
SOFTWARE 1'VIANUAL

ISAM SYSTEM
USER'S GUIDE

D\A/l'V1-DO100-06
REV. A02

alphamicro

ISAM SYSTEM USER'S GUIDE Page ii

(p

First printing: 6 December 1977
Second printing: April 1979
Third printing: 30 ApriL 1981

'ALpha Micro', 'AMOS', 'AIphaBASIC', 'AM—lOO',
'AIphaPASCAL', 'AIphaLISP', and 'AtphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

©1980 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

This document reflects AMOS Versions 4.5 and Later

C—21"TD—4/81

October 1979
EWM—O0100—36
Revision A02

IMPORTANT NOTICE EOR ISAM USERS

1.0 INTRODUCTION

There have been some important changes made to the ISAM package included
with AMOS versions 4.2 and later. New access modes greatly increase the
speed with which ISAM can access ISAM files. The rest of this document
discusses these new access modes -and some of the peculiar situations that
can arise as a result of their use.

Most of these changes are changes to ISAM processing, and most do not
require that you modify your ISAM files or programs. (You may, however,
want to make some simple changes to your programs to maximize the gain in
access speed made possible by the changes to ISAM.)

2.0 IMPORTANT NOTE ON ISMFIX

4.2 ISAM had a bug that, under certain circumstances, resulted in indices
being hidden in an ISAM file. ISMFIX rebuilds WAN files that were
processed by 4.2 ISAM and thus recovers any misplaced indices.

AMOS version 4.3 requires that you use ISMFIX on all ISAM files that were
processed by 4.2 ISAM. (You do not need to use ISMFIX on ISAM files created
under 4.3 ISAM, but using ISMFIX on a file in which indices have not been
lost does no harm Also, rebuilding a file that has already been rebuilt
does not harm that file.)

2.1 ISMFIX Command Format

The ISMFIX command takes the form:

.ISMFIX Filespec)

where Filespec selects the ISAM files you want to rebuild. If you are
logged into [1,2], ISMFIx assumes the wildcard account specification, [I;
otherwise, it restricts itself to the account you are logged into.

You do not need to specify a .IDX extension to ISMFIX; it only processes
.IDX files (and, through them, the appropriate .IDA files). To rebuild a

S specific file, enter the specification for that file. For example:

(Changed 1 October 1979)

IMPORTANT N(YrICE FOR ISAM USERS Page 2

.ISMFIX DSKO:MAIL

ISMFIX accepts wildcarded file specifications. If all of your ISAN files
(both the .IDA and .IDX portions of the ISAM files) are on—line at the same
time, you can rebuild all ISAM files on the system by logging into [1,2] and
entering:

.ISMFIX ALL:

ISMFIX lists all rediscovered indices as it re—positions them; ISMFIX also
lists the relative record numbers of the indices.

2.2 ISMFIX Errors

If ISMEIX encounters a primary index file, but that file's data file is not
on—line and ready to access, an error occurs (you see a file not found
error message) and ISMFIX goes on to the next ISAM file.

As ISMFIX re—positions the indices, ISAM errors can occur (e.g., index file
full or duplicate key). If an ISAM error occurs, you see a standard ISAM
error message. Your best course in such a case is to rebuild the ISN4 file
manually.

L.

3.0 NFW ACCESS MODES

The two access modes are Counted Update Mode and Exclusive Open Mode.
Counted Update Mode is now the normal access mode for assembly language or
BASIC programs. Exclusive Open Mode Is the normal access mode for the
ISMEtW and ISMBLD programs, and is the only mode for the ISMCCI4 program.

3.1 Counted Update Mode

Counted Update Mode allows ISAM to avoid unnecessary processing. Every time
1MM updates a file in any way, it increments a counter in the Rock portionof the index file. At the time of file access, ISAM checks this counter to
see if the file has been updated since the last access. If the file has not
been updated, ISAM can skip further access initialization and take advantage
of prior knowledge about the file. These actions are completely transparent
to the user and the speed gains (3 to 70 times faster access times) are
free.

The Counted Update Mode does NP eliminate file interlock requirements from
your programs. If anyone might possibly be updating the file, your program
must continue to use file interlock programs such as XLOCK or FLAXK to
prevent simultaneous updates or accesses. The preferred method for locking
files is to use the FLOCK non—exclusive "open" locking (action 0, mode 0 or

(Changed 1 October 1979)

IMPORTANT NOTICE FOR ISAt4 USERS Page 3

4) for reading and FLOCK exclusive "open" locking (action 0, mode 2 or 6)
for updating. Use the FLOCK "close" (action 1, node 0) to release the file
for other users.

Note that it is not necessary to open and close the ISAPI file with each
manipulation even though the FLOCK comands are so named. It is acceptable
to leave the file open during the whole interlocking and release process,
and is in fact the only way to gain the speed increase made possible by this
new mode. (Even in earlier versions of ISAM, leaving the file open during
interlocking resulted in much faster access speeds.)

3.2 Exclusive Open Mode

When a program opens a file exclusively, ISAM renames the .IDX file to a

.IDY extension. ISP,M also sets a flag in the Rock that identifies the file
as an exclusive file. If any other job tries to open that file, it receives
a FILE NUT FOUND error; if another job tries to access the file once it is
open, the job receives a Link Structure Smashed error (IS.LSS).

As a result of the exclusive open, ISAM knows that no other program will be
updating or accessing the file. It can therefore take full advantage of the
single—process situation for initialization, change posting, and prior
knowledge. Except for the process of opening the file and the need to
properly close the file, use of ISAM is the same as in previous versions.
The use of this mode results in an extremely large gain in access speed.

The only file interlock problem occurs at the moment of the ISAM OPEN call;
no one may update the file while you are opening that file. You MUST
prevent this situation from occurring by using one of the file interlock
programs, FLOCK or XLOCK, or by simply making sure that no other user is
running a program that can update that file. Once the ISAM OPEN has been
executed, no interlocks are needed since no one else can access the file.

Invoke the Exclusive Open Mode from within BASIC by specifying a file mode
of INDEXED'EXCLUSIVE in the file OPEN statement in your program. Your
assembly language programs may select the Exclusive Open Mode by setting bit
number three of RO for the .IOPNR call. You MUST close the file when you
are completely done with manipulating that file so that ISAM can post the
final updates and remove the Exclusive Open conditions from the file. If an
error occurs during processing, you should close the file to remove the
Exclusive Open conditions (although you can also remove them manually). A
file in which an error occurred during updating is probably fatally
poisoned.

Use of the Exclusive Open mode can produce significant gains when printing
reports and other such batch—type operations. It does have the drawback
that NO ONE else can access the file for any reason while it is exclusively
opened. (Any attempts to circumvent the exclusive properties of such a file
by clever manipulations will probably meet with disaster.) If several
people need to access the file at the same time, use the normal mode

(Changed 1 October 1979)

IMPORTANT NCYICE 10R ISAM USERS Page 4

C
(Counted Update Mode); if no one updates the file, you will lose very little
speed in changing to that mode.

The Exclusive Open Mode is used by the ISMBLD, ISMIDMP, and ISMCCt4 programs.
To prevent ISMBLD (when loading or cross—indexing an EXISTING file) or
ISMDMP from using Exclusive Open mode, use the /M switch. The /W switch
appears at the end of the coitunand line that invokes the program. For
example:

JSMBLD LABEW44)

ISMBLD (when creating/loading or creating/cross—indexing) and ISMC4 ALWAYS
use the Exclusive Open Mode. (When it reappears in future versions of ISAM,
ISMFIX will also use the Exclusive Open Mode.)

4.0 HINIS AND RESTRICTIONS

The new access modes make possible a dramatic increase in the speed of ISAM
data accesses. They also may result in slightly peculiar situations of
which you must be aware.

1. If the Counted Update Mode counter has not changed, ISAM assumes
that no updates have been made to the file since the last time an
access was made, and that it may therefore make certain assumptions
about file status and contents. The counter cycles on a count of
16,777,216. If by some chance the file were to remain open for an
incredibly long tine and EXACTLY 16,777,216 updates were made
between accesses, ISAM would access and/or update the file using
out—of—date information.

To say the least, this is a very unlikely occurrence. However, you
should be aware that it could happen if you were to leave your
machine up and running for days at a time with the ISAM file open
without making any accesses to that file.

2. ½hen you open a file in Exclusive Open Mode, ISAM must be able to
write to the disk containing that file. This means that you must
make sure that the disk is not write—protected even if all accesses
to that file are going to be read operations.

3. The major quirk of the Exclusive Open Mode is that it causes ISAM
to change the extension of the file being opened. If suth a file
is not properly closed (for whatever reason), then the name of that
file in the disk directory will not be correct. You can cure this
problem very easily bj using the RENAME coninand. For example:

RENAME *1DX*IDY

(Changed 1 October 1979)

IMPORTANT NcYTICE FOR ISAM USERS Page 5

A file open also changes a flag in the Rock of the ISAN index file.
You do not need to worry about changing the flag yourself in the

event of an improperly closed file, since the situation is

automatically self—correcting the next time the file is opened (in

either Exclusive Open or Counted Update Mode).

4. If you open a file in Counted Update Mode, but the file was last
used in Exclusive Open Mode and was never closed, the file open
will cause ISAM to write to the file to correct the exclusive flag.
If this situation is going to occur, make sure that the disk is
write—enabled.

(Changed 1 October 1979)

ISAM SYSTEM USER'S GUIDE Page iii

PREFACE

This manual is aimed at the experienced assembly language or BASIC

programmer who wishes to make use of the Alpha Micro ISAM system within his
or her own programs. If you are not familiar with Alpha Micro Assembly
Language, please refer to the AMOS AssembLy Language Programmer's Reference
Manual, (DWM—OO100—43). If you wish information on AIphaBASIC, refer to
the AIphaBASIC User's ManuaL, (DWM—OO100—O1).

ISAM SYSTEM USER'S GUIDE• Page V

TabLe of Contents

CHAPTER 1 INTRODUCTION TO ISAM

1.1 THE INDEXED SEQUENTIAL ACCESS METHOD 1—1

1.2 DESCRIPTION OF INDEXED SEQUENTIAL FILES 1—3

1.2.1 The Data FiLe 1—4

1.2.2 The Index FiLe 1—4

1.3 ISAM ACCESS MODES 1_s

1.3.1 Counted Update Mode 1—5

1.3.2 ExcLusive Open Mode 1—6

1.3.3 Hints and Restrictions 1—7

1.4 CONVERTING VERSION 4.2 ISAM FILES TO ISAM
VERSIONS 4.3 OR LATER 18

PART I THE ISAM UTILITY PROGRAMS

CHAPTER 2 CREATING AND LOADING AN ISAM FILE WITH ISMBLD

2.1 GENERAL OPERATING INSTRUCTIONS 2—1

2.2 CREATION MODE 2—1

2.2.1 Specifying File Parameters 2—2

2.2.1.1 Size of key 2—2

2.2.1.2 Position of key 2—2

2.2.1.3 Size of data record 2—2

2.2.1.4 Number of records to
aLlocate 2—2

2.2.1.5 Entries per index block: 2—2

2.2.1.6 Empty index blocks to
aLlocate 2—3

2.2.1.7 Primary Directory" 2—3

2.2.1.7.1 Secondary FiLe 2—3
2.2.1.8 Data FiLe Device" 2—3

2.3 FILE LOADING MODE 2—3

2.3.1 Suppressing ExcLusive Open Mode
(the IN Switch) 2—4

2.4 CHANGING THE DATA FILE DEVICE
(THE ID SWITCH) 2—4

2.5 OPTIMIZING FILE PARAMETERS 2—4

2.5.1 Entries per Index Block 2—5

2.5.2 Empty Index Blocks to AlLocate 2—5

ISAM SYSTEM USER'S GUIDE

PART II

3.1 GENERAL OPERATING INSTRUCTIONS
3.1.1 Suppressing Exclusive Open Mode

3.2 FILE DUMP MODE
3.2.1 SampLe Data FiLe DispLay

3.3 INDEX FILE DUMP MODE
3.3.1 SampLe Index File Display

PROGRAMMING WITH ISAM

5.13.1 CaLling Sequence

Page vi

5—1

5—2

5—2

5—2

5—3

5—3

5—3

5—4

5—4

5—4

5—5

5—5

5—5

5—5

5—6

5—6

5—6

5—6

5—7
5—7

5—7

5—7

5—8

5—8

5—8

CHAPTER 6 STANDARD ISAM SYMBOLS FOR ASSEMBLY LANGUAGE PROGRAMMERS

6.1 CALLING SYMBOLS 6—1

6.2 COMPLETION CODE SYMBOLS 6—1

CHAPTER 3 DUMPING AN ISAM FILE WITH ISMDMP

CHAPTER 4 COMPRESSING INDEX FILES WITH ISMCOM

3—1

3—1

3—2
3—2

3—2
3—3

CHAPTER 5 USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL

5.1 GENERAL CALLING SEQUENCE
5.2 INITIALIZING THE ISAM SYSTEM (.INIT)

5.2.1 CalLing Sequence
5.2.2 User Supplied Allocation and

Deallocation Routines
5.3 FINALIZING ISAM PROCESSING (.IFIN)

5.3.1 CaLling Sequence
5.4 OPENING A FILE FOR PROCESSING (.IOPNR)

5.4.1 Calling Sequence
5.5 CLOSING THE FILE AFTER PROCESSING (.ICLOS)

5.5.1 Calling Sequence
5.6 LOCATING A FREE DATA RECORD (.IGTFR)

5.6.1 CaLLing Sequence
5.7 DELETING A DATA RECORD

5.7.1 CaLling Sequence
A DATA RECORD BY

(.IRLRD)
Calling Sequence

A DATA RECORD BY
(.IRLWT)
Calling Sequence

A RECORD (.IREDR)
Calling Sequence

A SYMBOLIC KEY (.1
CaLLing Sequence

NG A KEY (.IDELK)
Calling Sequence

5.8 READING
NUMBER

5.8.1
5.9 WRITING

NUMBER

5.9.1
5.10 FINDING

5.10.1
5.11 ADDING

5.11.1
5.12 DELETI

5.12.1
5.13 FINDING

RELATIVE RECORD

RELATIVE RECORD

WRTR)

THE NEXT SEQUENTIAL KEY (.SREDR)
5—9

ISAM SYSTEM USER'S GUIDE Page vii

CHAPTER 7 USING ISAM FROM WITHIN BASIC

7.1 OPENING AN INDEXED SEQUENTIAL FILE 7—1

7.2 THE ISAM STATEMENT 7—3

7.2.1 ISAM Statement Codes 7—3

7.3 READING AND WRITING DATA IN AN ISAM
DATA FILE 7—4

7.4 CLOSING FILES 7—5

7.5 ERROR PROCESSING 7—5

7.6 USING THE ISAM FUNCTIONS WITHIN A
BASIC PROGRAM 7—6
7.6.1 Adding Data to an Indexed

SequentiaL PiLe 7—6
7.6.2 Reading Data Records in SymboLic

Key Order 7—S

7.6.3 Reading Data Records RandomLy by
SymboUc Key 7—8

7.6.4 Updating Data Records 7—9
7.6.5 DeLeting a Data Record 7—9

7.7 SAMPLE ISAM PROGRAM 7—11

INDEX

V.

CHAPTER 1

INTRODUCTION TO ISAM

The purpose of this short manual is: 1. to give you an introduction to ISAM;
and, 2. to discuss how you can create and access indexed sequential fiLes
using the various programs of the ISAM system, as weLl as write programs in
either assembly Language or BASIC to Locate, update, add, and deLete data in
those fiLes.

ISAM is a method for organizing and retrieving data. The name of the method
(Indexed Sequential Access Method) refers to the manner in which the data is
organized. The information in the ISAM data fiLe is accessed by searching a
separate index fiLe that contains a group of symboLic keys and pointers to
records in the data fiLe with which those keys are associated. By searching
several levels of indices within the index fiLe, we can Locate records in a
separate fiLe much more quickly and efficientLy than if we had to search the
actuaL data file itself. Some exampLes of data for which symboLic keys can
be specified are:

Customer information—— the name of the customer is the key (that
is, an element of the data record) on which you base your search.

PayroLl—— the key is an empLoyee number.

Inventory control—— the key is a part number.

1.1 THE INDEXED SEQUENTIAL ACCESS METHOD

Finding a convenient and efficient way to access information in a file is an
important problem for a programmer. Suppose, for example, that you have a

phone book of five thousand names and phone numbers, If you need to find a
specific person's phone number, you can start with page number one and scan
every entry in the book until you find the proper name. That process is
very slow and inefficient, however, because you have to deal with so many
entries. A more efficient method would involve dividing the phone book into
sections, and searching only those sections that might contain the data you
need instead of searching the entire data base.

INTRODUCTION TO ISAM Page 1—2

Organizing your data so that it is easier and quicker to search is the main
idea behind ISAM. If we were to organize the phone book in somewhat the
same way as ISAM would do it, we might do this:

A. First we buiLd a fiLe containing one LogicaL record for each entry
in the phone book; each record consists of a person's name, an
address, and a phone number. We assign each entry a number (cal1ed
the relative record number or the relative key) that marks its
position in the file. For exampLe, the five hundredth entry is
number 499 (the first record is number 0, not 1). (The record
number is calLed "reLative" because it marks the position of the
record from the front of the file; it is not an absolute disk
address.) This file that contains aLL of our data corresponds to
the ISAM data fiLe.

B. Next we construct a fiLe that contains information about the data
fiLe that heLps us search the data fiLe. (The fiLe we are
constructing corresponds to the ISAM index file.) When you open a

phone book, you notice that the top of each page contains two
words; the first and the Last names that appear on that page.
These two names give you an "index" into the data on •that page.
So, if the two words at the top of a particular page are
"PENOERGRASS—PENNINGTON," you know that the names associated with
all entries on that page fall somewhere in that range. Suppose,
then, that this second file we are creating contains the words at
the top of the phone book pages, aLong with the relative record
numbers of the entries that fall on each page.

Instead of searching the entire data file, we can search this much
smaller "index" file. If we want to find the entry for the name
PENHALL, we can search the page indices in our index file until we
find two names that PENHALL falls between. Then we can search just
the data file records associated with that range of names until we
find PENHALL.

When we build an index file, we say that the file contains symbolic
keys. A symbolic key is an element of a logical record on which we
base our' search. In this example, the symbolic key we are using is
the name associated with each phone book entry. We might just as
easily have set up the files so that we can base our search on
phone numbers or city names.

C. We have improved our original file—search procedure, but it can be
improved upon still further. We now have a data file and an index
file. The index file contains one level of indices (the words at
the top of each page in the phone book). The next step is to
provide another level of indices within the index file.

When you look for a name in a phone book, you first find the proper
page by glancing at the names at the top of each page. Then you
might look at the first and last names of each column on the page
to narrow your search still further. If the name for which you are
searching falls between the names at the top and bottom of the

INTRODUCTION TO ISAM Page 1—3

column, you begin to search each entry in that column; otherwise,
you move to the next column on the page. In the same way, our
index tile contains a first—level index (the names at the top of
the page); then it further divides the data on the page by giving
indices into subgroups of entries on the page (the tirst and last
nac,ues in each column make up the second—level index). The final
level of indices (the third—level) in the index tile consists at
lists of names for each column in the book along with the actual
record number in our original data file that contains the entry
associated with that name.

D. Journeying through the levels of indices in our index file, then,
we first find the page on which the name appears, then we find the
column in which the name appears, then we tind the actual record
number ot the tile in which the entire entry associated with that
name appears. At no time do we ever need to search the actual datafile itself.
Note that the keys in the index file are grouped alphabetically.
Since we. find a data record by searching the index file, the data
records in the data file do not need to be arranged in any
particular order. An index file may not contain duplicate keys;that is, no two data records in the data file may have the same
symbolic key.

The example above discusses a data file that has one index file (called the
primary index file). A data tile always has one primary index file; it may
also have one or more secondary index files. A secondary index tile is
structured in the same way as the primary index file except that it containsdifferent symbolic keys. For example, if we want to base our search of
phone book entries on phone numbers as well as names, we might construct asecondary index file that contains phone numbers.

Although we constructed the example above ourselves, the ISAM program
automatically creates all data tiles and index files for you in response toinformation and file specifications that you supply.

1.2 DESCRIPTION OF INDEXED SEQUENTIAL FILES

In summary, an indexed sequential tile consists of two tiles: 1. the datafile, containing the actual data; and 2. the index file, containing pointersto symbolic keys within the data tile. You specify the location of thesymbolic key within each record when you build an indexed sequential file
using the ISMBLD program (discussed in Chapter 2, "Creating and Loading an
ISAM File with ISMBLD'). To build an indexed sequential file, you suppLy
certain parameters to the ISMOLD program; ISMBLD then produces an emptyfile. To load the tile with data, you may write your own program or you may
use the ISMBLD program to copy the data from an ordinary sequential fileinto the data file (updating the index file in the process).

INTRODUCTION TO ISAM Page 1—4

The ISAM program does all reading and writing of the index file; you will
not have to handLe these functions yourself. Your BASIC or assembLy
language program wiLL add, delete, or update data in the ISAM data fiL,e

based on the relative record number returned to your program by ISAM.

1.2.1 The Data File

The data in your data file may be in any data format; however, the index
file orders keys in ASCII coLlating sequence (i.e., ascending binary order)
which may affect operation of the ISAM program when data is recorded in
other than ASCII form. When you build an indexed sequential file (via the
ISMBLD program), you supply various items of information about your data
file (e.g., the size of the data records, the location of the symbolic key
within the data record, and so on); ISMBLD then builds both the data file
and its primary index file.

Your programs use the ISAM functions to add and delete data records in the
data file. When you add a record, ISAM inserts it into the first free space
in your data file. When you delete a record, ISAM does so by recovering the
space in the data file used by that record, and returning that area to the
free record list so that it is available for new records. Because the Alpha
Micro operating system (AMOS) requires that contiguous files (e.g., an ISAM
data file) be preallocated, once the data file is full it must be
reorganized before it can be used further. For this reason, be careful, to
allocate as many records as you will need for the file.

All ISAM data files JS1 have the extension .IDA.

1.2.2 The Index File.

The ISMBLD program automatically creates the index file from a description
of the data file. The index file contains three levels of indices, the
lowest of which contains pointers to the records in the data file. Each
successive index level points to all the blocks containing the next lower
level index. Index levels are provided so that the entire index need not be
searched each time a symbolic key is accessed. When a symbolic key is
accessed, ISAM reads the highest level index to find which lower level index
contains a pointer to the approximate location of that key. ISAM then
searches the block of that lower level index; that index block in turn
points to a lower index block which points to the data record in which the
key is stored.

In addition to the index blocks, the index file contains another block named
the Directory Rock, so called because it never moves. This block contains
information describing the index and data files as well as maintenance
information (e.g., tree record links, access counts, etc.).

Each data file must have a primary index file; in addition to this, it may
have several secondary index files. A typical example of the use of this

INTRODUCTION TO ISAM Page 1—5

feature would be a maiLing list maintenance program, where the data is keyed
on both a hashed retrieval code for unique reference and also keyed on the
person's name. (For an example of this kind of program, see the sampLe
BASIC ISAM program in Chapter 7, "Using ISAM From Within BASIC.")

Your programs use the ISAM functions to add and delete keys from the index
files, and to Locate data records in the corresponding data files.

The extension of an ISAM index file MUST be .IDX.

1.3 ISAM ACCESS MODES

Beginning with AMOS version 4.2, changes have been made to ISAM that greatly
increase its file access speed. The increase in speed was made possible by
the two new access modes, Counted Update mode and ExcLusive Open mode, which
allow ISAM to avoid unnecessary processing of your index fiLes.

Counted Update mode is the normal access mode for assembly Language or BASIC
programs. Exclusive Open mode is the normal access mode for the ISMDMP and
ISMBLD programs and is the onLy mode for the ISMCOM program. ISAM always
processes indexed sequentiaL files in one or the other of these modes. The
next two sections discuss both of these modes.

NOTE: The paragraphs beLow mention the need for fiLe interlocking. It is
most important that your programs guard against the possibility of more than
one user trying to update the same data file at the same time. If several
users were to try to write to the same file record at the same time, severe
damage to your data file could result. For information on file interlocking
procedures, see the documents FLOCK — BASIC Subroutine to Coordinate
Multi—user File Access and XLOCK — BASIC Subroutine for Multi—user Locks
in the "BASIC Programmer's Information" section of the AMOS Software Update
documentation packet.

1.3.1 Counted Update Mode

Counted Update mode allows ISAM to increase its speed by avoiding any
unnecessary processing. Every time ISAM updates a file in any way, it
increments a counter in the Rock portion of the index file. At the time of
file access, ISAM checks this counter to see if the file has been updated
since the last access. If the file has not been updated, ISAM can skip
futher access initialization and take advantage of its prior knowledge about
the file. These actions are completely transparent to the user and the
speed gains (3 to 70 times faster access times) are free.

IMPORTANT NOTE: The Counted Update mode does NOT eliminate file interlock
requirements from your programs. If anyone might possibly be updating the
file, your program must continue to use file interlock programs such as
XLOCK or FLOCK to prevent simultaneous updates or accesses. The referred
method for locking files is to use the FLOCK non—exclusive "open" locking

INTRODUCTION TO ISAM Page 1—6

(action 0, mode 0 or 4) for reading, and to use the FLOCK exclusive "open" C
Locking (action 0, mode 2 or 6) for updating. Use the FLOCK "close" (action
1, mode 0) to release the fiLe for other users.

Note that it is not necessary to open and close the ISAM file with each
manipulation even though the FLOCK commands are so named. It is acceptable
to Leave the file open during the whole interlocking and release process and
is, in fact, the only way to gain the speed increase made possible by the
Counted Update mode.

1.3.2 Exclusive Open Mode

When a prOgram opens a file exclusively, ISAM renames the .IDX file to a
.IDY extension. ISAM also sets a flag in the Rock that identifies the file
as an exclusive file, If any other job tries to open that file, it receives
a "7File not found't error; if another job tries to access the file once it
is open, the job receives a "?Link structure smashed" error (IS.LSS).

As a result of the exclusive open, ISAM knows that noother program will be
updating or accessing the file. It can therefore take full advantage of the
single—process situation for initialization and change posting. Except for
the process of opening the file and the need to properly close the file, use
of ISAM is the same as in previous versions. The use of this mode results
in an extremely large gain in access speed.

The only file interlock problem occurs at the moment of the ISAM OPEN call;
no one may update the file while you are opening it. You MUST prevent thissituation from occurring by using one of the file interlock programs, FLOCK
or XLOCK, or by simply making sure that no other user is running a program
that can update that file. Once your program has executed the ISAM OPEN
call, your program needs no interlocks since no one else can access thefile.
Invoke the Exclusive Open mode from within eASIC by using the file mode of
INDEXED'EXCLUSIVE in the file OPEN statement in your program. Your assembly
language program may select the Exclusive Open mode by setting bit number
three of RID for the .IOPNR call. You MUST close the file when you are
completely done with manipulating that file so that ISAM can post the final
updates and remove the Exclusive Open conditions from that file, If an
error occurs during processing, you should close the file to remove the
Exclusive Open conditions (although you can also remove them manually). A

file in which an error occurred during updating is probably badly damaged.

Use of the Exclusive Open mode can result in significant gains when printing
reports and other such batch—type operations. It does have the drawback
that no one else can access the file for any reason while it is
exclusively opened. Be warned that any attempts to circumvent the exclusive
properties of such a file by clever manipulations will probably meet with
disaster, If several people need to access the file at the same time, use
the normal mode, Counted Update mode; if no one updates the tile, you will
lose very little speed in changing to that mode.

INTRODUCTION TO ISAM Page 1—7

The ISMBLD, ISMDMP, and ISMCOM programs use the Exclusive Open mode. To
prevent XSMBLD (when loading or cross—indexing an existing file) or ISMOMP
from using Exclusive Open mode, use the IN switch. The IN switch must
appear at the very end of the command Line that invokes the program. For
example:

.ISMBLD LABELS/N

ISMBLD (when creating/loading or creating/cross—indexing) and tSMCOM
always use the Exclusive Open mode.

1.3.3 Hints and Restrictions

The new access modes make possible a dramatic increase in the speed of ISAM
data accesses. They also may result in sLightLy peculiar situations of
which you shouLd be aware:

1. If the Counted Update mode counter has not changed, ISAM assumes
that no updates have been made to the file since the last time an
access was made, and that it may therefore make certain assumptions
about fiLe status and contents. The counter cycLes on a count of
16,777,216. If by some very unlikely chance the fiLe were to
remain open for an incredibly long time and exactly 16,777,216
updates were made between accesses, ISAM wouLd access and/or update
the file using out—of—date information.

Although not strictly impossible, it is very unlikely that this
situation will occur. We estimate that you would have to leave
your machine up and running for severaL weeks with the ISAM file
open without making any accesses to that file in order to see this
happen.

2. When you open a file in Exclusive Open mode, ISAM must be able to
write to the disk that contains the file. This means that you must
make sure that the disk is not write—protected even if all accesses
to that file are going to be read operations.

3. The most visible Quirk of the Exclusive Open mode is that it causes
ISAM to rename the extension of the file being opened from .IDX to
.10?. If such a file is not properly closed (for whatever reason),
then the name of that file will not be correct in the disk
directory. You can cure this problem very easily by using the
RENAME command. For example:

.RENAME *.IDX*.I0yjj

A file OPEN aLso changes a flag in the Rock of the ISAM index file.
You do not need to worry about changing the flag yourself in the
event of an improperly closed file, since the situation is
automatically self—correcting the next tine the file is opened (in
either Exclusive Open or Counted Update mode).

INTRODUCTION TO ISAM Page 1—8

4. If you open a file in Counted liDdate mode but the file was Last
used in Exclusive Open mode and was never closed, the fiLe OPEN
will cause ISAM to write to the file to correct the exclusive flag.
If this situation is going to occur, make sure that the disk is
write—enabled.

1.4 CONVERTING VERSION 4.2 ISAM FILES TO ISAM VERSIONS 4.3 OR LATER

If you have ISAM files built under ISAM version 4.2, you will need to use
the ISMFIX program to convert them over to ISAM versions 4.3 and later.
(Although using ISMFIX on files that were built under ISAM versions 4.3 and
later doesn't do anything useful, it doesn't harm the files either.)

Because various conversion steps •may be necessary to convert your ISAM files
from one [SAM version to another, it is wisest not to skip any ISAM
versions. (For example, going directly from ISAM version 4.1 to ISAM
version 4.5 with existing [SAM files is not a good idea and, in fact, won't
work.)

For information on ISMEIX, see the ISMFIX reference sheet in the AMOS
System Commands Reference Manual, (DWM-00100—49).

ISAM SYSTEM USER'S GUIDE

PART I

THE ISAM UTILITY PROGRAMS

The next few chapters discuss the ISAM utiLity programs. These programs: 1.
create and (optionalLy) load an indexed sequentiaL fiLe; 2. dispLay the
contents of your data and index fiLes; and, 3. aLLow more efficient use of
your index fiLes by compressing index bLock entries.

CHAPTER 2

CREATING AND LOADING AN ISAM FILE WITH ISMBLD

The ISMBLD program provides a convenient method for creating and loading
indexed sequential files. Itgives you the ability to create a new indexed
sequential file, to add records to the data file from an ordinary sequential
data file, and to create a secondary index file that cross—indexes to a
primary index file.

2.1 GENERAL OPERATING INSTRUCTIONS

ISMBLD has three operating modes: 1. create a new indexed file; 2. add data
to the new file or to an existing file; and, 3. change the device
specification of a data file. All modes are called via the general command:

.ISMBLD fi lespec{/DH/N}

If the indexed sequential fiLe specified by filespec does not exist, ISMBLD
enters the creation mode. If the file already exists, ISMBLD enters the
data Loading mode unless you have specified the optional /0 maintenance
switch. (NOTE: If the file already exists, you may specify Counted Update
mode by using the IN switch. See Section 2.3.1, "Suppressing Exclusive Open
Mode. ')

2.2 CREATION MODE

The creation mode is the most commonly used mode. In this mode you input
series of parameters that describe the desired indexed sequential file.
From these parameters the ISMBLD program generates a data file/primary index
file combination or a secondary index file that cross—indexes to an existing
primary index file.

CREATING AND LOADING AN ISAM FILE WITH ISMBLD Page 2—2

.2.1 Specifying File Parameters (
Before actually creating the file, ISMBLD asks you a number of questionsabout your data file. In response to each of the questions. "u areexpected to enter a valid answer. Because of the myriad ways that you canset up an indexed sequential file, very little validity checking is done onyour answers. it is therefore possible to create totally useless files. Becareful. For an example of the ISMBLD dialog, turn to Chapter 7, "UsingISAM From Within BASIC."

The following sections describe the questions asked and the expectedresponses:

2.2.1.1 Size of key: — Enter the size of the desired key in decimalbytes. To minimize index search time, keep this size as small as possible.The maximum key size is 256. When you later access the ISAM files you are
now creating, you must remember to pad with blanks or other characters keysthat are smaller than this specified size. Pad numeric fields in the frontof the field; pad symbolic keys at the end. One side effect of thi.s is that
both binary and floating point keys may be used.

2.2.1.2 Position of key: — This parameter specifies the location of thekey within the data record. The symbolic key position is used when loading
indexed sequential files from sequential files as the means of determiningthe symbolic key. Enter the number of the first character—position in the
record which the key occupies; the first position within a record is
position number one.

2.2.1.3 Size of data record: — This parameter defines the size of therecords in the data file or the maximum data record size in the case ofvariable length records. Specify this size in bytes (decimal). The data
record size must be greater than or equal to the key size plus the keyposition.

2.2.1.4 Number of records to allocate: — This parameter defines thenumber of records which the data file is to contain.

2.2.1.5 Entries per index block: — This parameter allows you to specifythe number of entries contained in an index block; this value can greatlyaffect the efficiency of searches and inserts within the file. See Section2.5, "Optimizing File Parameters," for more information.

CREATING AND LOADING AN ISAM FILE WITH ISMBLD Page 2—3

2.2.1.6 Empty index blocks to allocate: — ISMBLD allocates for you thebare minimum number of index blocks you will need to contain keys for thespecified number of data records. This calculation is based on theassumption that the index file tree structure will be perfectly baLanced.Since this is rarely the case, you will probably need to specify anadditional number of index blocks.

2.2.1.7 Primary Directory? — If you are creating a primary index and datafile combination, enter Y; if you are creating a secondary index file, enterN.

2.2.1.7.1 Secondary File — If you are building a secondary index file,ISMBLD prompts you for the file specification of the orimary index file:
Secondary index to file:

Enter the specification of the primary index file to which this secondaryfile cross—indexes. Type just a RETURN to exit ISMBLD. You may create asmany secondary index files as you want that cross—index to a particularprimary index file by re—invoking ISMBLD with the specification of thatprimary index file and specifying a new secondary index file.
If you have created a secondary index file, •your dialog with ISMGLD is nowover. ISMBLD returns you to AMOS command level. If you are creating a datafile/primary index file combination, ISMBLD asks you for more information(see below).

2.2.1.8 Data File Device? — ISMBLD now asks you:

Data File Device?

If the data file is to be on a different device than the index file, enterthe name (and number) of that device, If they are to be on the sane device,enter a RETURN. For example, if the data file is to be on unit 1 of device"DSK," enter:

Data File Device? DSK1:

2.3 FILE LOADING MODE

After an indexed sequential file has been created, it is often desirable toload the data and index files with data from an ordinary sequential datafile. To allow this, ISMBLD enters the data loading mode once it createsthe indexed sequential file.

CREATING AND LOADING AN ISAM FILE WITH ISMBLD Page 2—4

If you want to toad data into an existing data file, invoke ISMBLD with thename of that file. ISMBLD then responds:

[Processing existing file]
This notifies you that you are in the file loading mode and not the creation
mode.

ISMBLD now prompts you for a sequential file specification by typing:
Load from file:

You may now enter the file specification that selects the sequential datafile from which you want to toad. A default extension of .SEQ is assumed by
ISMBLD. (If you do not want ISMELD to toad the new file for you or if you
have made an error in the fite specification you gave to ISMSLD, type aRETURN after the "Load from fitef' prompt; no data will be added to the datafile.)

2.3.1 Suppressing ExcLusive Open Mode (the IN Switch)

When loading an existing file, ISMBLD normally uses Exclusive Open mode. If
you wish it to use Counted update mode instead, inctude the IN switch at the
end of the ISMOLO command tine. For example:

.ISMGLD MAIL/N

2.4 CHANGING THE DATA FILE DEVICE (THE ID SWITCH)

The only creation data that you can change is the data file device. The IDswitch provides this field for examination and change. Simply enter the new
device name or a RETURN (to leave the device unchanged). To change the
device to the same device that the index file uses, enter a period (.) onty.It is your reponsibtity to move the file to the specified device.

2.5 OPTIMIZING FILE PARAMETERS

This section provides some hints on how to organize an indexed sequential
fite for maximum efficiency.

Once your file has stabilized and you aren't changing it much, re—evaluatethe original file parameters, If your evaluation so indicates, rebuild thefile with different parameters.

CREATING AND LOADING AN ISAM FILE WITH ISMBLD Page 2—5

2.5.1 Entries per Index Block

This parameter is a two—edged sword. A small value means faster in—coresearches, but more disk accesses and more block splits during recordadditions. A large value reduces the number of disk accesses and blocksplits, but increases in—core search time and increases the amount of memoryused for buffers. (A block split occurs if you add a key to an index block,but there is no more room in that block; ISAM automatically "splits" thatblock and redistributes the keys among the two new blocks.)

Since the index structure is fixed at three levels deep, the maximum numberof keys that you may add to an index without the top index block splittingis n3, where n is the number of entries per index block. When the topindex block splits, the search tine through the index increases due to thepossibility of having to do more disk reads.

When you use a floppy disk, the in—core search time is so. small compared to
a disk seek/transfer that any increase/decrease will not be apparent. When
you use a faster disk the trade—off becomes trickier. As a rule, keep thenumber of entries as large as possible, consistent with the user memorypartition size. The amount of index buffer space required is:

5 * ((entries—per—block* (keysize + 4))+2)

where key size is rounded to an even number of bytes. Given this, youshould be able to determine a reasonable value for thenumber of entries.
U (NOTE: (keysize + 4) * entries—per—block MUST be less than or equal to 510.)

The more entries per block, the more memory you use. It is sometimes moreefficient to have the top block split a few times rather than to eat up a
large amount of memory.

2.5.2 Empty Index Blocks to Allocate

During creation, enough index blocks are allocated to support a balancedindex file tree with sufficient nodes for the number of data recordsallocated. In practice, the index file tree is rarely balanced (unless youadd records in a truly random number with an even distribution of keyvalues). Because of this, you should allocate empty index blocks. Practicehas shown that the number of data records divided by the number of entriesin an index block gives a good number of empty blocks.

CHAPTER 3

DUMPING AN ISAM FILE WITH ISMOMP

The ISMOMP program provides a convenient method for unLoading an indexed
sequential fiLe into a sequential. file. It aLso provides a means of
examining the index fiLe structure to determine how balanced that structure
is.

3.1 GENERAL OPERATING INSTRUCTIONS

ISMOMP has two operating modes: the first alLows you to output the contents
of an indexed sequential. file to an ordinary sequential file; the second
aLLows you to dispLay the index file structure on a terminal. to allow
analysis thereof. Both are invoked via the generaL command form:

.ISMOMp fi Lespec{/N}

where filespec specifies an indexed sequential file and the optionaL IN
switch suppresses Exclusive Open mode. (See beLow.) After performing some
initialization procedures, ISMOMP asks:

Output to:

Supply another file specification; this one selects the sequential outputfile. ISMOMP assumes a default file extension of .SEQ. If you want to
enter the index file dump mode, enter TT'y': as the file specification. For
example:

Output to: TTY:

3.1.1 Suppressing Exclusive Open Mode

tSMDMP normally uses Exclusive Open mode when performing its file accesses.If you wish it to use Counted Update mode instead, use the /N switch at the
end of the ISMOMP command line. For example:

DUMPING AN ISAM FILE WITH ISMDMP
Page 3—2

SISMOMP STAT/N

3.2 FILE DUMP MODE

In this mode, ISMDMP outputs the records of the indexed sequential file toan ordinary sequential file in ascending key order. ISMDMP does notranslation of the records; it outputs the records in exactly the same formas they were input at some earlier date.

3.2.1 Sample Data File Display

We used ISMBLD to create a small ISAM data file named LABELS. Then we usedthe sample program in Chapter 7('using ISAM From Within BASIC') to placefive records in the file. We then asked ISMDMP to place the data in that
file into a file named DATDMP:

.ISMDMP LA8ELS

Output to: DATDMP

5 records dumped

If we use the TYPE command to display the new file (e.g., TYPE DATDMP.SEQ),
we see:

FILMORE SUSAN 230 STILW000 LOWELLMA1S673200
HINCHEY EDSEL 6712 VIA MALAGA TUSTINCA9O24S1O2
LAWRENCE I.E. 1023 W. SANDS PANGUITCHUT9S344100
MUKLUK, H. 345 PRAIRIE DOG LN BAKERCA9876612O
SAVOY JOHN 891 E. DECATUR LAS VEGASNE89OZ31O3

Each record contains: 1. Customer name; 2. street address; 3. city; 4. state
(two letters); 5. zip code; and, 6. three—digit identifying number (called ahash number).

3.3 INDEX FILE DUMP MODE

The dump mode is intended primarily as a debugging tool, and will not find
much use among general users. Therefore we provide little documentation onits use. Those of you who understand the basic structure of the index file
should be able to figure out the display quite easily. Remember that you
can type a Control—S to freeze the screen display and a Control—R to releasethe display.

DUMPING AN ISAM FILE WITH ISMOMP
Page 3—3

3.3.1 Sample Index File Display

Let's say that we want to display the structure of the primary index filethat belongs to our sample data file, LABELS:

.ISMDMP LA8ELS

Output to: TTV:

Now you see something like this (our comments on the information in thisdisplay are in square brackets)

Size of data record: 67
Size of dir entry: 30
Size of dir block: 302
Size of
Type of

key:

key:
25

0

Entries per dir block: To
Record key position: 1

Blocking factor: 7
IDA freeljst pointer: 000000000517
IDA treecount: 45
IbX freelist pointer: 000004
IDX treecount: 2
Records allocated: 5

lop dir blk pointer: 000001

[index file block number:)
000001: 000000000002 [points to next

000000 177777

[keys per index blockJ

[first free record in data file)
[number of free data file records)
[first free index file blockJ
[number of tree index file blocks)
[number of data recordsJ
[points to too index block)

index levelJ
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000oppppp
000000000000

000002:

000000 1777777

000(1 00000003
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

DUMPING AN ISAM FILE WITH ISMOMP s--.- 7—ia

000003: FILMORE SUSAN 000000000414 [points to data record]
HINCHEY EDSEL 000000177777 [first record enteredJ
LAWRENCE T.E. 000000000206
MUKLUK H. 000000000311

000000000103
177777177776 [indicates last record]
000000000000
000000000000
000000000000
000000000000

044506 [in used blocks, this number is
junk—— ignore it.]
000000000000
U0U0000000tJ0
0000000000oo
000000000000
0000000000
00000000uuiju
000000000000
000000000000
000000000000
ouooooooboao
[in unused blocks, points to next
free index blockJ
000000000000
000000000000
000000000000
000000000000-
000000000000
000000000000
00000000000o
000000000000
000000000000
000000000000

SAVOY JOHN

I

000000

000004:

000000 000005

000005:

000000 000006

[Etc.]

CHAPTER 4

COMPRESSING INDEX FILES WITH ISMCOM

ISMCOM.PRG compresses the upper Level of ISAM index files; this increases
access speed and nay recover some storage room in the index file. To use
LSMCOM, enter:

.ISMCOM filespec

where fiLespec selects the index file you want to compress. The program now
reports its intended compression factor (initially based on 95%). If you
wish denser or looser compression, enter the percentage of compression you
want ISMCOM to use, If that vaLue is valid for the file (based on the
number of entries per index block), the program proceeds; otherwise, it
reports the actual effective value andaltows you to enter a new vaLue. The
only way to get 100% compression is to enter 100. The program will not
accept input of a percentage of less than 50. (In actual practice, 50% can
be rounded down to, say, 47% in some cases.) Below is a sample ISMCOM
dialog:

.ISMCOM DATA.IDX@iD

NOBODY else may use this file while I'm processing it

I am planning to compress each block to at least 90 percent full
If that is not acceptable, enter the percentage you desire 76
It will actually work out to be 80 percent full
If that is not acceptable, enter the percentage you desire

No blocks unchanged, No blocks freed, No blocks compressed

Note that a compression factor of 100% will cause a block split the next
time a top level index is created. The number 95% was chosen as the optimum
compression factor for most files. At the end of the compression, ISMCOM
prints some statistics that tell you how much compression was done and how
much good it should do.

• ISAM SYSTEM USER'S GUIDE

PART II

PROGRAMMING WITH ISAM

This section contains information on writing assembly Language programs and
BASIC programs that use the ISAM functions to access and update ISAM files.For information on writing assembly language programs on the AMOS system,refer to the AMOS Assembly Language Programmer's Reference Manual,
(DWM—OO100—43, and the AMOS 'Monitor CaLls Manual, (DWM—4J0100—42). For
information on BASIC, refer to the AIphaBASIC User's Manual, (DWM—OO100—O1).

CHAPTER 5

USING ISAM FROM THE ASSEM8LY LANGUAGE LEVEL

NOTE: This sect ion assumes that you are an experienced assembly
language programmer and that you are familiar with the Alpha Micro CPU
instruction set and the AMOS monitor calls. For information on these
topics, refer to the AMOS Assembly Language Programmer's Reference
Manual, the WD16 Microcomputer Programmer's Reference Manual,
(DWM—OO100—04), and the AMOS Monitor Calls Manual.

The ISAM program is implemented as a FETCHabIe memory module which allows
the assembly language programmer easy access to the features of indexed
sequential files. (NOTE: FETCH is an AMOS monitor caLL. Refer to the AMOS

Monitor Calls Manual for information on the routines within the operating
system (caLled "monitor calls") that have been made available to your
assembly language programs.) It is through the ISAM module that high level
languages such as BASIC gain access to indexed sequential files. The ISAM
program is fully re—entrant, and could therefore be made resident in system
memory if more than one user at a time is going to be using indexed
sequential files.

The ISAM program itself takes up approximately 4K bytes of memory. In
addition to this space, another 1 to 4K bytes is required for each indexed
sequentiaL file that you are processing. This memory space is usually
allocated by the ISAM system using the GETMEM monitor call; you may,
however, allocate your own buffer areas (see Section 5.2.2).

5.1 GENERAL CALLING SEQUENCE

The various ISAM subroutines are called via a dispatch table at the start of
the ISAM program. To make things easier, the file ISUSYM.MAC defines the
table offsets. This file also contains symbols for the various return
codes. All table offsets begin with a period (e.g., .ICLOS, the close
routine). All return codes have the general form IS.xxx (e.q., IS.EOF, the
end—of—file return code). ISUSYM.MAC is designed to be COPYed by your
assembly language program.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5—2

To call the close routine (.ICLOs with the base of the ISAM.PRG modulecontained in register R4, use the following code:

CALL .ICLOS(R4)

All arguments are passed in registers. Each call returns with a completioncode in RID. A successful return (IS.SUC) is indicated by a zero in RID; theindicators (also known as condition codes or condition flags) on returnreflect success or error status. The Z—bit - is set if successful (BNEbranches on error).

5.2 INITtALIZING THE ISAM SYSTEM (.INIT)

Before your program can access an indexed sequential file, you must tell theISAM system that you exist; this is done via the .INIT call. The .INtT callallocates space for the user's impure variables and does minor housekeeping

chores.
NOTE: Your program calls .INIT only once regardless of the numberof ISAM files that are to be opened.

5.2.1 Calling Sequence

Parameters: R2 User allocation routine address (optional)
R3 User deallocation routine address (optional)

R4, R5 Used to pass information to user memory
allocation routines (optional).

CALL .INIT(Rn)

Returns: RO Completion code
R5 User memory pointer

Indicators z if no error
The user memory pointer that is returned in R5 is a pointer to your impurearea. This pointer is needed by all other ISAM calls; if convenient, leaveit in R5 since all calls look forit there.

5.2.2 User Supplied Allocation and Deallocation Routines
In many cases, the program calling the ISAM program will do its own memory
management, and not want ISAM to use GETMEM5 to do so. To allow you to doyour own allocation, the .INIT call allows the passing of allocation anddeallocation routine addresses. .INIT uses its own routines (which useGETMEMs) if you pass a zero instead of an address.

The user allocation routine is called with the desired module size in Ri.The .INIT call expects the address of the assigned module to be returned inRi. You may not modify any other registers.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5—3

The user deallocation routine is called with the address of the module to bedeleted in Ri. Do not modify any other registers. If you pass a zero to.INIT in R3, no deallocation occurs.

The current version of ISAM allows you to move any of the modules that ISAMrequests as well as the ISAM program itself. ISAM is immune to such
movement as long as the user memory pointer (in R5) and the FPN (file pairnumber, see Section 5.6.1) associated with a given file are updated to show
any movement. (The FPN is usually in Ri.)

5.3 FINALIZING ISAM PROCESSING (.IFIN)

When you are through processing indexed sequential files, you must call the
.IFIN routine. This call deallocates any space used by ISAM if a user
deallocation routine has been provided; otherwise the modules are notdeleted until the job EXITs. (EXIT is an AMOS monitor call.)

5.3.1 Calling Sequence

Parameters: R5 User memory pointer

CALL .IFIN(Rn)

Returns: RU IS.SUC
Indicators 1 if no error

The .IFIN routine cannot fail, therefore it always returns the successful
completion code in RU.

5.4 OPENING A FILE FOR PROCESSING (.IOPNR)

You must open an indexed sequential file via this call before you can
process the file in any way. Also use this call when opening a secondary
index file for processing a previously opened data file. If you executethis call on a primary index file, the call also opens the associated datafile; if you execute the call on a secondary index file, the call opens the
index file only. Thus to process a data file with a secondary index file,
you must execute two .IOPNR calls: once to open the data file and primary
index file, and once to open the secondary index file.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5—4

5.4.1 Calling Sequence C
Parameters: RO Flags:

Bit <3> (decimal)
ISAM will open file in Exclusive Open
mode; otherwise, Counted Update mode is
used.

Bit <10> (decimal)
Operating system will, print system and
device error messages before returning.

R2 Pointer to ASCII filespec string describ-
ing the index fiLe to be opened, If the
index file is a primary index, the data
file must have the same name.

R5 User memory pointer

CALL .IOPNR(Rn)

Returns: RO Completion code
Ri Unique File Pair Number (FPN)

Indicators Z if no error
The file pair number (FPN) is a pointer to the memory module that has been
allocated for the storage needed by this particular indexed sequential file.
The read, write, and delete routines use the FPN to telL the ISAM program
which indexed sequential files to process of the ones you may have open.

If you must move the module allocated by .IOPNR, you may do so as long as
you also update the FPN.

5.5 CLOSING THE FILE AFTER PROCESSING (.ICLOS)

After you have finished processing a file, you must close it. The .ICLOS
caLl does some housekeeping and also deallocates any space used by the file
if a user deaLlocation routine has been provided.

5.5.1 Calling Sequence

Parameters: Ri File pair number (FPN)
R5 User memory pointer

CALL .ICLOS(Rn)

Returns: RU Completion code
Indicators z if no error

The file pair number used in Ri is that value returned by .IOPNR.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5—5

5.6 LOCATING A FREE DATA RECORD (.IGTFR)

Use this call to get the re!.ative record number of the next available datarecord in the data file.

5.6.1 Calling Sequence

Parameters: RI File pair number (PPM) of primary index file
R5 User memory pointer

CALL .IGTFR(Rn)

Returns: RO Completion code
Ri Low—order relative record number of the data

record
R2 High—order relative record number of the

data record
Indicators Z if no error

The FPN supplied in Ri must refer to the primary index file associated with
the data file from which a free record is to be obtained.

5.7 DELETING A DATA RECORD (.IDLFR)

Use this call to return a data record to the free record list.

5.7.1 CaLling Sequence

Parameters: Ri File pair number (PPM) of primary index file
R2 Low—order relative record number of the

data record
R3 High—order relative record number of the

data record
R5 User memory pointer

CALL .IDLFR(Rn)

Returns: RO Completion code
Indicators Z if no error

The FPM supplied in RI must refer to a primary index file.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5—6

5.8 READING A DATA RECORD BY RELATIVE RECORD NUMBER (.IRLRD)

Use this calL to read the data record pointed to by the relative recordnumber.

5.8.1 CalLing Sequence

Parameters: RI Low—order reLative record number of the
data record

- R2 High—order relative record number of the
data record

R3 File pair number (FPN)
R4 Buffer address
R5 User memory pointer

CALL .IRLRD(Rn)

Returns: RD Completion code
Indicators Z if no error

The FPN supplied in R3 must refer to the primary index fiLe associated withthe data fiLe.

5.9 WRITING A DATA RECORD BY RELATIVE RECORD NUMBER (.IRLWT)

Use this call to write or update the data record pointed to by the relativerecord number.

5.9.1 Calling Sequence

Parameters: Ri Low—order relative record number of the
data record

R2 High—order relative record number of the
data record

R3 File pair number (FPN)
R4 Buffer address
R5 User memory pointer

CALL .IRLWT(Rn)

Returns: RD Completion code
Indicators z if no error

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL
Page 5—7

5.10 FINDING A RECORD (.IREDR)

Use this call to use a symbolic key to find the relative record number of adata record.

5.10.1 CalLing Sequence

Parameters: Ri File pair number (FPN) of the desired indexfile
R3 Pointer to symbolic key
R5 User memory pointer

CALL .IREDR(Rn)

Returns: RU Completion code
Ri Low—order relative record number of data

record
R2 High—order relative record number of data

record
Indicators Z if no error

The FPN supplied in Ri may refer to any open index file.

5.11 ADDING A SYMBOLIC KEY (.IWRTR)

Use this call to add a key entry to an index file given a user suppLied datarecord number.

5.11.1 Calling Sequence

Parameters: Ri File pair number (FPN) of desired indexfile
R2 Pointer to symbolic key
R3 Low—order relative record number of the

data record
R4 High—order relative record number of the

data record
R5 User memory pointer

CALL .IWRTRCRn)

Returns: RU Completion code
Indicators z if no error

The FPN supplied in Ri may refer to any open index file. The relative

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5—8

record number in R3 and R4 wiLL usually be arécord humber returned by the.IGTFR caLl.

5.12 DELETING A KEY (.TDELK)

Use this call to delete a key from an index file.

5.12.1 Callin Sequence

Parameters: Ri File pair number (FPN) of desired indexfile
P3 Pointer to symbol.ic key
R5 User memory pointer

CALL .IDELK(Rn)

Returns: Completion code
Ri Low—order relative record number of deleted

key
R2 High—order reLative record number of

deleted key
tndicators Z if no error

The relative record number in Ri and R2 refers to the data record associatedwith the deLeted key within the index file referred to by the supplied FPN.The data record is not deleted in the data file; do this by using the .IOLFRcall when you are sure that there are no keys left in the index file thatrefer to that data record.

5.13 FINDING THE NEXT SEQUENTIAL KEY (.SREDR)

When printing reports or posting data, it is often useful to be able to gothrough the records in the indexed sequential file in ascending key order.The .SREDR call makes this possible; it returns the relative record numberof the record that immediately follows the one returned by the last call toISAM. It thus makes it possible to start sequential processing by keyanywhere in the file. To do so, use the .XREDR call to get the first keyyou wish to use. Then call .SREDR to get the key following the one read by.IREDR. You can get the next key by doing another .SREDR, ad infinitum. If.IREDR does not find the key specified, the following .SREDR returns therecord with the key closest to (but greater than) the one not found. Thus,to read the tile from the very beginning, try to do a .IREDR with a key ofzero. This call will almost always fall, but the following .SREDR grabs thevery first record in the ti Le.

USING ISAM PROM THE ASSEMBLY LANGUAGE LEVEL Page 5—9

If the fiLe contains a key of all zero, the initial .IREDR will succeed andthat record should be processed as the first record before doing any.SREDRs. When the file is initially opened by .IOPNR, it is set up so that.SREDR gets the first key, unless the first key is all zero. Therefore itis almost always possible to open the file and read it sequentially. Sincekeys are expected to be ASCII, and an all—null key is not very sensible, thevarious utilities assume that the first key is not zero. When the end ofthe file is reached by the last .SREDR, the end—of—file (IS.EOF) completioncode is returned.

5.13.1 CalLing Sequence

Parameters: Ri File pair number (FPN) of desired index
R5 User memory pointer

CALL .SREDR(Rn)

Returns: RO Completion code
Ri Low—order relative record number of data

record
R2 High—order relative record number of the

data record
Indicators z if no error

We have provided a symboLs fiLe (ISUSYM.MAC) to make life easier for the
assembly Language programmer. This appendix describes the contents of thatfile. We have broken this information into two sections: 1. those offsets
used when invoking ISAM; 2. the completion codes returned by the variousISAM functions.

6.1 CALLtNG SYMBOLS

The following symbols define entry offsets in the ISAM package. See Section5.1 of this manual for more information.

Call the initialization routine
CaLL the finaLization routine
Call the fiLe open routine
Call the file close routine
Call the get free record routine.
CaLL the data record deletion routine.
Call the read data record via relative record
number routine.
Call the write data record via relative record
number routine.
Call the read returning relative record number
routine.
Call
Call
Call

the write using relative record number routine.
the key deletion routine.
the read sequential relative record number

The following symbols name the completion
completion of an ISAM call. Always use these
values in ISUSYM.MAC, since those values could

CHAPTER 6

STANDARD ISAM SYMBOLS FOR ASSEMBLY LANGUAGE PROGRAMMERS

.INIT

.1 FIN
IOPNR

.ICLOS
IGTFR
IDLFR
IRLRD

tRLWT

IREDR

IWRTR
I C ELK
SREDR

6.2 COMPLETION CODE SYMBOLS

routine.

symbols
in

rather than their
the

STANDARD ISAM SYMBOLS FOR ASSEMBLY LANGUAGE PROGRAMMERS / Page 6—2

fTh'IS.SUC The successful completion code (will always be zero).IS.DNR Parameters supplied do not match those in theDirectory Rock.
tS.RNF Record not found.
IS.DPK Attempt to add duplicate key.
IS.LSS Index file link structure is smashed.IS.XFL Index file is full.
IS.AFL Data file is full.
IS.EOF End of file encountered on sequential- read.

An error code of 2 (handled by BASIC as a SYSTEM ERROR; which is why thiscode was chosen) means either that something in ISAM or the ISAM filestructure is in error (as in a bug) or that you used an obsolete ISAM caLl.

CHAPTER 7

USING ISAM FROM WITHIN BASIC

The following pages are a brief summary of the BASIC ISAM commands that your
BASIC programs can use to access ISAM indexed sequential files. (Rememberthat an indexed sequential file i made up of both an ISAM data file and atleast one ISAM index file.) For more information on the BASIC ISAM
functions and on BASIC itself, refer to the AlohaBASIC User's Manual,

(DWM—OO100—o1)

me following discussions assume that you are alreadyfamiliar with opening and cLosing random files, and that you understand the
BASIC READ and WRITE statements. For more information on using files, refer
to the AIphaBA5IC User's Manual.

You must use the ISAM utility program ISMBLD to create an indexed sequentialfiLe before your BASIC program can access it. Although no features existwithin BASIC to create an indexed sequential file, your BASIC program cancreate and execute a command file that invokes ISMBLD with a list of file
Parameters. All data files must have an extension of .IDA and all index
files must have the .IDX extension.

Before

you run your BASIC program, make sure that ISAM.PRG has been loaded
into memory if the System Operator has not arranged to have ISAM.PRG
resident in system memory.

7.1 OPENING AN INDEXED SEQUENTIAL FILE

To open an ISAM indexed sequential index file, use the BASIC OPEN command.
Your program must include an OPEN statement that assigns a file channel to
the indexed sequential file before the program makes any other references tothat file.

This statement takes the same form as the OPEN statement for ordinary randomfiles except that you must specify either INDEXED or INDEXED'EXCLUSIVE mode
rather than RANDOM mode. (Remember that your ISAM files are random datafiles. For information on using random files, see Chapter 15 of the
AIPhaBASIC User's ManuaL.) The OPEN statement takes this form:

OPEN #fi le—channet,fi lespec,mode,record—size,relatjve..record_number

USING ISAM FROM WITHIN BASIC Page 7—2

1. #fiLe—channel — specifies the fiLe channel you want to assign tothe indexed sequential file. Any numeric expression that evaluates
to an integer from 0—65535, (0 is the user terminal). This is the
number you reference when using the ISAM, READ, and WRITEstatements.

2. Filespec — The filespec is any string expression that evaluates to
a legal AMOS file specification. (it may optionally include
account and device specifications.) it specifies the name of the
indexed sequential file you created using ISMBLD (that is, the data
file/primary index file combination you built) or specifies the
name of a secondary index file created with ISMBLD. (If the OPEN
statement refers to a secondary index file, you must have
previously opened the corresponding data file/primary index file on
another file channel.)

Note that the primar' index file always has the same name as the
data file, but has a .IDX extension; the data file has a .IDA
extension.

3. Mode — If you wish ISAM to access the indexed sequential file in
Counted Update mode, use the INDEXED keyword as the fiLe mode; if
you want ISAM to access the file in Exclusive Open mode, use the
keyword INDEXED'EXCLIJSIVE. (For information on Counted Update mode
and on Exclusive Open mode, see Section 1.3, "ISAM Access Modes.")

4. Record—size — An expression that specifies the logical record size
for read/write operations.

5. Relative record number — A floating point variabLe that will hold
the relative record number returned by an ISAM function. (See
Section 7.2, "The ISAM Statement.")

For an example of the use of the OPEN statement, refer to the sample BASIC
program at the end of this chapter. Below are several sample OPEN
statements:

220 OPEN #1, "LABELS', INDEXED, RECSIZE, RELKEY1
230 OPEN #2, "HASH", INDEXED-, RECSIZE, RELKEY1

The two program lines above assume that there exists a data file named
LABELS.IDA and a primary index file named LABELS.IDX. Line 220 opens that
indexed sequential file. Line 230 opens a secondary index file associated
with LABELS.IDA. Note that RECSIZE and RELKEY1 are identical for both OPEN
statements; this is because both OPEN statements refer to the SAME data
file, LABELS.IDA. The RECSIZE and RELKEY1 are used by subsequent READ and
WRITE commands to access the data file.

USING ISAM FROM WITHIN BASIC Page 7—3

7.2 THE ISAM STATEMENT

The purpose of the ISAM statement is to allow you to use the ISAM program
from within your BASIC program to: 1. find a record in the data file by
symbolic key (returning the relative record number in the variabLe specified
by the indexed sequential fiLe OPEN statement); 2. find the next data record
(by the order in which the symbolic keys occur in the index fiLe); 3. add a
symboLic key to an index file; 4. deLete a symbolic key from an index file;
5. Locate next free data record in data fiLe (returning relative record
number in the variable specified by the appropriate OPEN statement); and, 6.
delete a record from a data file, and return that record to the free List.

The ISAM statement foLLows this form:

ISAM #file—channel, code, symbolic—key

1. #fite—channel — Specifies the fiLe channeL assigned by an OPEN
statement to either the data file/primary index fiLe or the
secondary index file (depending on which set of symboLic keys you
want to access).

2. Code — A numeric value that selects one of the functions mentioned
above. May be any LegaL numeric expression which is resolved at
runtime.

3. Symbolic—key — Specifies the symbolic key to be used in Locating a
data record. You must aLways specify a symboLic key even if a

function does not require the use of one. (This simpLifies syntax
checking.) If you wish, you may use a dummy string variable in such
cases.

7.2.1 ISAM Statement Codes

The ISAM statement can perform six different functions. You may select one
of these functions by supplying the appropriate code number (see below) to
the ISAM statement. An error wiLl result if you do not suppLy a valid code
number.

Some of the functions below require a relative record number as input;
others return a relative record number to be used when your READ and WRITE
statements access the data file. In either case, the ISAM functions pass
the relative record number in the variable specified in the OPEN statement
for the data file/primary index fiLe. READ and WRITE statements aLso use
that variable for locating the data file record that they are going to

access.

Remember that the ISAM statement does not directly access the
data file. Instead, it gives you the information you need to access the
data file yourself using the relative record number returned by ISAM.

USING ISAM FROM WITHIN BASIC
Page 7—4

CODE 1 — Searches the index fiLe selected by #fiLe—charir,eI. for the keythat matches the symbolic—key, it it finds a match, it returns thereLative record number of the data file record containing that key.If it does not find a match, it returns an error code 33 in ERF(X).(See Section 7.5, "Error Processing"),

CODE 2 — Accesses the index fiLe selected by #fiLe-channel. and findsthe next symbolic key. Returns the reLative record number of the datafile record associated with that symbolic key in preparation for a
READ or a WRITE to the data file, If this is the first access to thetile after the OPEN statement, it finds the first symbolic key in theindex file, if this function follows a previous code 1 statement, the
function finds the next symbolic key after the code 1 symbolic key.If there are no more keys in the index file, the function returns an
end—of—index—file error (38): make no further accesses to the datafile until you make another ISAM call that returns a valid relative
record number. -

CODE 3 — Adds the specified symbolic key to the index file selected by
#file—channel. Also adds the relative record number specified by thevariable in the OPEN statement. You will usually set this relative
record number just prior to the code 3 call by using a code 5 ISAMstatement. (A code 5 caLl returns the relative record number of thenext free data record.)

CODE 4 — Delete the specified symbolic key from the index file
selected by #file—channel. This function returns the corresponding
relative record number so that you can use a code 6 ISAM statement todelete the data record and return it to the free list. If the
function cannot find the symbolic key in the index file, it returns a
"?Record not found" error (33).

CODE 5 — Finds the next available data record on the free list. (Thefree list is a linked list that keeps track of all available recordsin the data file. ISMBLD initially builds the free list.) Returns therelative record number of that record so that you can use a code 3
ISAM statement to add a symbolic key/relative record number pair to
the index file. If no more data records are free in the data file,
the function returns a "?Data file full" error. A code S ISAM
statement does not modify the index file; it simply locates the next
free record in the data file. The function ignores the symbolic key
in the ISAM statement. The #file—channel in the code 5 ISAM statement
must be the file channel assigned to the primary index file.
CODE 6 — Returns to the free list the data record specified by the
relative record number in the OPEN statement, Does not modify the
index file. The #fjle—channel in the code 6 ISAM statement must be
the file channel assigned to the primary index file. A code 6 call
ignores the symbolic key in the ISAM statement.

USING ISAM FROM WITHIN BASIC Page 7—5

'7.3 READING AND WRITING DATA IN AN ISAM DATA FILE

ISAM statements do not access data records, but instead return theirrelative record numbers. To actually read or write data records, you mustuse the BASIC READ and WRITE commands. When you read or write data in aspecific ISAM data file, BASIC selects the record to be accessed byreferring to the relative record number variable in the OPEN statement forthat file.

READ #file—channel, variablel, variable2,,.. variableN
WRITE #file—channel, variablel, variable2,... variableN

The #file—channel in the "GAo or WRITE statement MUST be the file channelthat appears in the OPEN statement for the primary index file you want toaccess. The relative record number variable in the OPEN statement mustcontain a valid relative record-number or an error will result.

7.4 CLOSING FILES

To ensure that ISAM has rewritten all data records to the data file and thatit has properly updated all links in the index file, it is VERY important
that you cLose all index files (primary and secondary) via the normal CLOSEstatement. FaiLing to close the tile when you are through with it may
destroy the linking structure of the indexed sequential file. The CLOSE
statement takes the form:

CLOSE #fi le—channel

where #file—channel is the tile channel assigned to the file you want toclose For example:

CLOSE #2 -

where fiLe channel #2 was assigned to an indexed sequential file by a
previous OPEN statement. Remember to cLose both primary and secondary index

files.
NOTE: The order in which you close the ISAM tiles makes no

difference; however, remember that you cannot access a secondary index fileif you have already closed the primary index file/data file.

7.5 ERROR PROCESSING

Any ISAM operation can result in some kind of error, If the error is a

system

error (for example, the disk is not mounted), BASIC interrupts yourprogram and aborts to the monitor, (Or, if error trapping is enabled, BASICtransfers control to your error handling routine.) For information ondealing with the usual system errors (e.g., "?File not found" or "?Disk notmounted") refer to the AIphaBASIC User's Manual, in particular the sectiontitled "Error Trapping."

USING ISAM FROM WITHIN BASIC
Page 7—6

Special ISAM errors can also occur as a resuLt of an ISAM operation. Theseerrors do not generate an error message or result in an error trap. It istherefore very important that your program check for these errors after
every

ISAM statement; otherwise, you have no way of knowing whether or notthe ISAM function was performed successfully. To do so, use the ERF(X)function, where X is the file channeL number used by the preceding ISAMstatement. (The ERF(X) function operates in much the same way as the EOF(X)function.)

If ERF(X) returns a zero, the preceding ISAM statement was successful. IfERF(x) returns a nonzero value, then an error was detected. If an erroroccurred, your program should correct the problem before going on to accessthe file. The nonzero value returned tells you which error occurred. Forexample:

If a "Record not found" error (#33), go to routine that asks for new key.100 IF ERF(2)=33 THEN PRINT "RECORD NOT FOUND" : GOTO PROMPT

The current ISAM error codes are:

32 — Illegal ISAM statement code.
33 — Record not found in index file search.
34 — Duplicate key found in index file during attempted key addition.35 — Link structure is smashed and mustt be re—created.
36 — Index file is full.
37 — Data file is full (free List is empty).
38 — End of file during sequential, key read..

REMEMBER:

Always check after performing an ISAM function to see if an erroroccurred. If you do detect an error, your program must take correctiveaction before continuing on.

7.6 USING THE ISAM FUNCTIONS WITHIN A BASIC PROGRAM

Below are some examples of the ways you can combine the ISAM statements andother BASIC commands to access and use indexed sequential files. For a lookat a sample ISAM prgram, turn to Section 7.7.

7.6.1 Adding Data to an Indexed Sequential File
At the time that you use ISMBLD to create an indexed sequential file, youhave the option of loading data into the ISAM data and primary index filefrom an ordinary sequential data file. Your BASIC programs may also adddata to the indexed sequential file by using code 5 and code 3 ISAMstatements. For each new data record to be added:

1. Open the indexed sequential file with an OPEN statement. Forexample:

• USING ISAM FROM WITHIN BASIC Page 7—7

OPEN #1 ,"PHONES',INDEXED,RECSIZE,RELKEY

Remember to open any secondary index files that you might want to
use via separate OPEN statements on different file channels.

2. Use a code 1 statement to see it the index entry you want to addalready exists. For example:

ISAM #1, 1, NAME

Check to see if an error was returned. For example:

IF ERF(1) = 0 THEN PRINT "Duplicate Name.' : (3010 GET'NAME

(If no error occurred, then the index entry already exists and you
can't add it.) If you are using secondary index files, also check
to see that the secondary index entries don't already exist.

3. Retrieve the next tree data record (a code 5 ISAM statement). For
examp le:

ZSAM #1, 5, DUMMY

Check to make sure that an error (e.g., 37 — '°?Data file is full
(free list is empty)" did not occur. For example:

IF ERF(1) 0 0 THEN (3010 ISAM'ERROR

4. It no error occurred, the record number of the next free record is
in the relative record number variabLe defined by the OPEN
statement for the indexed sequential file. Now you can write the
data into the record by using a WRITE statement. For example:

WRITE #1,tNFO

5. Now you must add the symbolic keys for that data record to the
index files, using a code 3 statement. (Those symbolic keys will
then link to that data record.) Be sure to check for an ISAM error
after each addition.

6. After adding all data records, close the ISAM files. For example:

CLOSE #1 Close primary index tile/data file
CLOSE #2 Close secondary index file

USING ISAM FROM WITHIN BASIC
Page 7—8

7.6.2 Reading Data Records in Symbolic Key Order C:
ISAM stores symbolic keys in the index file in ASCII collating sequence. Toretrieve records in the order in which their keys appear in an index file:

1. Open the indexed sequential file with an OPEN statement. (If youalso wish to open one or more secondary index files thatcross—index to the primary index file, use one OPEN statement foreach secondary index file.)
2. Execute a code 2 ISAM statement to find the next symbolic key.
3. Check to make sure that the ISAM statement didn't return an error.For example:

IF ERF(1) = 38 THEN PRINT "End of file." : 6010 PROMPTIF ERF(1) 0 0 THEWGOTO ISAM'ERROR

4. The proper record number is now in the relative record numberdefined by the OPEN statement for the file,, so you can use a READstatement to read in the data. For example:

READ #1, INFO

(Remember that the READ statement must include the file channelassigned to the primary index file even if the code 2 ISAMstatement included a symbolic key contained in a secondary indexfile; this is because the data you want to read is in the datafile.)
5. Check for an end—of—file error by using the ERF(X) function.
6. Repeat these procedures to step through the data records in theorder of the symbolic keys •in the index files until you reach theend of the file, or until you have accessed all the records yOuneed. Be sure to check for an ISAM error after each access.
7. Close all files when you are done.

7.6.3 Reading Data Records Randomly by Symbolic Key

1. Open the indexed sequential file with an OPEN statement. You mustinclude one OPEN statement for the data file/primary index file.You must also include one OPEN statement for each secondary indexfile you want to access.

USING ESAM FROM WITHIN BASIC
Page 7—9

2. Locate each data record by using a code 1 ISAM statement. Thestatement must contain the symbolic key associated with the recordfor which you are searching and the file channel associated withthe index file containing the symbolic key.
3. Check for a "record not found" error; this indicates that thesymbolic key was not located in the specified index file.
4. If the record was found, use a READ statement to read in the datarecord. (The READ statement includes the file channeL associatedwith the data file/primary index file, even if the symbolic keyused belonged to a secondary index file.)
5. Repeat steps 2 through 4 for each record you want to find.
6. Close all files.

7.6.4 Updating Data Records

1. Open the indexed sequential file with an OPEN statement.
2. Locate the data record you want to update via one of the methodsabove (i.e., by using a code 1 or code 2 ISAM statement).
3. Check to make sure that the record was found. (Use the ERFfunction.)

4. Use a WRITE statement to update the data record. (The WRITEstatement includes the file channel associated with the datafile/primary index file, even if the symbolic key used to find therecord belonged to a secondary index file.)
5. This operation does not change the index files, so do not changethe symbolic key in the record you rewrite. If you need to alterdata that is part of a symbolic key, you must delete the key in thecorrect index file (a code 4), and then add the new key to theindex file (code 3). You do not need to delete and re—create thedata record during this operation unless you are enteringcompletely new data.

6. Close all files.

USING ISAM FROM WITHIN 9ASIC Page 7—10

7.6.5 DeLeting a Data Record

Deleting a data record from an indexed sequential, fiLe entails not onLydeleting the record itself but also deleting all symboLic keys associatedwith that data record from alL index fiLes.

1. Open the primary index file and all secondary index files needed.
2. Locate the data record via one of the symbolic keys (a code 1 ISAMstatement).

3. Check to make sure that the statement executed without error. Forexample:

IF ERF(2) = 33 THEN PRINT "Record not found." : 6010 PROMPT
IF ERF(2) 0 0 THEN 6010 ISAM'ERROR

4. Read the data record with a READ statement (whose #file—channel is
- the file channel number associated with the primary index file).

5. Extract each symbolic key from that data record. Use each symbolic
key to delete each key from its associated index file with code 4tSAM statements.

6. After aLl symbolic keys have been deleted from all index files,delete the record itself via a code 6 ISAM statement.

7. Close all files.

NOTE: A good way to check the structure of the indexed sequential file mightbe to store the relative record number in another variable; then compare therelative record numbers returned by each code 4 ISAM statement to check thatthe symbolic keys did indeed all link to the correct data record. Youshould also check each ISAM statement for any possible error that mightotherwise go unnoticed.

USING [SAM FROM WtTHIN BASIC
Page 7—11

7.7 SAMPLE ISAM PROGRAM

The sample program below will make clearer the use of the commands discussedabove. For more information on using ISAM from within a BASIC program,consult the manual AIPhaBASIC User's Manual.

Before we can begin to use [SAM, we must load it into memory if it is notalready resident in system memory:

.LOAD SYS:tSAM.pRG

Before we run the sample program below, we first use the program ISMBLD tobuild the [SAM files LABELS.IDA (the data file), LABELS.IDx (the primaryindex file), and $4ASH.[Dx (the secondary index file). Note that we build anempty file (i.e., we type a RETURN after the "Load from file:" prompt). Weuse the BASIC program below to place data into the file.
.ISMBLD LABELS
Size of key: 25
Position of key: 1
Size of data record: 67E
Number of records to allocate: 5O
Entries per index block: 1Q
Empty index blocks to allocate: 20@D
Primary Directory: Y@D
Data file device:
Load from file:

.ISMBLD HASI4
lize of key: 1O
Position of key: 58
Size of data record: 67
Number of records to allocate: 5OD
Entries per index bLock: 1O
Empty index blocks to aLlocate: 2O
Primary Directory? N

Secondary index to file: LABELS
End of primary file
No records loaded

Now we can run our sample program:

.RUN MAILa

USING ISAM FROM WITHIN BASIC
Page 7—12

nSAMPLE BASIC ISAM PROGRAM

10 ! ISAM Sample Program.
20
30 This program is a simple example of how to handte ISAM files, both40 primary and secondary. it simulates a very simple—minded mailing50 list program, with the addresses keyed by both name and user60 defined hash code.
70
80 Define the Mailing List file record.90 I

100 MAP1 LABEL
110 MAP2 NAME,S,25
120 MAP2 ADDRESS,S,25
130 MAP2 STATE,s,2
140 MAP2 ZIP,S,5
150 MAP2 HASH,S,10
160
170 I Define record sizes.
180
190 MAP1 RECSIZE,p,o,67

I Size of data record.200
210 ! Open the primary and secondary files.
220 OPEN #1, "LABELs", INDEXED, RECSIZE, RELKEY1
230 OPEN #2, "HASH", INDEXED, RECSIZE, RELKEY1240
250 PROMPT:
260 PRINT
270 INPUT "ENTER FUNCTION &

(l=ADDP2=DELETE,3=INQUIRE,4=PRINT99=END): "; FUNCTION280 ON FUNCTION 6010 ADDIRECORD,DELETEIRECORD,INQUIREIRECORDPRINT,LABELS290 IF FUNCTION=99 THEN GOTO END'IT
300 GOTO PROMPT
310
320 ADD'RECORD:
330 INPUT "ENTER NAME: "; NAME
340 INPUT "ENTER ADDRESS: "; ADDRESS
350 INPUT "ENTER STATE• "; STATE360 INPUT "ENTER ZIPS "; ZIP
370 INPUT "ENTER HASH: "; HASH
380 I Add TraiLing blanks to the keys.
390 NAME = NAME + SPACE (25—LEN (NAME))
400 HASH = HASH + SPACE(10—LEN(HASH))
410 I Look up name to verify that it is not a duplicate. (If ERF(1)=0, then415 I ISAM found the key in the data file.)
420 ISAM #1, 1, NAME
430 IF ERF(1) = 0 THEN PRINT "DUPLICATE NAME" : 6010 ADD'RECORO440 I Verify that hash is not a duplicate.
450 ISAM #2, 1, HASH
460 IF ERF(2) = 0 THEN PRINT "DUPLICATE HASH" : GOTO ADD'RECORD

USING ISAM FROM WITHIN BASIC
Page 7—13

470 Get free data record from primary file and write record out.480 ISAM #1, 5, NAME
490 IF ERF(1) C U THEN GOTO ISAM'ERROR500 WRITE #1, LABEL
510 Add key to primary index file.520 ISAM #1, 3, NAME
530 IF ERF(1) 0 0 THEN 6010 ISAM'ERROR
540 Add key to secondary index file,550 ISAM #2, 3, HASH
560 IF ERF(2) 0 0 THEN 6010 ISAM'ERROR
570 GOTO PROMPT
580
590 DELETE'RECORD.
600 INPUT "ENTER NAME: "; NAME610 NAME = NAME ÷ SPACE(25—LEN(NAME))
620 Verify that the key exists.
630 ISAM #1, 1, NAME
640 IF ERF(1) = 33 THEN PRINT "RECORD NOT FOUND" : GOTO PROMPT650 IF ERF(1) 0 0 THEN 6010 ISAM'ERROR
660 READ #1, LABEL

670

Delete the key from the primary index.
680 ISAM #1, 4, NAME
690 IF ERF(1) 0 0 THEN GOTO ISAM'ERROR
700 Delete the key from the secondary index.
710 ISAM #2, 4, HASH
720 IF ERF(2) 0 0 THEN 6010 ISAM'ERROR

730

Delete the data record in data file.
740 ISAM #1, 6, NAME
750 IF ERF(1) 0 0 THEN GOTO ISAM'ERROR
760 6010 PROMPT
770
730 INQUIREIRECORD:
790 INPUT "BY NAME (1) OR HASH (2): "; FUNCTION800 IF FUNCTION = 2 THEN GOTO BY'HASH
810 INPUT "NAME: NAME
820 NAME = NAME + SPACE(25—LEN(NAME))
830 Locate the record.
840 ISAM #1, 1, NAME
850 IF ERF(1) = 33 THEN PRINT "RECORD NOT FOUND" : 6010 PROMPT860 IF ERF(1) 0 0 THEN GOTO ISAM'ERROR
870 Read the record.
880 READ'RECORD:
890 READ #1, LABEL
900 PRINT NAME, HASH
910 PRINT ADDRESS, STATE, ZIP
920 GOTO PROMPT

USING ISAM FROM WITHIN BASIC
Page 7—14

930 Locate record by hash-code. I940 BY-'HASH:
950 INPUT "HASH: "; HASH
960 HASH = HASH + SPACE(10—LEN(HASH))
970 ISAM #2, 1, HASH
980 IF ERF(2) = 33 THEN PRINT "RECORD NOT FOUND" : GOTO PROMPT990 IF ERF(2) 0 0 THEN GOTO ISAM'ERROR
1000 'SOlO READ'RECORD
1010
1020 PRINT'LABELS:
1030 Read null key to get to front of file.
1040 NAME •SPACE(25)
1050 ISAM #1, 1, NAME
1060 Loop thru file doing sequential reads until we hit the end.1070 LOOP:
1080 ISAM #1, 2, NAME
1090 IF ERF(1) = 38 THEN 'SOlO 'PROMPT We hit end—of—file.1100 IF ERF(1) 0 0 THEN 'SOlO ISAM'ERROR
1110 READ #1, LABEL
1120 PRINT
1130 PRINT NAME, HASH
1140 PRINT ADDRESS, STATE, ZIP
1150 43010 LOOP
1160
1170 END'IT:
1180 Be sure and close files before we exit.
1190 CLOSE #1
1200 CLOSE #2
1210 END
1220
1230 ISAM'ERROR:

I ERF(X) returned an ISAM error1240 PRINT "?FATAL ISAM ERROR" I other than RECORD NOT FOUND.1250 END

ISAM SYSTEM USER'S GUIDE

Index

Page Index—i

Adding data records
Adding symbolic keys
AMOS monitor calls

COPY

EXIT
FETCH

GETMEM

BASIC

7—6
5—7, 7—4
5—1

5—1

5—3

5—1

5—1 to 5—2

Adding data records
Closing files
Deleting data records
ERF(X)
Error processing . -

ISAM codes
ISAM error codes
ISAM statement .

OPEN statement .

Opening an ISAM file
READ statement .
Reading data records
Sample ISAM program
Updating data records
WRITE statement .

Block spLit

CLosing ISAM fiLes
Code
CompLetion codes

IS.EOF
IS.SUC

Compressing index fiLes .
Compression factor
Condition codes
Condition flags
Contiguous file
Counted update mode
Creating ISAM files

Data file
Deleting data records
Deleting symbolic keys
Directory Rock

7—6
7—5
7—10
7—4, 7—6
7—5

7—3
7—6
7—3
7—1

7—1

7—3, 7—5
7—8
7—11
7—9

7—3, 7—5
2—5

1—6, 5—4, 7—5
7—3

5—2, 6—1
5—9
5—2

4—1

4—1

5—2

5—2
1—4
1—5, 5—4, 7—2
2—1, 7—1

1—2 to 1—4
5—5, 7—4, 7—10
5—8, 7—4
1—4

—

ISAM SYSTEM •USER'$ GUIDE

Displaying the data file . •
Displaying the index file •

ERF function
Error Processing
Exclusive open mode

File channel
Pile interlocking
File pair number . • .
File parameters

•Filespec
Finalizing tSAM processing
Finding data records .
Finding free data records
Finding symbolic keys .
Finding the next key .

Index file
Index levels
INDEXED
Indexed sequentia tile

*

• . S

• . S

• S S

S • S

S S •
S S

S 5 5

S S 5

S S

S 5 5

• . S

S •

S

S S

S S

S S *

• a S

3—2

3—2

7—4
7—5

1—5 to t—6, 5—4, 7—2

7—1 to 7—3
1—5 to 1—6
5—3 to 5—4
2—2

7—2

5—3

5—7, 7—4
5—5, 7—4
7—4

5—8, 7—4

1—2 to 1—3
1—4
7—2

1—3Data file
Index fiLe

INOEXED'EXCLUSIVE
Indicators
Initializing ISAM
I SAM

ISAM access modes
ISAM calls

.ICLOS
.IDELK
SIDLFR . . .
SIFIN
.IGTFR
.IPIIII . . • -.

SIOPNR
SIREDR . • . .
.IRLRD
SIRLWT
.IWRTR
•SREDR

ISAM.codes
ISAM error codes
ISAM file extensions

SIDA . • •
•IDX
.IDY

ISAM statement .
ISMBLD
ISMCOM
ISMOMP
ISMFIX 18

1—3

1—3

1—6

5—2
5—2

1—1

1—5

5—1, 6—1
5—1, 5—4
5—8

5—5

5—3
5—5

5—2

5—3

5—7 to 5—8
5—6

5—6
5—7
5—8

7—3
7—6

1—4
1—5

1-6
7—3

1—3, 2—1, 7—1, 7—11
4—1

3—1

Page tndex—2

S

S S

• S

• S

• S

S

S S

•

• *

*

S

S

• S

S

• S

S

S

• S

S

*

S

S

* S

• * S S S

5 0 5 5 5

ISAM SYSTEM USER'S GUIDE Page tndex—3

ISUSYM.MAC 5—1

Loading ISAM files 2—1

Memory alLocation routine . 5—2
Memory deallocation routine 5—2
Memory requirements 51
Mode 7—2

Opening ISAM files 5—3, 7—1

Primary index file 1—3 to 1—4

Reading data records 5—6, 7—8
Record size 7—2
Relative key 1—2
Relative record number . . . 1—2, 7—2
Return codes 5—1

Sample BASIC ISAM program . . . 7—11
Sample ISMBLD dialog 7—11
Secondary index file 1—3 to 1—4
Suppressing Exclusive Open mode 1—6, 2—4, 3—1
Symbolic key 7—3

Table offsets 5—1

Unloading ISAM files 3—1
Updating data records 5—6, 7—9

Writing data records 5—6

