywherein the program. Breakpoints are not cleared Until the program goes back toDDT. Running through breakpoints when not under control of DOT can havedisasterous results.

APPENDIX A

THE ASCII CHARACTER SET

The next few pages contain charts that List the complete ASCII characterset. We provide the octal, decimal and hexadecimal representations of the
ASCII values.

Note that the first 32 characters are non—printing Contro—characters.

THE ASCII CHARACTER SET Page A—2

THE CONTROL CHARACTERS

CHARACTER OCTAL DECIMAL HEX MEANING

NULL 000 0 00 Null (fiLL character)
SOH 001 1 01 Start of Heading
STX 002 2 02 Start of Text
ETX 003 03 End of Text
ECT 004 4 04 End of Transmission
ENO 005 5 05 Fnqtiiry
ACK 006 6 06 Acknowledge
BEL 007 7 07 Bell code
135 010 8 08 Back Space
HT 011 9 09 HorizontaL Tab
LE 012 10 0A Line Feed
VT 013 11 OR Vertical Tab
FE 014 12 OC Form Feed
CR 015 13 GD Carriage Return
SO 016 14 BE Shift Out
SI 017 15 OF Shift In
DLE 020 16 10 Data Link Escape
DC1 021 17 11 Device Control 1

0C2 022 18 12 Device Control 2
DC3 023 19 13 Device Control 3
DC4 024 20 14 Device Control 4
NAK 025 21 15 Negative Acknowledge
SYN 026 22 16 Synchronous Idle
ETh 027 23 17 End of Transmission Blocks
CAN 030 24 13 Cancel
EM 031 25 19 End of Medium
SS 032 26 1A Special Sequence
ESC 033 27 113 Escaoe
FS 034 28 1C File Separator
GS 035 29 10 Group Separator
RS 036 30 1E Pecord Separator
US 037 31 iF Unit Separator

THE ASCII CHARACTER SET Page A—3

PRINTING CHARACTERS

CHARACTER OCTAL DECIMAL HEX MEANING

SP 040 32 20 Soace
041 33 21 ExcLamation Mark
042 34 22 Quotation Mark
043 35 23 Number Sign

S 044 36 24 Dollar Sign
045 37 25 Percent Sign
046 38 26 Ampersand
047 39 27 Apostrophe
050 40 28 Opening Parenthesis

) 051 41 29 Closing Parenthesis
* 052 42 2A Asterisk
+ 053 43 28 Plus

054 44 2C Comma
— 055 45 2D Hyphen or Minus
• 056 46 ?E Period
I 057 47 2F Slash
0 060 48 30 Zero
1 061 49 31 One
2 062 50 32 Two
3 063 51 33 Three
4 064 52 34 Four
5 065 53 35 Five
6 066 54 36 Six
7 067 55 37 Seven
8 070 56 38 Eight
9 071 57 39 Nine

072 58 3A Colon
; 073 59 38 Semicolon
C 074 60 3C Less Than
= 075 61 3D Sign
> 076 62 3E Greater Than

077 63 3F Question Mark
100 64 40 CommerciaL At

THE ASCII CHARACTER SET Page A—4

CHARACTER OCTAL DECIMAL HEX MEANING

A 101 65 41 Upper Case Letter
B 102 66 42 Upper Case Letter
C 103 67 43 Upper Case Letter
0 104 68 44 Upper Case Letter
E 105 69 45 Upper Case Letter
F 106 70 46 Upper Case Letter
G 107 71 47 Upper Case Letter
H 110 72 48 Upper Case Letter
I 111 73 49 Upper Case Letter
J 112 74 4A Upper Case Letter
K 113 75 48 Upper Case Letter
L 114 76 4C Upper Case Letter

115 77 40 Upper Case Letter
N 116 78 4E Upper Case Letter
0 117 79 4F Upper Case Letter
p 120 80 50 upper Case Letter
0 121 81 51 Upper Case Letter
R 122 82 52 Upper Case Letter
S 123 83 53 Upper Case Letter
T 124 84 54 Upper Case Letter
U 125 85 55 Upper Case Letter
V 126 86 56 Upper Case Letter
W 127 87 57 Upper Case Letter
X 130 88 58 Upper Case Letter
V 131 89 59 Upper Case Letter
Z 132 90 5A Upper Case Letter
C 133 91 58 Opening Bracket
\ 134 92 SC Back Slash
J 135 93 SD Closing Bracket

136 94 SE Circumflex
— 137 95 SF Underline

140 96 60 Grave Accent
a 141 97 61 Lower Case Letter
b 142 98 62 Lower Case Letter
c 143 99 63 Lower Case Letter
d 144 100 64 Lower Case Letter
e 145 101 65 Lower Case Letter
f 146 102 66 Lower Case Letter
g 147 103 67 Lower Case Letter
h 150 104 68 Lower Case Letter

151 105 69 Lower Case Letter
152 106 6A Lower Case Letter

k 153 107 66 Lower Case Letter
154 108 6C Lower Case Letter

m 155 109 60 Lower Case Letter
n 156 110 6E Lower Case Letter
o 157 111 oF Lower Case Letter

THE ASCII CHARACTER SET Page A—S

CHARACTER OCTAL DECIMAL HEX MEANING

p 160 112 70 Lower Case Letter
q 161 113 71 Lower Case Letter
r 162 114 72 Lower Case Letter
s 163 115 7 Lower Case Letter
t 164 116 74 Lower Case
u 165 117 75 Lower Case
v 166 118 76 Lower Case Letter
w 167 119 77 Lower Case
x 170 120 78 Lower Case
y 171 121 79 Lower Case Letter
z 172 122 7A Lower Case
C 173 123 7B Opening Brace
I 174 124 7C VerticaL Line

J- 175
176

125
126

7D

7E
Closing Brace
Tilde

DEL 177 127 iF Delete

APPENDIX B

SUMMARY OF PROGRAM SWITCHES

The sections beLow list the option request switches used by the various
components of the Alpha Micro assembly language programming system:

MACRO
LINK
SYMBOL
LIB
GLOBAL

For more information on a particular option request, see the chapter in this
book that discusses the appropriate program.

6.1 THE MACRO ASSEMBLER — MACRO

/6 text Generates bottom footer title on each listing page using the
rest of the command Line following the switch. /B must be
the last switch on the command Line.

IC IncLudes conditionaLs in the Listing.

/E Writes to the Listing onLy those Lines that contain an
error.

/H Lists binary code in hexadecimal instead of octal in thetisting.

IL Generates an assembly Listing file. Creates the output fiLe
with the same name as your source file, but a .LST
extension.

/0 Uses current object file by omitting Phases 1 and 2.

Generates a cross reference, which appears at the end of the
assembly Listing.

SUMMARY OF PROGRAM SWITCHES Paqe 8—2

IT Prints the listing on your terminal instead of writing it to
a disk fiLe.

/V{a}:X Allows you to specify a value on the MACRO command Line
which can be examined during the assembly process. "a"
specifies the type of value specified, and X is the vaLue.

/X Lists in your assembly Listing all macro expansions.

NOTE: You do not have to specify the IL switch when you use the /8, IC, /E,
/H, /R, IT, or /X switches to teLL MACRO to generate a listing.

You may combine any of the above switches as desired in a single command
Line by entering them after a single / character at the end of the command
Line. For exampLe:

.MACRO NEWDVR.MAC/RT

B.2 THE LINKAGE EDITOR — LINK

/E IncLude equated symbols in the symbol table file. (You must use
IE with the /M or IS switch.) (Operation switch.)

IL Designates a Library fiLe.

IM Generates a Load map (.MAP) file. (Operation switch.)

IN Suppress /P switch. (Operation switch.)

/0 Designates an optionaL file.

/P Generates program (.PRG) and overlay (.OVR) files. The default
switch. (Operation switch.)

/R Designates a required fiLe. The default switch. Cancels the IL
and /0 switches.

IS Generate a symbol table (.SYM) file. (Operation switch.)

You may specify multiple switches if you precede each switch with a slash.For example:

.LINK MAIN,SUB1/M/S

SUMMARY OF PROGRAM SWITCHES Page 6—3

6.3 THE SYMBOL TABLE FILE GENERATOR — SYMBOL

/E Include equated symbols in the symbol table file. You may alsouse this switch with /M to tell SYMBOL to incLude equated
symboLs in the Load map. (Operation switch.)

IL Designates a library file.

/M Generate a load map (.MAP) file. (Operation switch.)
IN Suppress IS switch. (Operation switch.)

/0 Designates an optional file.

/P Generate program (.PRG) and overlay (.OVR) files. (Operation
switch.)

/R Designates a required file. The default switch. Cancels theaffect of a IL or /0 switch.

IS Generate a symbol table (.SYM) file. The default switch.(Operation switch.)

You may specify multipLe switches if you precede each switch with a slash.For example:

.SYMBOL MAIN,SUB1IM/S

6.4 THE OBJECT FILE LIBRARY GENERATOR — LIB

The only LIB switch at this time is the /L switch which tells LIB togenerate a library listing. This listing looks simiLar to a load maplisting (see Section 10.4., "The Load Map File."), and lists all objectfiles in the library file and all INTERNed symbols.

If you specify an output file (e.g., LIB LIST=MYLIB/L) LIB creates thelisting with the name and extension you specified (the default extension is.LST). If you do not specify an output file (e.g., LIB MYLIB/L), LIB sendsthe library listing to your terminal disolay.

6.5 THE GLOBAL CROSS REFERENCE GENERATOR — GLOBAL

Line width options (default is 80 characters)

/W Wide listing (same as IW:130). Produces a listing
file that may have up to 130 characters on a line.

IW:n Specifies characters per line, where n specifies
the number of characters.

SUMMARY OF PROGRAM SWITCHES Page 8—4

Page Length options (defauLt is 60 lines):

IL Long Listing (same as /L:80).

/L:n Specifies Lines per page, where n specifies the
number of Lines.

Each switch must begin with a sLash. For exampLe:

.GLOBAL/W/L MA1N,SUB1 ,SUB2 EED

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

Index

Pacie Index—i

S symbol 13—1

GLB file
.IPF file
.LIB file
.LST file
.MAC file
.MAP file
.OBJ file
OVR file

.PRG file

.SYM file

.TMP file

—3,

—4

12—2

S—in, io—, li—i
11—2

5—?, 9—1
10—6, lfl—9
—1, 10—1, 1O—S, 12—1
5—12, O1
01, 10—1
10—4, 13—2

Arq'iment concatenation
ASCII character set
ASECT
Assembled proqram
AUTOEXTEPN

BLKB
BLKW
BYTE

CALL
Comments
Condition codes .

Conditional assembly
Condition codes
ENOC

Example
IF
1FF
IFT
IFTF
Multi—line format
Nestino
Nestinq example
Sinole—line format
Suhconditional rules
Suhconditionals

COPY

Copy file
Search defaults

5—14
3—5, 6—4
7—?
3—4, 7—1

7—?

7—

7—4

7—1

7—3

7—3
7—3

7—1

7—3

7—3

7—3

7—3

1—1, 2—1, 5—1, 5—9
5—1

5—2

6—S

4—1,
5—4

2—2

510

5—8
5—7

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANuAL Pane Index—?

CREF 5—c, 9_7
Cross reference 5—5 9—7

Cndes 97
SamjLe

DDT 2—1, 23fl 10—4. 13—1, 13—3, 13—5 to 13—12AbsoLute open l-7
ASCII typeout 13—10
Breakpoints 13—7 to 13—8
Byte typeout 13—10
CLosiriq Locations 1—6
Command Line 3—1
Commands 13—s
DecimaL typeout 13—9
Definino symboLs 13—In
DispLay ASCTI characters... 13—10
DispLay octaL data 13—6
DispLay-jnq base address 13—10
Error messaqes 13—11
Examinina Locations 13—5
Examininq reqisters 13—11
Exiting 13—12
Expressions 13—?
Hex typeout 13—9
Indirect open . 13—7
LocaL symboLs 13—3
Modes 13—5
OctaL typeout 1—9
Opening the next Location - . . 13—6
Openinq the previous Location . 13—7
Operation 13—1
Patchinq oroqrarns 13—11
RAD5O typeout 13—10
SinoLe step 13—9
SpeciaL symboLs 13—3
Startinq the proaram 13—7

Debugger 13—1
DEFINE 6—2

END 5—6
ENDC 7—3
ENDM 6—2
ENDMX

Error messages
DDT 13—11
GLOBAL 17—4
LIB 11—4
LINK 10—9
MACRO
SYMBOL 10—9

ESCAPE 13—1
EVEN

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Rape Incjex—3

Expression evaluation -

Expressions
EXTERN
ExternaL symbols

Inter—phase work
Library . -

Library listinq
Load map
Object - -

Optional -

Overlay .

Proqrar .

Required
Resolved symbol
Sourc
Temporary work

FIX
Local symbols

6—5

4—2

5—9, 5—11, 10—4
5—9

9—7

2—2, 0—3, 9—6
2—3

2—4

2—2
2—2

10—3

11—1, 12—1
10—6

10—3, 10—6
2—3, 10—4, 13—2
2—1, —2
2— A

2—1, 2—3, 13—1
1 —4

2—1,

. - 12—2

IF
1FF
IFT
IFIF
Index modes
Inter—ohase work files
INTERN

Internal symbols

7—1, 7—3
7—3

7—i

2—4

—9 to 5—10, 10—4
5—n

5—10FETCH
Files

Assembly cross reference
Assembly listino
Global cross reference

10—3, 10—6, 11—12—3,
11—2

2—3,
10—1,
10—3,

2—3, 12—2GLOBAL
Corimand line
Continuation line
Error messaqes
Operation
Options
Sample display
Sample iistinq

Global CREF file
Global cross reference
GLOBAL options -

Lono listinq
Wide listinq .

Labels .

LEA
LIE

Command inc -

Continuation lines

5—1

2—1. 7—3, 5—10, 11—1
11—1

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Paqe Index—4

Error rnessaqes..
Exceptions (\)
Inclusions
Input specification
Library files
Listino option .
Output specification
Sample display -

Updating a library
Library files
Library listinq
Library updating .
LINK

Command line
Continuation lines
Error messaqes .

Operation
Optional files .
Options
Sample display . . -

LINK options
Equated symbols
Generate program file . -

Generate symbol table
Library file
Load map file
Optional file
Required file
Suppress program aeneration

LIST
Listing file
Load map file

Sample
Local symbols
Location counter

Machine instruction format
MACRO

• . . 9—8
9—5

aL . 9—3

9—3
- . . 9—3

9—3

9—2
9—2

11—4
11—2
11—2

11—2

10—8
11—2
11—1
11—3
11—3

2—3, 5—10, 10—7, 11—1
11—2
11—3

2—1 to 2—2, 4—5, 5—9 to 5—12, 10—1, 10—4
12—2
10—3
10—9

10—1

10—3

10—' to 10—3
10—3

10—3

10—3
10—3
10—3

10—3
10—3
10—3

10—3
5—4,
2—2

2—3,
10—9
4—6,
4—5

3—2

9—6

10—9

6—3, 13—3

Command line
Cross reference
Error Codes
Listing format
Operation
Options -

Sample cross reference -

Sample display
MACRO options

Display listing on termin
Generate a Listing -

Generate cross reference
List code in hexadecimal
List conditionals - -

List errors

List macro expansions.
Listing footers
Parameterized assembly . -

Use current object file .
Macros

operator
Argument concatenation .

CaLl arqurnents
Calls
Comments
DEFINE
Definition
Dummy arguments
ENDM

ENDMX

Examples
Expression evaluation
Labels
Local symbols
Multi—line definition
NCHR

Nested calls .
NEVAL
NStZP
NTYPF
Real arguments
Single line def .

\ operator . .
MAYCREF
Monitor calls . .

FETCH
GETMEM . . - .

9—3

98
7—1, —3
9—3

6—1

6—5

6—5

6—9

3—4, 6—8
6—4

6—2

3—4, 6—1
6—3

6—2

6—6

6—8, 6—11
6—S

6—3

6—3

6—2
6—6

6—11

6—6
6—6

6—6

6—9

6—2
6—S

5—5, 9—7

1—1, 13—9
5—10, 5—12
8—4

9—7

9—6

9—4

Object file
Object file
OBJNAM

OFFSET
Operation switches
Operntors
Optional files
Overlay files
Overlays
OVRLAY

2—1

5—10, 11—1
5—3, —6, in—s
5—14

10—2
L.—3

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page Index—S

nit ion

NCHR

NEVAL
NOCREF
NOLIST
NOSYM
NSIZE
NT VP F

Numbers
NVALUI -

library

10—7
2—2

S—i?
2—2.. S—Q to 5—10, 5—12

AMOS ASSEMBLY LANGUAGE PROGRAMMFR'S MANUAL Par 1ndex-6

PAGF

Pararnterjzed ssemhLy option
POP

Position independent code
Proqram file
Pseudo opcodes

ASCTI
ASECT

AssembLy controL
AUTOEXTERpJ

BLKB
BLKW

BYTE
CALL
C on 'i en ience
COPY

CREF

Data qenerat ion
DEFINE .

END

ENDC

ENDM

ENDMX

EVEN

Extended cond-it
EXTERN .
IF
1FF
IFT
IFTF
INTERN .

LIST
MAYCREF .
NCHR

NEVAL
NOCREF .

NOLIST .

NOSYM
WSIZE
NTYPE
NVALU
OBJNAM .

OFFSET .

OURLAY .
PAGE
POP

PSI
PUSH
RAD5O
RADIX
RSECT
RTN
SYM

WORD

5—4, Q—6
7—1, 0—4
5—13
8—1

4—3, 4—5, 5—4
5—1

5—12

5—8

5 —
5—7

5—14
5—12
1—I,
5—5,
5—7

6—?

5—6

7—3

6—?

6—6

5—5

5—13
5—9,
7—1,
7—3

7—3

7—3

5—9 t
5—4'
5—5,
6—6

6—6
5—5, 9—7
5—4, 9—6
5—5

6—6

6—6

5—6..
5—3,
5—14

2—2,
5—4,
5—13

5—14
5—13
5—8

4—4, 5—5
4—4 to 4—5, 5—4
5—14
5—5

2—1, 3—4, 5—1, 5—9
9—7

5—11, 10—4
7—3

ional jumos

o 5—10, 10—4
9—6

9—7

9—4

9—6, 10—5

5—9 to 5—10, 5—12
9—6

—3, 5_7

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PSI
PUSH

RAD5O .

RAD5O character set
RADIX
Radix changing
Re—entrant code
Registers
ReLocatable code

ASECT
Leqal addressing
RSECT

RSECT
RTN

Segmenting programs
Source tile
Source format
Subconditionals .

Rules
SvCB
SYM

SYMBOL
Command line .

Continuation lines
Error messaqes
Options
Sample display -

Symbol files
SYMBOL options .

Equated symbols
Generate program file
Generate symbol table
Library file .

Load map file .

OptionaL file .

Required tile .
Suppress symbol table

Symbolic equates ()
SYS.MAC

TCALL
Temporary work fiLes
Terms
liMP

13—10
3—1, 4—1, 5—8
5—5

4—3 to 4—4, 5—5
1—2, 8—3 to 8—4
4—4

1—2, 5—4, 8—1 to 8—2
5—4
8—2
5—4

5—4

5—14

Updatinq a library
User symboLs .

11—3
3—1

WORD 5—7

5—14
5—13

Page Index—7

mode 5

2—3, 10—4

13—2

—3

5—1, 5—12, 6—1, 6—8, 7—5

5—14, 8—1
2—4

4—2

5—14, 8—1

