SOFTWARE MANUAL

SAM SYSTEM

USER’S GUIDE

DWM-00100-06
REV. AO02

alpha
micro

ISAM SYSTEM USER'S GUIDE 7 Page ii

First printing: 6 December 1977
Second printing: April 1979
Third printing: 30 April 1981

'Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-~100',
'AlphaPASCAL', 'AlphalISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

©1980 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

This document reflects AMOS Versions 4.5 and lLater

C-2MD-4/81

October 1979
DWM—-00100-36
Revision AQ02

IMPORTANT NOTICE FOR ISAM USERS

1.0 INTRODUCTION

There have been some important changes made to the ISAM package included
with AMOS versions 4.2 and later. New access modes greatly increase the
speed with which ISAM can access ISAM files. The rest of this document
discusses these new access modes -and some of the peculiar situations that
can arise as a result of their use.

Most of these changes are changes to ISAM processing, and most do not
require that you modify your ISAM files or programs. (You may, however,
want to make some simple changes to your programs to maximize the gain in
access speed made possible by the changes to ISAM,)

2.0 IMPORTANT NOTE ON ISMFIX

4.2 ISAM had a hug that, under certain circumstances, resulted in indices
being hidden in an ISAM file. ISMFIX rebuilds 1ISAM files that were
processed by 4.2 ISAM and thus recovers any misplaced indices.

AMOS version 4.3 requires that you use ISMFIX on all ISAM files that were
processed by 4.2 ISAM, (You do not need to use ISMFIX on ISAM files created
under 4.3 ISAM, but using ISMFIX on a file in which indices have not been
lost does no harm. Also, rebuilding a file that has already been rebuilt
does not harm that file.)

2.1 TISMFIX Command Format
The ISMFIX command takes the form:

+ISMFIX Filespec)
where Filespec selects the ISAM files you want to rebuild. If you are
logged into [1,2], ISMFIX assumes the wildcard account specification, [];
otherwise, it restricts itself to the account you are logged into.
You do not need to specify a .IDX extension to ISMFIX; it only processes

.IDX files (and, through them, the appropriate .IDA files). To rebuild a
specific file, enter the specification for that file. For example:

(Changed 1 Octocber 1979)

IMPORTANT NOTICE FOR ISAM USERS ' Page 2

< ISMFIX DSKO:MAIL 0

ISMFIX accepts wildcarded file specifications. If all of your ISAM files
(both the .IDA and .IDX portions of the ISAM files) are on-line at the same
time, you can rebuild all ISAM files on the system by logging into [1,2] and
entering:

+ISMFIX ALL: O

ISMFIX 1lists all rediscovered indices as it re-positions them; ISMFIX also
lists the relative record numbers of the indices.

2.2 1ISMFIX Errors

If ISMFIX encounters a primary index file, but that file's data file is not
on-line and ready to access, an error occurs (you see a file not found

error message) and ISMFIX goes on to the next ISAM file.

As ISMFIX re-positions the indices, ISAM errors can occur {(e.g., index file

full or duplicate key). If an ISAM error occurs, you see a standard ISAM
error message. Your best course in such a case is to rebuild the ISAM file
manually. '

3.0 NEW ACCESS MODES

The two access modes are Counted Update Mode and Exclusive Open Mode.
Counted Update Mode is now the normal access mode for assembly language or
BASIC programs. Exclusive Open Mode is the normal access mode for the
ISMDMP and ISMBLD programs, and is the only mode for the ISMCOM program.

3.1 Counted Update Mode

Counted Update Mode allows ISAM to avoid unnecessary processing. Every time
ISAM updates a file in any way, it increments a counter in the Rock portion
of the index file. At the time of file access, ISAM checks this counter to
see if the file has been updated since the last access. If the file has not
been updated, ISAM can skip further access initialization and take advantage
of prior knowledge about the file. These actions are completely transparent
to the user and the speed gains (3 to 70 times faster access times) are
free.

The Counted Update Mode does NOT eliminate file interlock requirements from
your programs. If anyone might possibly be updating the file, your program
must continue to use file interlock programs such as XLOCK or FLOCK to
prevent simultaneous updates or accesses. The preferred method for locking
files 1is to use the FLOCK non—exclusive "open" locking (action 0, mode O or

{Changed 1 October 1979)

IMPORTANT NOTICE FOR ISAM USERS Page 3

4) for reading and FLOCK exclusive "open" locking (action 0, mode 2 or 6)
for updating. Use the FLOCK "close" (action 1, mode 0) to release the file
-for other users.

Note that it is not necessary to open and close the 1IsaM file with each
manipulation even though the FLOCK commands are so named. It is acceptable
to leave the file open during the whole interlocking and release process,
and is in fact the only way to gain the speed increase made possible by this
new mode. (Even in earlier versions of ISAM, leaving the file open during
interlocking resulted in much.faster access speeds.)

3.2 Exclusive Open Mode

When a program opens a file exclusively, ISAM renames the .IDX file to a
.IDY extension. ISAM also sets a flag in the Rock that identifies the file
as an exclusive file. If any other job tries to open that file, it receives
a FILE NOT FOUND error; if another job tries to access the file once it is
open, the job receives a Link Structure Smashed error (IS.LSS).

As a result of the exclusive open, ISAM knows that no other program will be
updating or accessing the file. It can therefore take full advantage of the
single-process situation for initialization, change posting, and prior
knowledge. Except for the process of opening the file and the need to
properly close the file, use of ISAM is the same as in previous versions.
The use of this mode results in an extremely large gain in access speed.

The only file interlock problem occurs at the moment of the ISAM OPEN call;
no one may update the file while you are opening that file. You MUST
prevent this situation from occurring by using one of the file interlock
programs, FLOCK or XLOCK, or by simply making sure that no other user is
running a program that can update that file. Once the ISAM OPEN has been
executed, no interlocks are needed since no one else can access the file,

Invoke the Exclusive Open Mode from within BASIC by specifying a file mode
of [INDEXED'EXCLUSIVE in the file OPEN statement in your program. Your
assembly language programs may select the Exclusive Open Mode by setting bit
number three of RO for the .IOPNR call. You MUST close the file when you
are completely done with manipulating that file so that ISAM can post the
final updates and remove the Exclusive Open conditions from the file. If an
error occurs during processing, you should close the file to remove the
Exclusive Open conditions (although you can also remove them manually). A
file in which an error occurred during updating -is probably fatally
poisoned. _

Use of the Exclusive Open mode can produce significant gains when printing
reports and other such batch-type operations. It does have the drawback
that NO ONE else can access the file for any reason while it is exclusively
opened. (Any attempts to circumvent the exclusive properties of such a file
by clever manipulations will probably meet with disaster.) If several
people need to access the file at the same time, use the normal mode

(Changed 1 October 1979)

IMPORTANT NOTICE FOR ISAM USERS ' ~ Page 4

(Counted Update Mode); if no one updates the file, you will lose very little
speed in changing to that mode.

The Exclusive Open Mode is used by the ISMBLD, ISMDMP, and ISMCOM programs.
To prevent ISMBLD (when loading or cross—-indexing an EXISTING file) or
ISMDMP from using Exclusive Open mode, use the M. switch. The N switch
appears at the end of the command 1line that invokes the program. For
example:

LISMBLD LABELSN

ISMBLD (when creating/loading or creating/cross~indexing) and ISMCOM ALWAYS
use the Exclusive Open Mode. (When it reappears in future versions of ISAM,
ISMFIX will also use the Exclusive Open Mode.)

4.0 HINTS AND RESTRICTIONS

The new access modes make possible a dramatic increase in the speed of ISAM
data accesses. They also may result in slightly peculiar situations of
which you must be aware.

l. If the Counted Update Mode counter has not changed, ISAM assumes
that no updates have been made to the file since the last time an
access was made, and that it may therefore make certain assumptions
about file status and contents. The counter cycles on a count of
16,777,216. 1If by some chance the file were to remain open for an
incredibly long time and EXACTLY 16,777,216 updates were made
between accesses, ISAM would access and/or update the file using
out-of-date information.

To say the least, this is a very unlikely occurrence. However, you
should be aware that it could happen if you were to leave your
machine up and running for days at a time with the ISAM file open
without making any accesses to that file. ‘

2, When you open a file in Exclusive Open Mode, ISAM must be able to
write to the disk containing that file. This means that you must
make sure that the disk is not write-protected even if all accesses
to that file are going to be read operations.

3. The major quirk of the Exclusive Open Mode is that it causes ISAM
to change the extension of the file being opened. If such a file
is not properly closed (for whatever reason), then the name of that
file 1in the disk directory will not be correct. You can cure this
problem very easily by using the RENAME command. For example:

+ RENAME *,IDX=*,IDY Py

(Changed 1 October 1979)

(..

IMPORTANT NOTICE FCR ISAM USERS Page 5

A file open also changes a flag in the Rock of the ISAM index file.
You do not need to worry about changing the flag yourself in the
event of an improperly closed file, since the situation is
automatically self-correcting the next time the file is opened (in
either Exclusive Open or Counted Update Mode).

4, If you open a file in Counted Update Mode, but the file was last
used in Exclusive Open Mode and was never closed, the file open
will cause ISAM to write to the file to correct the exclusive flag.
If this situation is going to occur, make sure that the disk is
write-enabled.

{Changed 1 October 1979)

I1SAM SYSTEM USER'S GUIDE Page i1

PREFACE

This manual 4is aimed at the experienced assembly Llanguage or BASIC
programmer who wishes to make use of the Alpha Micro ISAM system within his
or her own programs. 1f you are not familiar with Alpha Micro Assembly
‘Language, please refer to the AMOS Assembly Language Programmer's Reference
Manual, (0wm-00100-43). 1f you wish information on AlphaBASIC, refer to

the AlphaBASIC User's Manual, (0DWM-00100-01).

ISAM SYSTEM USER'S GUIOE Page v

Table of Contents

CHAPTER 1 INTRODUCTION TO ISAM

1.1 THE INOEXED SEQUENTIAL ACCESS METHOD ccceucees 1-1
1.2 DESCRIPTION OF INDEXED SEQUENTIAL FILES «secss 1-3
1.2.1 The DaAta File seeseencetcscascasncacane 174
1.2.2 The Index File veevescenceasnsasanceansns 1-4
1.3 ISAM ACCESS MODES .icscccacnsscssssasssssnssna 1~5
1.3.1 Counted Update Mode ...eeeesecsccancecs 1=3
1.3.2 Exclusive Open MOde ..e.ceesssscancnsses 176
1.3.3 Hints and ResStrictions seeeecessssccaas 1=7
1.4 CONVERTING VERSION 4,2 ISAM FILES TO ISAM
VERSIONS 4.3 OR LATER .ecececcscsannsosnacnanns 1-8

PART I THE ISAM UTILITY PROGRAMS
CHAPTER 2 CREATING AND LOADING AN ISAM FILE WITH ISMBLO
2.1 GENERAL OPERATING INSTRUCTIONS .eiveeccccacsssss 2-1
2.2 CREATION MODE ssaeascssscssscssacsssccnnssscnaa 2-1
2.2.1 Specifying File Parameters s.eeeeeccess 272
2.2.1.1 Size Of K@Y! sececasnnsssaanas 2-2
2.2.1.2 Position Of KeY: ceeescssnsaes 272
2.2.1.3 Size of data record: ..sesee.. 272
2.2.1.4 Number of records to
3LLOCAtE: ceecccscsccaacansass 2=2
2.2.1.5 Entries per index block: 2-2
2.2.1.6 Empty index blocks to

allocate: .eeseercasnncassanss 273
2.2.1.7 Primary Directory? ceceseessss 2-3
2.2.1.7.1 Secondary File 2=3
2.2.1.8 Data File Device? seossenseansss 2-3
2.3 FILE LOADING MODE .oeeavosonscaseacacascannsees 23
2.3.1 Suppressing Exclusive Open Mode
(the /N SWwitch) se.eeeecenssnscsssanses 2—4
2.4 CHANGING THE DATA FILE DEVICE
(THE /0 SWITCH) seeaceossctncsnnsaccsaasncaans Ok
2.5 OPTIMIZING FILE PARAMETERS eevescccsoncsannass 274
2.5.1 Entries per Index BLOCK seeevecnncanens 273
2.5.2 Empty Index Blocks to Allocate «e.eeee.. 275

ISAM SYSTEM USER'S GUIDE Page vi

CHAPTER 3

CHAPTER 4

PART 11

CHAPTER 5

CHAPTER 6

OUMPING AN ISAM FILE WITH 1SMOMP

3.1 GENERAL OPERATING INSTRUCTIONS eeveeevassseses 3=1
3.1.1 Suppressing Exclusive Open Mode 3-1

3-2 FILE OUMP MOOE -ll-l..ll.l-lIlll-ll..‘-lﬂlllll 3“2
3.2.1 Sample Data File 0isSplay eeneccesnnccaas 3=2

3.3 INDEX FILE DUMP MODE eeeevecenssasascaansanane 370
3.3.1 Sample Index File Display eeeeencacanan 3-3

COMPRESSING INDEX FILES WITH ISMCOM

PROGRAMMING WITH ISAM

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL

5.1 GENERAL CALLING SEQUENCE e.vcveeenonnseasananes 5=1

5.2 INITIALIZING THE ISAM SYSTEM (LINIT) ..ieieaneas 52
5.2.1 Calling Sequence ctamctssenssasnes 372

5.2.2 User Supplied Allocation and
Deallocation ROULiNeS cicanssnsncsasnss
5.3 FINALIZING ISAM PROCESSING (.IFIN) seieecenceen
5.3.1 Calling SeQUeNCe ...eesussstansansscans
5.4 OPENING A FILE FOR PROCESSING (.IOPNR)0se
5.4.1 Calling SeqUeNCe ..cececescascnnsasesas
5.5 CLOSING THE FILE AFTER PROCESSING (.ICLOS) ...
5.5.1 Calling SequUenCe .ccccieesssnansascananes
5.6 LOCATING A FREE OATA RECORD C(.IGTFR) eeeeceonse
5.6.1 Calling Sequenceccecesannssnsansnss
5.7 DELETING A OATA RECORD (.IDLFR) ceescaassannasns
5.7.1 Calling Sequenceensessccsanacsens
5.8 READING A OATA RECORD BY RELATIVE RECORD
NUMBER (.IRLRD) enueusesesnsasnsssssasscnnnses
5.8.1 Calling SeqUeNCe ..veeavennssasaanssns
5.9 WRITING A OATA RECORD BY RELATIVE RECORD
NUMBER (.IRLWT) tuiececesescansssassassanantnns
5.9.1 Calling SequencCe ..eceenscsssscansscanns
5.10 FINDING A RECORD (.IREDR) .teuvencecascsasnanaa
5.10.1 Calling Sequence ..ecessnstesnstensanss
5.11 ADDING A SYMBOLIC KEY C(.IWRTR) cevscsnssananas
5.11.1 Calling Sequente ...eeceasescesasssans
5.12 DELETING A KEY C(.IDELK) .uceeeacncaaccaaacnsnns
5.12.1 Calling Sequencte .c.ecesacassanncacssns
5.12 FINOING THE NEXT SEQUENTIAL KEY (.SREOR) .uiea
5.13.1 Calling 5equence ..c.eceacecesasssnans

A A A A A R
o O~ LS RV RV RV S e N VNN V8

i
D00 00 00~~~ OO

STANDARD ISAM SYMBOLS FOR ASSEMBLY LANGUAGE PROGRAMMERS

6'1 CALLING SYMBOLS ddamamana T and®d sl REN 6-1
6.2 COMPLETION CODE SYMBOLS ...vevecscscnssasanass 6-1

[SAM SYSTEM USER'S GUIDE Page vii

CHAPTER 7 USING ISAM FROM WITHIN BASIC

7.1 OPENING AN INDEXED SEQUENTIAL FILE sueaceassaa 71
7.2 THE ISAM STATEMENT .eecceecceasenccsanncnsncnne 7™3
7.2.1 ISAM Statement COdES seeesssesscsnscnsns (—3
7.3 READING AND WRITING DATA IN AN ISAM
DATA FILE S s s s ssEssEssEsvsEvseEdeEsEssEEsERRERB&S ?_4
Telh CLOSING FILES cevamonscnssnsosssnmsncssscssssns (™3
7.5 FERROR PROCESSINGceusesscsasnssasananaasas 773
7.6 USING THE ISAM FUNCTIONS WITHIN A
BASIC PROGRAM ...vsevveacscssonsasscasnvessase =0
7.6.1 Adding Data to an Indexed
Sequential File cieveveeeccsscnssananes 7-6
7.6.2 Reading Data Records in Symbolic
Key Order .eseececeessscsceenssnscsncaee I8
7.6.3 Reading Data Records Randomly by
Symbolic KeY saeesessacssssncssvissssnas 7—8
7.6.4 Updating Data ReCOrdsS seseavesnsassnsss =9
7.6.5 Deleting a Data RecOrd .veevevesccnnsae 79
7.7 SAMPLE ISAM PROGRAMcececeecccascnnsnenss =11

INDEX

CHAPTER 1

INTRODUCTION TO ISAM

The purpose of this short manual is: 1. to give you an introduction to ISAM;
and, 2. to discuss how you can create and access indexed sequential files
using the various programs of the ISAM system, as well as write programs in
either assembly language or BASIC to locate, update, add, and delete data in

those files.

ISAM is a method for organizing and retrieving data. The name of the method
(Indexed Sequential Access Method) refers to the manner in which the data is
organized. The information in the ISAM data file is accessed by searching a
separate jndex file that contains a group of symbolic keys and pointers to
records in the data file with which those keys are associated. By searching
several levels of indices within the index file, we can locate records in a
separate file much more quickly and efficiently than if we had to search the
actual data file itself. Some examples of data for which symbolic keys can

be specified are:

Customer information=— the name of the customer is the key (that
is, an element of the data record) on which you base your search,

Payroll-— the key is an employee number.

Inventory control=- the key is a part number.

1.1 THE INDEXED SEQUENTIAL ACCESS METHOD

Finding a convenient and efficient way to access information in a file is an
important problem for a programmer. Suppose, for example, that you have a
phone book of five thousand names and phone numbers. If you need to find a
specific person's phone number, you can start with page number one and scan
every entry 1in the book until you find the proper name. That process is
very slow and inefficient, however, because you have to deal with so many
entries. A more efficient method would involve dividing the phone book into
sections, and searching only those sections that might contain the data you
need instead of searching the entire data base.

INTRODUCTION TO ISAM Page 1=2

Organizing your data so that it is easier and guicker to search is the main
idea behind I5AM, If we were to organize the phone book in somewhat the
same way as ISAM would do it, we might do this:

A,

First we build a file containing one logical record for each entry
in the phone book; each record consists of a person's name, an
address, and a phone number. We assign each entry a number (called
the relative record number or the relative key) that marks its
position 1in the file. For example, the five hundredth entry is
number 499 (the first record is number 0, not 1), (The record
number 1is called "relative" because it marks the position of the
record from the front of the file; it dis not an absolute disk
address.) This file that contains all of our data corresponds to
the I5AM data file.

Next we construct a file that contains information about the data
file that helps us séarch the data file. (The file we are
constructing corresponds to the ISAM index file.) When you open a
phone book, you notice that the top of each page contains two
words; the first and the Llast names that appear on that page.
These two names give vyou an "index" into the data on that page.
So, if the two words at the top of a particular page are
"PENODERGRASS-PENNINGTON," you know that the names associated with
all entries on that page fall somewhere in that range. Suppose,
then, that this second file we are creating contains the words at
the top of the phone book pages, along with the relative record
numbers of the entries that fall on each page.

Instead of searching the entire data file, we can search this much
smaller "index" file. If we want to find the entry for the name
PENHALL, we can search the page indices in our index file until we
find two names that PENHALL falls between. Then we can search just
the data file records assoc1ated with that range of names until we
find PENHALL.

When we build an index file, we say that the file contains symbolic
keys. A symbolic key is an element of a Logical record on which we
base our' search., In this example, the symbolic key we are using is
the name assaociated with each phone book entry. We might just as
easily have set up the files so that we can base our search on

.phone numbers or city names.

We have improved our original file-search procedure, but it can be
improved upon still further. We now have a data file and an index
file. The index file contains one lLevel of indices (the words at
the top of each page in the phone book). The next step 1is to
provide another level of indices within the index file.

When you Look for a name in a phone book, you first find the proper
page by glancing at the names at the top of each page. Then you
might lLook at the first and Last names of each column on the page
to narrow your search still further. If the name for which you are
searching falls between the names at the top and bottom of the

INTRODUCTION TO ISAM . page 1-3

column, you begin to search each entry in that column; otherwise,
you move to the next column on the page. In the same way, our
index file contains a first-level index (the names at the top of
the page); then it further divides the data on the page by giving
indices into subgroups of entries on the page (the first and last
names in each column make up the second-level index). The final
level of “indices (the third=level) in the index file consists of
lists of names for each column in the book along with the actual
record number in our original data file that contains the entry

“associated with that name.

0. Journeying through the levels of indices in our index file, then,
we first find the page on which the name appears, then we find the
column in which the name appears, then we find the actual record
number of the file in which the entire entry associated with that
name appears. At no time do we ever need to search the actual data
file itself. o

Note that the keys in the index file are grouped alphabetically.
Since we. find a data record by searching the index file, the data
records in the data file do not need to be arranged in any
particular order. An index file may not contain duplicate keys;
that s, no two data records in the data file may have the same

symbolic key.

The example above discusses a data file that has one jindex file (called the
primary dindex file). A data file always has one primary index file; it may
also have one or more secondary index files. A secondary index file is
structured in the same way as the primary index file except that it contains
different symbolic keys. For example, if we want to base our search of
phone book entries on phone numbers as well as names, we might construct a
secondary index file that contains phone numbers.

Although we constructed the example above ourselves, the ISAM program
automatically creates all data files and index files for you in response to
information and file specifications that you supply.

1.2 DESCRIPTION OF INDEXED SEQUENTIAL FILES

In summary, an indexed sequential file consists of two files: 1. the data
file, containing the actual data; and 2. the index file, containing pointers
to symbolic keys within the data file. You specify the Llocation of the
symbolic key within each record when you build an indexed sequential file
using the ISMBLD program (discussed in Chapter 2, "Creating and Loading an
ISAM File with ISMBLD"). To build an indexed sequential file, you supply
certain parameters to the ISMBLD program; ISMBLO then produces an empty
file. To Lload the file with data, you may write your own program or vou may
use the ISMBLD program to copy the data from an ordinary sequential file
into the data file (updating the index file in the process).

INTRODUCTION TO ISAM ' Page 1-4

The ISAM program does all reading and writing of the index - file; you will
not have to handle these functions vyourself. Your BASIC or assembly
Language program will add, delete, or update data in the ISAM data file
based on the relative record number returned to your program by ISAM.

1.2.1 The Data File

The data in your data file may be in any data format; however, the index
file orders keys in ASCII collating seguence (i.e., ascending binary order)
which may affect operation of the ISAM program when data is recorded in
other than ASCII form. When you build an indexed sequential file (via the
ISMBLD program), you supply various items of information about your data
file (e.g., the size of the data records, the location of the symbolic key
within the data record, and so on); ISMBLD then builds both the data file
and its primary index file. '

Your programs use the ISAM functions to add and delete data records 1in the
data file. When you add a record, ISAM inserts it into the first free space
in your data file. When you delete a record, ISAM does s0 by recovering the
space in the data file used by that record, and returning that area to the
free record list so that it is available for new records. Because the Alpha
Micro operating system (AMOS) reguires that contiguous files (e.g., an ISAM
data file) be preallocated, once the data file is full 49t must be
reorganized before it can be used further. For this reason, be careful to
allocate as many records as you will need for the file.

ALL ISAM data files MUST have the extension .IDA.

1.2.2 The Index File.

The ISMBLD program automatically creates the index file from a description
of the data file. The index file contains three Llevels of 1indices, the
lowest of which contains pointers to the records in the data file. Fach
successive index Level points to all the blocks containing the next Llower
Llevel index. Index levels are provided so that the entire index need not be
searched each time a symbolic key is accessed. When a symbolic key is
accessed, ISAM reads the highest Level index to find which Lower level index
contains a pointer to the approximate Llocation of that key. ISAM then
searches the block of that Lower Level index; that index block in turn
points to a Lower index block which points to the data record in which the
key is stored. ‘

In addition to the index blocks, the index file contains another block named
the ODirectory Rock, so called because it never moves. This block contains
information describing the index and data files as well as maintenance
information (e.g., free record Links, access counts, etc.).

Each data file must have a primary index file; in addition to this, it may
have several secondary index files. A typical example of the use of this

e

INTRODUCTION TO ISAM Page 1-5

feature would be a mailing list maintenance program, where the data is keyed
on both a hashed retrieval code for unique reference and also keyed on the
person's name. <{For an example of this kind of program, see the sample
BASIC ISAM program in Chapter 7, "Using ISAM From Within BASIC.™)

Your programs wuse the [SAM functions to add and delete keys from the index
files, and to locate data records in the corresponding data files.

The extension of an [SAM index file MUST be .IDX.

1.3 [SAM ACCESS MODES

Beginning with AMOS version 4.2, changes have been made to [SAM that greatly
increase its file access speed. The increase in speed was made possible by
the two new access modes, Counted Update mode and Exclusive Open mode, which
allow ISAM to avoid unnecessary processing of your index files.

Counted Update mode is the normal access mode for assembly language or BASIC
programs. Exclusive Open mode is the normal access mode for the ISMDMP and
ISMBLD programs and is the only mode for the ISMCOM program. ISAM always
processes indexed sequential files in one or the other of these modes. The
next two sections discuss both of these modes.

NOTE: The paragraphs below mention the need for file interlocking. It s
most important that your programs guard against the possibility of more than
one wuser trying to update the same data file at the same time. If several
users were to try to write to the same file record at the same time, severe
damage to your data file could result. For information on file interlocking
procedures, see the documents FLOCK - BASIC Subroutine to Coordinate
Multi-user File Access and XLOCK — BASIC Subroutine for Multi-user Locks
in the "BASIC Programmer's Information" section of the AMOS Software Update
documentation packet.

1.3.17 Counted Update Mode

Counted Update mode allows ISAM to increase 1its speed by avoiding any
unnecessary processing. Every time ISAM updates a file in any way, it
increments a counter in the Rock portion of the index file. At the time of
file access, ISAM checks this counter to see if the file has been updated
since the last access. [f the file has not been updated, [SAM can skip
futher access initialization and take advantage of its prior knowledge about
the file. These actions are completely transparent to the user and the
speed gains (3 to 70 times faster access times) are free.

IMPORTANT NOTE: The Counted Update mode does NOT elimimate file dinterlock
requirements from your programs. If anyone might possibly be updating the
file, your program must continue to use file dinterlock programs such as
XLOCK or FLOCK to prevent simultaneous updates or accesses. The preferred
method for locking files is to use the FLOCK non~exclusive "open" Llocking

INTRODUCTION TO ISAM Page 1-6

(action 0, mode 0 or 4) for reading, and to use the FLOCK exclusive "open"
locking (action 0, mode 2 or 6) for updating. Use the FLOCK "close" (action
1, mode 0) to release the file for other users.

Note that it is not necessary to open and close the ISAM file with each
manipulation even though the FLOCK commands are so named. It is acceptable
to leave the file open during the whole interlocking and release process and
is, in fact, the only way to gain the speed increase made possible by the
Counted Update mode.

1.3.2 Exclusive Open Mode

when a program opens a file exclusively, ISAM renames the .IDX file to a
«I0Y extension. ISAM also sets a flag in the Rock that identifies the file

as an exclusive file. If any othér job tries to open that file, it receives

a "?File not found" error; if another job tries to access the file once it
is open, the job receives a "7Link structure smashed” error (IS5.LS3).

As a result of the exclusive open, ISAM knows that no other program will be
updating or accessing the file. It can theréfore take full advantage of the
single-process situation for initialization and change posting. Except for
the process of opening the file and the need to properly close the file, use
of ISAM is the same as in previous versions. The use of this mode results
in an extremely Large gain in access speed.

The only file interlock problem occurs at the moment of the ISAM OPEN call;

no one may update the file while you are opening it. You MUST prevent this

situation from occurring by using one of the file interlock programs, FLOCK

or XLOCK, or by simply making sure that no other user is running a program

that can wupdate that file. Once your program has executed the ISAM OPEN

:?tl, your program needs no interlocks since no one else can access the
ile.

Invoke the Exclusive Open mode from within BASIC by using the file mode of
INDEXED'EXCLUSIVE in the file OPEN statement in your program. Your assembly
Language program may select the Exclusive Open mode by setting bit number
three of RO for the .IOPNR call. You MUST close the file when you are
completely done with manipulating that file so that ISAM can post the final
updates and remove the Exclusive Open conditions from that file. If an
error occurs during processing, you should close the file to remove the
Exclusive Open conditions (although you can also remove them manually). A
file in which an error occurred during updating is probably badly damaged.

Use of the Exclusive Open mode can result in significant gains when printing
reports and other such batch-type operations. It does have the drawback
that no one else can access the file for any reason while it is
exclusively opened. 8e warned that any attempts to circumvent the exclusive
properties of such a file by clever manipulations will probably meet with
disaster, If several people need to access the file at the same time, use
the normal mode, Counted Update mode; if no one updates the file, you will
Llose very Little speed in changing to that mode.

- .}\

e

INTRODUCTION TO ISAM Page 1-7

The 1ISMBLD, ISMOMP, and ISMCOM programs use the Exclusive Open mode. To
prevent ISMBLO (when loading or cross=indexing an existing file) or ISMOMP
from using Exclusive Open mode, wuse the /N switch. The /N switch must
appear at the very end of the command Line that invokes the program. For

example:
_._I SMBLD LABELS/N

ISMBLD (when creating/loading or creating/cross—indexing) and I1SMCOM
always use the Exclusive Qpen mode.

1.3.3 Hints and Restrictions

The new access modes make possible a dramatic increase in the speed of I5AM
data accesses, They also may result in slightly peculiar situations of
which you should be aware: ot :

1. 1If the Counted Update mode counter has not changed, ISAM assumes

' that no updates have been made to the file since the last time an
access was made, and that it may therefore make certain assumptions
about file status and contents. The counter cycles on a count of
16,777 ,216. iIf by some very unlikely chance the file were to
remain open for an incredibly Llong time and exactly 16,777,216
updates were made between accesses, ISAM would access and/or update
the file using out-of-date information.

Although not strictly 4impossible, 4t is very unlikely that this
situation will occur. We estimate that you would have to Leave
your machine up and running for several weeks with the ISAM file
open without making any accesses to that file in order to see this
happen.

2. when you open a file in Exclusive Open mode, ISAM must be able to
write to the disk that contains the file. This means that you must
make sure that the disk is not write~protected even if all accesses
to that file are going to be read operations.

3. The most visible gquirk of the Exclusive Open mode is that it causes
ISAM to rename the extension of the file being opened from .IDX to
+I0Y. If such a file is not properly closed (for whatever reason),
then the name of that file will not be correct in the disk
directory. You can cure this problem very easily by using the
RENAME command. For example:

<RENAME *_ IDX=*, IDY(EET)

A file OPEN also changes a flag in the Rock of the I$AM index file.
You do not need to worry about changing the flag yourself in the
event of an improperly closed file, since the situation is
automatically self-correcting the next time the file is opened (in
either Exclusive Open or Counted Update mode).

INTRODUCTION TO ISAM | Page 1-8

4, If you open a file in Counted Update mode but the -file was Last
used 1in Exclusive GCpen mode and was never closed, the file QPEN
‘will cause ISAM to write to the file to correct the exclusive flag.
If this situation is going to occur, make sure that the disk is
write—enabled.

1.4 CONVERTING VERSION 4.2 ISAM FILES TO ISAM VERSIONS 4.3 OR LATER

If you have ISAM files built under ISAM version 4.2, you will need to use
the ISMFIX program to convert them over to ISAM versions 4.3 and Llater.
(Although wusing ISMFIX on files that were built under ISAM versions 4.3 and
Later doesn't do anything useful, it doesn't harm the files. either.)

Because various conversion steps-may be necessary to convert your ISAM files
from one ISAM version to another, it is wisest not to skip any ISAM
versions. (For example, going directly from ISAM version 4.1 to ISAM
version 4.5 with existing ISAM files is not a good jdea and, in fact, won't
work.,)

For information on ISMFIX, see the ISMFIX reference sheet in the AMOS
System Commands Reference Manual, (OWm=-00100-49),

ISAM SYSTEM USER'S GUIDE

PART I

THE ISAM UTILITY PROGRAMS

The next few chapters discuss the ISAM utility programs.
create and (optionally) lLoad an indexed sequential file; 2. display the

contents of vyour data and index files; and, 3. allow more efficient use of
your index files by compressing index block entries.

These programs: 1,

CHAPTER 2

CREATING AND LOADING AN ISAM FILE WITH ISMBLD

The ISMBLD program provides a convenient method for creating and Lloading
indexed sequential files. It-'gives you the ability to create a new indexed
sequential file, to add records to the data file from an ordinary sequential
data file, and to create a secondary index file that cross-indexes to a
primary index file. '

2.1 GENERAL OQPERATING INSTRUCTIONS

ISMBLD has three operating modes: 1. create a new indexed file; 2. add data
to the new file or to an existing file; and, 3. change the device
specification of a data file. ALL modes are called via the general command:

-ISMBLD filespec{/0H/NIED

If the indexed sequential file specified by filespec does not exist, I[SMBLD
enters the creation mode. If the file already exists, ISMBLD enters the
data loading mode unless you have specified the optional /D maintenance
switch. (NOTE: If the file already exists, you may specify Counted Update
mode by using the /N switch. See Section 2.3.1, "Suppressing Exclusive Open
Mode.'")

2.2 CREATION MOOE

The creation mode is the most commonly used mode. In this mode you input
series of parameters that describe the desired indexed sequential file.
From these parameters the ISMBLD program generates a data file/primary index
file combination or a secondary index file that cross—indexes to an existing
primary index file.

CREATING AND LOADING AN [SAM FILE WITH [SMBL.D _ Page 2«2

2.2.1 Specifying File Parameters

Before actually creating the file, ISMBLD asks you a number of questions
about your data file. 1In response to each of the questions. ~u are
expected to enter a valid answer. Because of the myriad ways that you can
set up an indexed sequential file, very Little validity checking is done on
your answers. [t is therefore possible to create totally useless files. Be
careful, For an example of the ISMBLD dialog, turn to Chapter 7, "Using
ISAM From Within BASIC."

The following sections describe the ~Qquestions asked and the expected
responses:

2.2.1.1 Size of key: - Enter the size of the desired key in decimal
bytes. To minimize index search time, keep this size as small as possible.
The maximum key size is 256. Wwhen you later access the ISAM files you are
now creating, you must remember to pad with blanks or other characters keys
that are smaller than this specified size. Pad numeric fields in the front
of the field; pad symbolic keys at the end. One side effect of this is that

both binary and floating point keys may be used.

2.2.1.2 Position of key: - This parameter specifies the Location of the
key within the data record. The symbolic key position is used when Loading
indexed sequential files from sequential files as the means of determining
the symbolic key. Enter the number of the first character-position in the
record which the key occupies; the first position within a record is
position number ane, :

2.2.1.3 Size of data record: - This parameter defines the size of the
records in the data file or the maximum data record size in the case of
variable Llength records. Specify this size in bytes (decimal). The data
record size must be greater than or equal to the key size plus the key
pasition.

2.2.1.4 Number of records to allocate: = This parameter defines the
number of records which the data file 35 to contain.

2.2.1.5 Entries per index block: = This parameter allows you to specify
the number of entries contained in an index block; this value can greatly
affect the efficiency of searches and inserts within the file. See Section
2.5, "Optimizing File Parameters,” for more information,

s

CREATING AND LOADING AN ISAM FILE WITH ISMBLD Page 2-3

2.2.1.6 Empty index blocks to allocate: - ISMBLD allocates for you the
bare minimum number of index blocks you will need to contain keys for the
specified number of data records. This calculation 1is based on the

assumption that the index file tree structure will be perfectly balanced.
Since this is rarely the case, vyou will probably need to specify an
additional number of index blocks,

2.2.1.7 Primary Directory? = If you are creating a primary index and data
file combination, enter Y; if you are creating a secondary index file, enter
N.

2.2.1.7.1 Secondary file - If you are building a secondary index file,
ISMBLD prompts you for the file specification of the primary index file:

Secondary index to file:

Enter the specification of the primary index file to which this secondary
file cross~indexes. Type just a RETURN to exit ISMBLD. You may create as
many secondary index files as you want that cross-index to a particular
primary index file by re-invoking ISMBLD with the specification of that
primary index file and specifying a new secondary index file.

If you have created a secondary index file, your dialog with ISMBLD is now
over. ISMBLD returns you to AMOS command level. If you are creating a data
file/primary index file combination, ISMBLD asks you for more information
(see below).

2.2.1.8 Data File Device? - ISMBLD now asks you:

Data File Device?

If the data file is to be on a different device than the index file, enter
the name (and number) of that device. TIf they are to be on the same device,
enter a RETURN. Ffor example, if the data file is to be on unit 1 of device
"DSK," enter:

Data File Device? DSK1:@eD

2.3 FILE LOADING MODE

After an indexed sequential file has been created, it is often desirable to
load the data and dindex files with data from an ordinary sequential data
file. To allow this, ISMBLD enters the data loading mode once it creates
the indexed sequential file.

CREATING AND LOADING AN ISAM FILE WITH ISMBLD Page 2-4

If you want to load data inte an existing data file, invoke ISMBLD with the
name of that file., ISMBLD then responds:

~

CProcessing existing filel

This notifies you that you are in the file loading mode and not the creation
. mode.,

ISMBLD now prompts you for a sequential file specification by typing:

Load from file:

You may now enter the file specification that selects the sequential data
file from which you want to load. A default extension of .SEQ is assumed by
ISMBLD., (If you do not want ISMBLD to load the new file for you or if you
have made an error in the file specification you gave to ISMBLD, type a
RETURN after the "Load from file:" prompt; no data will be added to the data
file.)

2.3.1 Suppressing Exclusive Open Mode (the /N Switch)

When Lloading an existing file, ISMBLD normally uses Exclusive Open mode. If
you wish it to use Counted Update mode instead, include the /N switch at the
end of the ISMBLD command line. For example:

< ISMBLD MAIL/N(EE)

2.4 CHANGING THE DATA FILE DEVICE (THE /D SWITCH)

The only creation data that you can change is the data file device. The /0
switch provides this field for examination and change. Simply enter the new
device name or a RETURN (to leave the device unchanged). To change the
‘"device to the same device that the index file uses, enter a period (.} only.
It is your reponsiblity to move the file to the specified device.

2.5 OPTIMIZING FILE PARAMETERS

This section provides some hints on how to organize an indexed sequential
file for maximum efficiency.

Once your file has stabilized and you aren't changing it much, re—evaluate
the original file parameters., If your evaluation so indicates, rebuild the
file with different parameters.

CREATING AND LOADING AN ISAM FILE WITH I[SMBLD Page 2-5

2.5.1 Entries per Index Block

This parameter is a two—edged sword. A small value means faster in~core
searches, but more disk accesses and more block splits during record
additions. A Large value reduces the number of disk accesses and block
splits, but increases in-core search time and increases the amount of memory
used for buffers. (A block split occurs if you add a key to an index block,
but there 1is no more room in that block; ISAM automatically “splits" that
block and redistributes the keys among the two new blocks.)

S§ince the index structure is fixed at three levels deep, the maximum number
of keys that you may add to an index without the top index block splitting
is n"3, where n is the number of entries per 1index block. When the top
index block splits, the search time through the jndex increases due to the
possibility of having to do more disk reads.

When you use a floppy disk, the in~core search time is so. small compared to
a disk seek/transfer that any increase/decrease will not be apparent. When
yYou use a faster disk the trade~off becomes trickier. As a rute, Kkeep the
number of entries as large as possible, consistent with the user memory
partition size. The amount of index buffer space required is:

5 * ((entries-per-block * (keysize + 4))+2)

where key size is rounded to an even number of bytes. Given this, vyou
should be able to determine a reasonable value for the number of entries.
(NOTE: (keysize + 4) * entries~per—-block MUST be less than or equal to 510.)
The more entries per block, the more memory you use. It is sometimes more
efficient to have the top block split a few times rather than to eat up a
Large amount of memory. '

2.5.2 Empty Index Blocks to Allocate

during creation, enough index blocks are allocated to support a balanced
index file tree with sufficient nodes for the number of data records
allocated. In practice, the index file tree is rarely balanced (unless you
add records in a truly random number with an even distribution of key
values). Because of this, you should allocate empty index blocks. ' Practice
has shown that the number of data records divided by the number of entries
in an index block gives a good number of empty blocks.

CHAPTER 3

DUMPING AN ISAM FILE WITH ISMDMP

The ISMOMP program provides a convenient method for unloading an indexed
sequential file into a sequential file. It also provides a means of
examining the index file structure to determine how balanced that structure
is.

3.1 GENERAL OPERATING INSTRUCTIONS

ISMOMP has two operating modes: the first allows you to output the contents
of an indexed sequential file to an ordinary sequential file; the second
allows you to display the index file structure om a terminal to allow
analysis thereof. Both are invoked via the general command form:

- ISMOMP filespec{/N}EED

where filespec specifies amn 1indexed sequential file and the optional /N
switch suppresses Exclusive Open mode. (See below.) After performing some
initialization procedures, ISMOMP asks:

Qutput to:

Supply another file specification; this one selects the sequential output
file. [ISMOMP assumes a default file extension of .SEQ. If you want to
enter the index file dump mode, enter TTY: as the file specification. Ffor
example: .

Qutput to: TTY:

3.1.1 Suppressing Exclusive Open Mode

ISMOMP normally uses Exclusive Open mode when performing its file accesses.
If you wish it to use Counted Update mode instead, use the /N switch at the

end of the ISMOMP command Line. For example:

DUMPING AN ISAM FILE WITH ISMDMP Page 3-2

~ISMOMP STAT/NGEED

3.2 FILE DUMP MODE

In this mode, ISMOMP outputs the records of the indexed sequential file to
an ordinary sequential file 1in ascending key order. ISMOMP does no
translation of the records; it outputs the records in exactly the same form
as they were input at some earlier date.

3.2.1 Sample pata File Display

We used ISMBLD to create a small ISAM data file named LABELS. Then we used
the sample program in Chapter 7 ("Using ISAM From Within BASIC") to place
five records in the file. We then asked ISMOMP to place the data in that

file into a file named DATOMP:
= 1SMOMP _ABELS(RET)
Qutput to: DATDMP (RED)

5 records dumped

If we use the TYPE command to display the new file (e.g., TYPE DATOMP.SEQ),
we See:

FILMORE SUSAN 230 STILWOOD LOWELLMA15673200
HINCHEY EDSEL 6712 VIA MALAGA TUSTINCA%R0Z245102
LAWRENCE T.E. 1023 W. SANDS PANGUITCHUT98344T00
MUKLUK, H. 345 PRAIRIE DOG LN BAKERCA98766120

SAVOY JOHN 891 E. DECATUR LAS VEGASNEBI023103

Each record contains: 1, Customer name; 2. street address; 3. city; 4. state
(two Lletters); 5. zip code; and, 6. three-digit ijdentifying number (called a

hash number),

3.3 INDEX FILE DUMP MODE

The dump mode is intended primarily as a debugging tool, and will not find
much use among general users. Therefore we provide Little documentation on
its use. Those of you who understand the basic structure of the index file
should be able to figure out the display quite easily. Remember that you
can type a Control-S to freeze the screen display and a Control-R to release
the display.

DUMPING AN ISAM FILE WITH ISMOMP Page 3-3

3.3.1 Sample Index File Display

Let's say that we want to display the structure of the primary index file
that belongs to our sample data file, LABELS:

+ISMDMP LABELS (RN
Output to: TTY:@ED

Now you see something like this (our comments on the dinformation 1in this
display are in square brackets):

Size of data record: 67

Size of dir entry: 30

S1ze of dir block: 302

Size of key: 25

Type of key: 4 0

Entries per dir block: 70 o Ckeys per index block]

Record key pasition: 1

Blocking factor: 4

IDA freelist pointer: 000000000517 Cfirst free record in data file)
IDA freecount: 45 Cnumber of free data file records)
IDX freelist pointer: 000004 Cfirst free index file block)

IDX freecount: ee Cnumber of free index file blocks)
Records allocated: 5 Cnumber of data records)

Top dir blk pointer: 000001 Lpoints to top index block]

Cindex file block number:)

000001« 000000000002 Cpoints to next index Level)
000000000000

000000000
000000000000
000000000007

000060000000
000000000000

0

00 an

000000 177777

000002: - 000N00000003
. 0000V00000000

0000000000
000000000000
0000000n0000

000000000000
000000006000
000000030000

000000 17727777

DUﬂPING AN ISAM FILE WITH ISMOMP

000003

FILMORE SUSAN

Page 3~4

000000000414 Cpoints to data recordl

000004 ;

“HINCHEY EDSEL

000000177777 Lfirst record entered]

LAWRENCE T.E.

000000000206

MUKLCUK H.

000000000511

SAVOY JOHN

0000030060103

177¢/ 7177776 [indicates Last record]

000000

044506

000u00000000
000000000000

000000000000

000000000000

in used blocks, this number is
junk-= qgnore it.l

000000000000

000000

000005

000000000000
000000000
000000000000
000000000000
000000000000
000000000000

000000000000
000000000000

[in unused blocks, points to next
free index blockl
000000000000

000005 :

000000

000006

CeEtc.]

Gl0000000004
000000000000
0 0

(00000000000
000000000000
000000000000

000000000000
0000000006000

CHAPTER 4

COMPRESSING INDEX FILES WITH ISMCOM

ISMCOM.PRG compresses the wupper level of ISAM index files; this increases
access speed and may recover some storage room in the index file. To wuse

ISMCOM, enter:
- ISMCOM filespec@EE)

where filespec selects the index file you want to compress. The program now
reports 1its 1intended compression factor (initially based on 95%). If you
wish denser or looser compression, enter the percentage of compression you
want ISMCOM to wuse. If that value is valid for the file (based on the
number of entries per index block), the program proceeds; otherwise, it
reports the actual effective value and allows you to enter a new value. The
only way to get 100% compression is to enter 100. The program will not
accept input of a percentage of less than S0. (In actual practice, SO%Z can
be rounded down to, say, 47% in some cases.) Below is a sample ISMCOM

dialog:
. ISMCOM DATA.IDX GED

NOBODY else may use this file while I'm processing it

I am planning to compress each block to at least 90 percent full
If that is not acceptable, enter the percentage you desire (B(aer)
It will actually work out to be 83 percent full

If that 1s not acceptable, enter the percentage you desire

No blocks unchanged, No blocks freed, No blocks compressed

Note that a compression factor of 100% will cause a block split the next
time a top level index is created. The number 95% was chosen as the optimum
compression factor for most files. At the end of the compression, ISMCOM
prints some statistics that tell you how much compression was done and how
much good it should do.

ISAM SYSTEM USER'S GUIDE

PART II
PROGRAMMING WITH ISAM

This section contains information on writing assembly lLanguage programs and
BASIC programs that use the ISAM functions to access and update ISAM files.
For dinformation on writing assembly Llanguage programs on the AMOS system,
refer to the AMOS Assembly Language Programmer's Reference Manual,
(owM-00100-43), “and the AMOS Monitor Calls Manual, COWM=00700-42). For
information on BASIC, refer to the ALphaBASIC User's Manual, (DWM-~00100-01).

CHAPTER 5

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL

NOTE: This section assumes that you are an experienced assembly
Language programmer and that you are familiar with the Alpha Micro CPU
instruction set and the AMOS monitor calls. Ffor information on these
topics, refer to the AMOS Assembly Language Prodgrammer's Reference
Manual, the WD16 Microcomputer Programmer's Reference Manual,
(DWM-00100-04), and the AMOS Monitor Calls Manual.

The ISAM program is implemented as a FETCHabLe memory module which allows
the assembly Llanguage programmer easy access to the features of indexed
sequential files. (NOTE: FETCH is an AMOS monitor call. Refer to the AMOS
Monitor Calls Manual for information on the routines within the operating
system (called "monitor calls") that have been made available to your
assembly Llanguage programs.) It is through the ISAM module that high Level
lLanguages such as BASIC gain access to indexed sequential files. The ISAM
program is fully re—entrant, and could therefore be made resident in system
memory if more than ome user at a time is going to be wusing indexed
sequential files.

The ISAM program iJtself takes up approximately 4K bytes of memory. In
addition to this space, another 1 to 4K bytes is required for each indexed
sequentfal fijle that you are processing. This memory space is usually
allocated by the ISAM system using the GETMEM monitor <call; vyou may,
however, allocate your own buffer areas (see Section 5.2.2).

5.1 GENERAL CALLING SEQUENCE

The various ISAM subroutines are called via a dispatch table at the start of
the ISAM program. To make things easier, the file ISUSYM.MAC defines the

table offsets. This file also contains symbols for the various return

codes. ALL table offsets begin with a period (e.g., -ICLOS, the close
routine). ALL return codes have the general form IS.xxx (e.g., IS.EOF, the
end-of-file returnm code). ISUSYM.MAC is designed to be COPYed by your

assembly language program.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5~2

To call the close routine (.ICLOS) with the base of the ISAM.PRG module
contained in register R4, use the following code:

CALL » ICLOS (R4)

ALL arguments are passed in registers. Each call returns with a completion
code in RO. A successful return (IS.SUC) is indicated by a zero in RO; the
indicators (also known as condition codes or condition flags) on return
reflect success or error status. The 1I-bit is set if successful (BNE
branches on error), '

5.2 INITIALIZING THE ISAM SYSTEM (.INIT)

Before your program can access an indexed sequential file, you must tell the
[SAM system that you exist; this is done via the .INIT call. The .INIT call
allocates space for the user's impure variables and does minor housekeeoing
chores. NOTE: Your program calls .INIT only once regardless of the number
of ISAM files that are to be opened.

5.2.1 calling Sequence

Parameters: R2 User allocation routine address (optional)
R3 User deallocation routine address (optional)
R&, RS Used to pass information to user memory

allocation routines (optional).

CALL LINIT(RR)

Returns: RO Completion code
RS User memary pointer
Indicators 7 if no error

The wuser memory pointer that is returned in RS is a pointer to your impure
area. This pointer is needed by all other [SAM calls; if convenient, leave
it in RS since all calls Look for it there.

5.2.2 User Supplied Allocation and Deallocation Routines

In many cases, the program calling the [SAM program will do its own memory
Mmanagement, and not want [3AM to use GETMEMs to do so. To allow you to do
your own allocation, the L.INIT call allows the passing of allocation and
deallocation routine addresses. .INIT uses 1its ‘own routines (which use
GETMEMs) if you pass a zero instead of an address.

The user allocation routine is called with the desired module size in R1.
The INIT call expects the address of the assigned module to be returned in
R1. You may not modify any other registers.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5-3

The user deallocation routine is called with the address of the module to be
deleted in R1. Do not modify any other registers. If you pass a zero to
INIT in R3, no deallocation occurs.

The current version of ISAM al Lows you to move any of the modules that ISAM -
requests as well as the ISAM program itself, ISAM is immune to such
movement as long as the user memory pointer (in RS5) and the FPN (file pair
number, see Section 5.6.1) associated with a given file are updated to show
any movement. (The FPN is usually in R1.)

5.3 FINALIZING ISAM PROCESSING (.IFIN)

When you are through processing indexed seguential files, you must call the
JIFIN routine. This call deallocates any space used by ISAM if a user
deallocation routine has been provided; otherwise the modules are not
deleted until the job EXITs. (EXIT is an AMOS monitor call.)

5.3.1 cCalling Seguence
Parameters: RS User memory pointer

CALL ~IFIN(RN)

Returns: RO 1§.5UC
Indicators Z if no error

The L.IFIN routine cannot fail, therefore it always returns the successful
completion code in RQO.

5.4 OPENING A FILE FOR PROCESSING (.IOPNR)

- You must open an indexed sequential file via this call before you can
process the file 1in any way. Also use this call when opening a secondary
index file for processing a previously opened data file. If you execute
this call on a primary index file, the call also opens the associated data
file; if you execute the call on a secondary index file, the call opens the
index file only. Thus to process a data file with a secondary index file,
you must execute two .IOPNR calls: once to open the data file and primary
index file, and once to open the secondary index file,

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL - Page 5-4

5.4.1. Calling Sequence

Parameters: RO Flags:
8it 3> (decimal)
ISAM will open file in Exclusive Open
mode; otherwise, Counted Update mode is
used.
8it <10> (decimal)
Operating system will print system and
device error messages before returning.
R2 Pointer to ASCII filespec string describ-
ing the index file to be opened. If the
index file is a primary index, the data
file must have the same name.
R5 User memory pointer

CALL _IOPNR(RR)

Returns: RO Completion code
R1 Unique File Pair Number (FPN)
Indicators Z if no error

The file pair number (FPN) is a pointer to the memory module that has been
allocated for the storage needed by this particular indexed sequential file.
The read, write, and delete routines use the FPN to tell the ISAM program
which indexed sequential files to process of the ones you may have open.

If you must move the module allocated by .IOPNR, you may do so as long as
you also update the FPN.

5.5 CLOSING THE FILE AfTER PROCESSING (,ICLOS)
After you have finished processing a file, you must close it. The .ICLOS

call does some housekeeping and also deallocates any space used by the file
if a user deallocation routine has been provided.

5.5.1 calling Sequence

Parameters: R1 file pair number C(FPN)
RS User memory pointer

CALL .ICLOS (Rn)

Returns: RO Completion code
Indicators Z if no error

The file pair number used in R1 is that value returned by .IOPNR.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL ‘ : Page”S—Sl

5.6 LOCATING A FREE DATA RECORD (.IGTFR)

Use this call to get the relative record number of the next available data
record in the data file.

5.6.1 calling Sequence

Parameters: R1 File pair number (FPN) of primary index file
R5 User memary pointer

CALL «IGTFR(RN)

Returns: RO Completion code
R1 Low—=order relative record number of the data
" record
R2 High—-order relative record number of the
data record
Indicators Z if no error

The FPN supplied in R1 must refer to the primary index file associated with
the data file from which a free record is to be obtained.

5.7 DELETING A DATA RECORD (.IDLFR)

Use this call to return a data record to the free record list.

5.7.1 calling Sequence

Parameters: R1 File pair number (FPN) of primary index file
R2 Low—order relative record number of the
data record
R3 High—-order relative record number of the
data record
R5 User memory pointer

CALL LIDLFR{RN)

Returns: RO Completion code
Indicators 2 if no erraor

The FPN supplied in R1 must refer to a primary index file.

"USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL ' Page 5-6

P
5.8 READING A DATA RECORD BY RELATIVE RECORD NUMBER (.IRLRD) . L (:
Use this call to read the data record pointed to by the relative record
number. : .
5.8.1 calling Sequence
Parameters: R1 Low~order relative record number of the
data record
R2 High-order relative record number of the
data record
R3 File pair number (FPN)
R4 Buffer address
RS User memory pointer
CALL <IRLRD (RN)
Returns; RO Completion code
Indicators Z if no error
The FPN supplied in R3 must refer to the primary index file associated with
the data file. N

5.9 WRITING A DATA RECORD BY RELATIVE RECORD NUMBER (,IRLWT)

Use this call to write or update the data record pointed to by the relative
record number.

5.9.1 calling Sequence

Parameters: R1 Low-order relative record number of the
data record
R2 High-order relative record number of the
data record ‘
R3 File pair number (FPN)
R4 Buffer address
RS User memory pointer

CALL < IRLWT (RN)

Returns: RO Completion code
Indicators 2 if no error

e A e ot e mL s e

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL ' ‘ Page 5-7
5.10 FINDING A RECORD (¢,IREDR)

Use this call to use a symbolic key to find the relative record number of a
data record,

5.10.1 Calling Sequence

Parameters: R1 File pair number (FPN) of the desired index
file '
R3 Pointer to symbolic key
RS User memory pointer

CALL «IRECR(RN)

Returns: RO “Completion code
R1 Low-order relative record number of data
, record \
R2 High—-order relative record number of data
record '
Indicators 2 if no error

The FPN supplied in R1 may refer to any open index file.

5.11 ADDING A SYMBOLIC KEY (.IWRTR)

Use this call to add a key entry to an index file given a user supplied data
record number,

5.11.1 c¢alling Sequence

Parameters: R1 File pair number (FPN) of desired index

file

R2 Pointer to symbolic key

R3 Low-order relative record number of the
data record

R4 High-order relative record number of the
data record

RS User memory pointer

CALL +IWRTR(RN)

Returns: RO Completion code
Indicators Z if no error

The FPN supplied in R1 may refer to any open index file. The relative

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL - - ' Page 5-8

record number in R3 and R4 will usually be a récord number returned by the
LIGTFR call.

5.12 DELETING A KEY (,IDELK)

Use this call to delete a key from an index file.

5.12.1 calling sequence

Parameters: R1 File pair number (FPN) of desired index
file
R3 ~Pointer to symbolic key
R5 User memory pointer

CALL «IDELK(RN)

Returns: RO Completion code

R1 Low-order relative record number of deleted
key
R2 High=order relative record number of
deleted key
Indicators 2 if no error

The relative record number in R1 and R? refers to the data record associated
with the deleted key within the index file referred to by the supplied FPN.
The data record is not deleted in the data file; do this by using the .IDLFR
call when you are sure that there are no keys left in the index file that
refer to that data record.

5.13 ﬁINDING THE NEXT SEQUENTIAL KEY (.SREDR)

When printing reports or posting data, it is often useful to be able to go
through the records in the indexed sequential file in ascending key order.
The .SREDR call makes this possible; it returns the relative record number
of the record that immediately follows the one returned by the Llast call to
ISAM. It thus makes it possible to start sequential processing by key
anywhere in the file, To do so, use the .IREDR call to get the first key
you wish to use. Then call .SREDR to get the key following the one read by
-IREDR. You can get the next key by doing another .SREODR, ad infinitum. If
+IREDR does not find the key specified, the following .SREDR returns the
record with the key closest to (hut greater than) the one not found. Thus,
to read the file from the very beginning, try to do a .IREDR with a key of
zero. This call will almost always fail, but the following .SREDR grabs the
very first record in the file.

LTy

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5-9

If the file contains a key of all zero, the initial -IREDR will succeed and
that record should be processed as the first record before doing any
+SREDORs, When the file is initially opened by IOPNR, it is set up so that
.SREDR gets the first key, unless the first key is all zero. Therefore it
is- almost always possible to open the file and read it sequentially, Since
keys are expected to be ASCII, and an all-null key is not very sensible, the
various wutilities assume that the first key is not zero. When the end of
the file is reached by the last -SREDR, the end-of-file (IS.EOF) completion
code is returned,

5.13.1 cCalling Sequence

Parameters: R1 File pair number (FPN) of desired index
R5 User memory pointer

CALL .SREDR(Rm)

Returns: RO Completion code
R1 Low—order relative record number of data
record
R2 High=order relative record number of the

_ data record
Indicators Z if no error

CHAPTER &

STANDARD ISAM SYMBOLS FOR ASSEMBLY LANGUAGE PROGRAMMERS

We have provided a symbols-file (ISUSYM.MAC) to make Life easier for the
assembly Llanguage programmer. This appendix describes the contents of that
file. We have broken this information into two sections: 1. those offsets
used when invoking ISAM; 2. the completion codes returned by the wvarious
[SAM functions.

6.1 CALLING SYMBOLS

The following symbols define entry offsets in the ISAM package. See Section
5.1 of this manual for more information.

LINIT Call the initialization routine

LIFIN Call the finalization routine

. IOPNR Call the file open routine

.ICLOS Call the file close routine

LIGTFR Call the get free record routine.

.IDLFR Call the data record deletion routine.

LIRLROD Call the read data record via relative record
number routine.

«IRLWT Call the write data record via relative record
number routine.

.IREDR Call the read returning relative record number
routine.

+ [WRTR Call the write using relative record number routine.

. IDELK Call the key deletion routine.

-SREDR Call the read sequential relative record number routine.

6.2 COMPLETION CODE SYMBOLS

The following symbols name the completion codes returned in RO upon
completion of an ISAM call. Always use these symbols rather than their
values in ISUSYM.MAC, since those values could change in the future.

STANDARD ISAM SYMBOLS FOR ASSEMBLY LANGUAGE PROGRAMMERS

Page 4-2

[5.80C The successful completion code (will always be zero).

IS.ONR Parameters supplied do not match those in the
Directory Rock. '

IS.RNF Record not found.

I5.0PK Attempt to add duplicate key.

I[S.L5S Index file link structure is smashed,.

[S.XFL Index file is full.

IS.AFL bata file is full.

[S.EOF - End of file encountered on sequential- read.

An error code of 2 (handled by BASIC as a SYSTEM ERROR; which i
code was chosen) means ejther that something 1in ISAM or the
structure 1is jn error (as in a bug) or that you used an obsolete I

s why this
ISAM file
SAM call.

N

CHAPTER 7

USING ISAM FROM WITHIN BASIC

The following pages are a brief summary of the BASIC ISAM commands that your
BASIC programs can use to access ISAM indexed sequential files. (Remember
that an indexed sequential file is made up of both an ISAM data file and at

least. oné ISAM index file.) For more information on the BASIC ISAM
functions and on BASIC itself, refer to the AlphaBASIC User's Manual,
(DWM-00100-01). The following discussions assume that you are already

familiar with opening and closing random files, and that you understand the
BASIC READ and WRITE statements. For more information on using files, refer
to the AlphaBASIC User's Manual.

You must use the ISAM utility program ISMBLD to create an indexed seguential
file before your BASIC program can access it. Although no features exist
within BASIC to create an indexed sequential file, your BASIC program can
create and execute a command file that invokes ISMBLD with a List of file
parameters. ALlL data files must have an extension of .IDA and all index
files ‘must have the .IDX extension.

Before you run your BASIC program, make sure that ISAM.PRG has been loaded
into memory if the System Operator has not arranged to have ISAM.PRG

resident in system memory.

7.1 OPENING AN INDEXED SEQUENTIAL FILE

To open an ISAM indexed sequential index file, use the BASIC OPEN command.
Your program must include an OPEN statement that assigns a file channel to
the indexed sequential file before the program makes any other references to
that file,

This statement takes the same form as the OPEN statement for ordinary random
files except that you must specify either INDEXED or INDEXED'EXCLUSIVE mode
rather than RANDOM mode. (Remember that your ISAM files are random data
files. For information on using random files, see Chapter 15 of the
AlphaBASIC User's Manual.) The OPEN statement takes this form:

OPEN #file-channel,filespec,mode,record-size,relative-record-number

USING ISAM FROM WITHIN BASIC Page 7-2

1. #file-channel ~ specifies the file channel you want to assign to
the indexed sequential file. Any numeric expression that evaluates
to an integer from 0-65535, (0 is the user terminal). This is the
number you reference when using the ISAM, READ, and WRITE
statements, '

2. Filespec = The filespec is any string expression that evaluates to
a legal AMOS file specification. (It may optionally 1include
account and device specifications.) It specifies the name.of the
indexed sequential file you created using ISMBLD (that is, the data
file/primary index file combination you built) or specifies the
name of a secondary index file created with ISMBLD. (If the OPEN
statement refers to a secondary index file, you must have
previously opened the corresponding data file/primary index file on
another file channel.)

Note that the primary index file always has the same name as the
data file, but has a .IDX extension; the data file has a .10A
extension,

3. Mode - If you wish ISAM to access the indexed sequential file in
Counted Update mode, use the INDEXED keyword as the file mode; if
you want I5AM to access the file in Exclusive Open mode, use the
keyword INDEXED'EXCLUSIVE. (For information on Counted Update mode
and on Exclusive Open mode, see Section 1.3, "ISAM Access Modes.')

4. Record-size - An expression that specifies the logical record. size
for read/write operations.

5. Relative record number - A floating point variable that will hold
the relative record number returned by an ISAM function. (See
Section 7.2, "The ISAM Statement.')

For an example of the use of the OPEN statement, refer to the sample BASIC
program at the end of this chapter. Below are several sample OPEN
statements:

220 OPEN #1, "LABELS', INDEXED, RECSIZE, RELKEY1
230 . OPEN #2, "HASH", INDEXED, RECSIZE, RELKEY1

The two oprogram Llines above assume that there exists a data file named
LABELS.IDA and a primary index file named LABELS.IDX. Line 220 opens that
indexed sequential file. Line 230 opens a secondary index file associated
with LABELS.IDA. Note that RECSIZE and RELKEY1 are identical for both OPEN
statements; this 1is because both OPEN statements refer to the SAME data
file, LABELS.IDA. The RECSIZE and RELKEY!1 are used by subsequent READ and
WRITE commands to access the data file.

USING ISAM FROM WITHIN BASIC ' Page 7-3 - -

7.2 THE ISAM STATEMENT

The purpose of the ISAM statement is to allow you to use the ISAM program
from within your BASIC program to: 1. find a record in the data file by
symbolic key (returning the relative record number in the variable specified
by the indexed sequential file OPEN statement); 2. find the next data record
(by the order in which the symbolic keys oaccur in the index file); 3. add a
symbolic key to an index file; 4. delete a symbolic key from an index file;
5. Llocate next free data record in data file (returning relative record
number in the variable specified by the appropriate OPEN statement); and, 6.
delete a record from a data file, and return that record to the free Llist.

The ISAM statement follows this form:
I[SAM #file~channel, code, symbolic=key

1. H#file-channel - Specifies the file channel assigned by an OPEN
statement to either the data file/primary index file or the
secondary index file (depending on which set of symbolic keys vyou
want to access).

2. Code = A numeric value that selects one of the functions mentioned
above. May be any legal numeric expression which 1is resolved at
runtime.

3. Symbolic-key - Specifies the symbolic key to be used in locating a
data record. You must always specify a symbolic key even if a
function does not require the use of one. (This simplifies syntax
checking.) If you wish, you may use a dummy string variable in such
cases.

7.2.1 IS5AM Statement Codes

The ISAM statement can perform six different functions. You may select one
of these functions by supplying the appropriate code number (see b?Lou) to
the ISAM statement. An error will result if you do not supply a valid code
number,

Some of the functions below require a relative record number as input;
others return a relative record number to be used when your READ and WRITE
statements access the data file. In either case, the ISAM functions pass
the relative record number in the variable specified in the OPEN statement
for the data file/primary index file. READ and WRITE statements also use
that variable for lLocating the data file record that they are going %o
access. Remember that the I[SAM statement does not directly access the
data file. Instead, it gives you the information you need to access the
data file yourself using the relative record number returned by I[SAM.

USING ISAM FROM WITHIN BASIC

CODE 1 - Searches the index file selected by #file-channel for the key
that matches the symbolic~key. If it finds a match, it returns the
relative record number of the data file record containing that key.
If it does not find a match, it returns an error code 33 in ERF(X}.
(See Section 7.5, "Error Processing").

CODE 2 - Accesses the index file selected by #file-channel and finds
the next symbolic key. Returns the relative record number of the data
file record associated with that symbolic key in preparation for a
READ or a WRITE to the data file. If this is the first access to the
file after the OPEN statement, it finds the first symbolic key in the
index file. If this function follows a previous code 1 statement, the
function finds the next symbolic key after the code 1 symbolic key.
If there are no more keys in the index file, the function returns an
end-of-index~file error (38): make no further accesses ta the data
file until you make another ISAM call that returns a valid relative
record number, o '

CODE 3 - Adds the specified symbolic key to the index file selected by
#file-channel. Also adds the relative record number specified by the
variable in the OPEN statement. You will usually set this relative
record number just prior to the code 3 call by using a code 5 IS5AM
statement. (A code 5 call returns the relative record number of the
next free data record.)

CODE 4 - pelete the specified symbolic key from the dindex file
selected by #file-channel. This function returns the caorresponding
relative record number so that you can use a code & ISAM statement ta
delete the data record and return it to the free List. If the
function cannot find the symbolic key in the index file, it returns a

"?Record not found” error (33),

COPE 5 - Finds the néxt available data record on the free List. (The
free Llist is a linked list that keeps track of all available records

in the data file. ISMBLD initially builds the free Llist.) Returns the-

relative record number of that record so that you can use a code 3
[SAM statement to add a symbolic key/relative record number pair to
the 1index file. If no more data records are free in the data file,
the function returns a "?0ata file full" -error. A code 5 ISAM
statement does not modify the index file; it simply locates the next
free record in the data file. The function ignores the symbolic key
in the ISAM statement. The #file=channel in the code 5 ISAM statement
must be the file channel assigned to the primary index file.

CODE 6 =~ Returns to the free List the data record specified by the
relative record number in the OPEN statement. Does not modify the
index file. The #file-channel in the code & ISAM statement must be

the file channel assigned to the primary index file. A code & call
ignores the symbolic key in the ISAM statement.

page 7=4

USING ISAM FROM WITHIN SASIC - Page 7-5

7.3 READING AND WRITING DATA IN AN ISAM DATA FILE

ISAM statements do not access data records, but instead return their
relative record numbers. To actually read or write data records, you must
use the BASIC READ and WRITE commands. When you read or write data in a
specific ISAM data file, BASIC selects the. record to be accessed by
refer;ing to the relative record number variable in the OPEN statement for
that file.

READ #file~channel, variablel, variable2,... variableN
WRITE #file-channel, variablel, variable2,... variableN

The #file-channel in the "™FAD or WRITE statement MUST be the file channel
that appears in the OPEN statement for the primary index file you want to
access. The relative record number variable in the OPEN statement must
contain a valid relative record mumber or an error will result, :

7.4 CLOSING FILES

To ensure that ISAM has rewritten all data records to the data file and that
it has properly updated all Links in the index file, it is VERY important
that you close all index files (primary and secondary) via the normal CLOSE
statement, Failing to close the file when you are through with it may
destroy the Linking structure of the indexed sequential file. The CLOSE
statement takes the form:

CLOSE #file-channel

where #file-channel g fhe file channel assigned to the file you want to
close For example:

CLOSE #2

where file channel #2 was assigned to an indexed sequential file by a
previous OPEN statement, Remember to close both primary and secondary index
files. NOTE: The order in which you close the ISAM files makes no
difference; however, remember that you cannot access a secondary index file
if you have already closed the primary index file/data file.

7.5 ERROR PROCESSING

Any ISAM operation can result 1in some kind of errar, If the error is a
system error (for example, the disk is not mounted), BASIC interrupts your
program and aborts to the monitor. (Or, if error trapping is enabled, BASIC
transfers control to your error handling routine.) For information on
dealing with the usual system errors (e.g., "?File not found" or "20isk not
mounted") refer to the AlphaBASIC User's Manual, in particular the section
titled "Error Trapping.”

USING ISAM FROM WITHIN BASIC | - page 7-6

Special ISAM errors can also occur as a result of an ISAM operation. These
errors do not generate an error message or result in an error trap. It is
therefore very important that your program check for these errors after
every [SAM statement; otherwise, you have no way of knowing whether or not
the ISAM function was performed successfully. To do s0, use the ERF(X)
function, where X s the file channel number used by the preceding I1SAM
Statement. (The ERF(X) function operates in much the same way as the EOF(X)
function.) '

If ERF(X) returns a zero, the preceding ISAM statement was successful. If
ERF(X) returns a nonzero value, then an error was detected. . If an errar
occurred, your program should correct the problem before going on to access
the file, The nonzero value returned tells you which error occurred. For

example:

! If a "Record not found" error (#33), go to routine that asks for new key.

10C IF ERF(2)=33 THEN PRINT "RECORD NOT FOUND" : GOTO PROMPT

The current [SAM error codes are:

32 - Illegal ISAM statement code.

33 - Record not found in index file search.
34
35 ~ Link structure is smashed and mustt be re=created.
346 Index file is full.

37 - pata file is full (free List is empty).

13 End of file during sequential key read.

REMEMBER: Always check after performing an ISAM function to see if an error
occurred, If you do detect an error, your program must take corrective

action before continuing on.

7.6 USING THE ISAM FUNCTIONS WITHIN A BASIC PROGRAM

Below are some examples of the ways you can combine the ISAM statements and
other BASIC commands to access and use indexed sequential files. For a look
at a sample ISAM prgram, turn to Section 7.7,

7.6.1 Adding data to an Indexed Sequential File

At the time that you use ISMBLD to create an indexed sequential file, you
have the option of loading data into the ISAM data and primary index file
from an ordinary sequential data file. Your BASI{ programs may also add
data to the indexed sequential file by using code 5 and code 3 ISAM
Statements. For each new data record to he added:

1. Open the indexed sequential file with an OPEN statement. For
example:

buplicate key found in index file during attempted key addition.

é,g'-‘_.‘r-.‘
3 kS
~.

LN

USING ISAM FROM WITHIN BASIC _ _ Page 7-7

OPEN #1,"PHONES",INDEXED,RECSIZE,RELKEY

Remember to open any secondary index files that you might want to
use via separate OPEN statements on different file channels, '

Use a code 1 statement to see if the 1ndex entry you want to add
already exists. For example:

ISAM #1, 1, NAME
Check to see if an error was returned. Faor example:
IF ERF(1) = 0 THEN PRINT "puplicate Name." : GOTO GET'NAME

(If no error occurred, then the index entry already exists and you
can't add it.) If you are using secondary index files, also check
to see that the secondary index entries don't already exist.

Retrieve the next free data record (a code 5 ISAM statement). For
example:

I1SAM #1, 5, oummy

Check to make sure that an error (e.g., 37 - "70ata file is full
(free List is empty)" did not occur. For example:

IF ERF(1) < O THEN GOTO ISAM'ERROR

If no error occurred, the record number of the next free record is
in the relative record number variable defined by the OPEN
statement for the indexed sequential file. Now you can write the
data into the record by using a WRITE statement. For example:

WRITE #1,INFO

Now you must add the symbolic keys for that data record to the
index files, using a code 3 statement. (Those symbolic keys will
then Link to that data record.) B8e sure to check for an ISAM error
after each addition.

After adding all data records, close the I5AM files. For example:

CLOSE #1 | Close primary index file/data file
CLOSE #2 ! {lose secondary index file

USING ISAM FROM WITHIN BASIC R Page 7-8

7.6.2 Reading Data Records in Symbolic Key Order

ISAM stores symbolic keys in the index file in ASCII collating sequence., To
retrieve records in the order in which their keys appear in an index file-

1.

7.6.3

1.

Open the indexed sequential file with an OPEN statement. (If you
also wish to OpPen one or more secondary index files that
cross—index to the primary index file, use one OPEN statement for
each secondary index file.)

Execute a code 2 ISAM statement to find the next symbolic key,

Check to make sure that the ISAM statement didn't return an error.
For example:

IF ERF(1) = 38 THEN PRINT "End of file." : GOTO PROMPT
IF ERF(1) <> O THEN 'GOTO ISAM'ERROR

The proper record number iS5 now in the relative record number
defined by the OPEN statement for the file, 50 you can use a READ
statement to read in the data. For example:

READ #1, INFO

(Remember that the READ statement must include the file channel
assigned to the primary index file even 4if the code 2 ISAM
Statement dincluded a symbalic key contained in a secondary index
file; this is because the data you want to read is 4in the data
file.)

Check for an end-of-file error by using the ERF(X) function,
Repeat these procedures to step through the data records in the

order of the symbolic keys in the index files until you reach the
end of the file, or until you have accessed all the records ydu

~need. Be sure to check for an ISAM error after each access.

Close all files when you are done.

Reading 0ats Records Randomly by Symbolic Key

Open the indexed sequential file with an OPEN statement. You must
include one OPEN statement for the data file/primary index file.
You must also include one OPEN Statement for each secondary index
file you want to access. :

"USING ISAM FROM WITHIN BASIC : Page 7=9

Locate each data record by using a code 1 1s5aM statement., The
Statement must contain the symbolic key associated with the record
for which vyou are searching and the file channel associated with
the index file containing the symbolic key. L

Check for a "record not found” error; this indicates that the
symbolic key was not located in the specified index file.

If the record was found, use a READ statement to read in the data
record. (The READ statement includes the file channel associated
with the data file/primary index file, even if the symbolic key
used belonged to a secondary index file.)

Repeat steps 2 through 4 for each record you want to find.

Close all files.

7.6.4 Updating Data Records

Open the indexed sequential file with an QPEN statement,

Locate the data record you want to update via one of the methods
above (j.e., by using a code 1 or code 2 [SAM statement).

Check to make sure that the record was found. (Use the ERF
function.)

Use a WRITE statement to update the data record, (The WRITE
statement iJncludes the file channel associated with the data
file/primary index file, even if the symbolic key used to find the
record belonged to a secondary index file.)

This operation does not change the index files, so do not change
the symbolic key in the record you rewrite, If you need to alter
data that is part of a symbolic key, you must delete the key in the
correct index file (a code 4), and then add the new key to the
index file (code 3). You do not need to delete and re-create the
data record during this operation unless you are entering
completely new data,

Close all fijles.

USING ISAM FROM WITHIN BASIC | Page 7-10

7.6.5 peleting a bata Record

beleting a data record from an indexed sequential file entails not only
deleting the record itself but also deleting all symbolic keys associated
with that data record from all index files,

1. Open the primary index file and all secondary index files needed.

2. Locate the data record via one of the symbolic keys (a code 1 ISAM
statement).

3. Check to make sure that the statement executed without error. Far
example:

IF ERF(2) = 33 THEN PRINT "Record not found." : GOTO PROMPT
IF ERF(2) © 0 TH%N GOTO ISAM'ERROR

4. Read the data record with a READ statement (whose #file=channel is
the file channel number associated with the primary index file).

5. Extract each symbolic key from that data record. Use each symbolic
key to delete each key from its assaociated index file with code &
ISAM statements.

6. After all symbolic keys have been deleted from all index files,
delete the record itself via a code 6 ISAM statement.

7. Close all files.

NOTE: A good way to check the stryucture of the indexed sequential file might
be to store the relative record number in another variable; then compare the
relative record numbers returned by each code 4 ISAM statement to check that
the symbolic keys did indeed all Link to the correct data record. You
should also check each ISAM statement for any possible error that might
otherwise go unnoticed.

USING ISAM FROM WITHIN BASIC _ Page 7-11

7.7 SAMPLE ISAM PROGRAM

The sample program below will make clearer the use of the commands discussed
above, For more information on using ISAM from within a BASIC program,
consult the manual AlphaBASIC User's Manual.

Before we can begin to yuse ISAM, we must load it into memory if it {5 not
already resident in system memory:

+LOAD SYS:ISAM.PRG@EED

Before we run the sample program below, we first use the program ISMBLD to
build the I5AM files LABELS.IDA (the data file), ULABELS.IDX (the primary
index file), and HASH.IDX (the secondary index file). Note that we build an
empty file (i.,e., we type a RETURN after the "Load from file:" prompt). We
use the BASIC program below to place data into the file.

.ISMBLD LABELSG@ED

§ize of key: 25(@eD

Position of key: 1@D

Size of data record: 67@EED

Number of records to allocate: S0GEE)
Entries per index block: T0Gen

Empty index blocks to allocate: 20@ED
Primary Directory: Y(@eD

Data file device: @D

Load from file:

< ISMBLD HASH (RET)

Size of key: 10@ED

Position of key: 58@ED

Size of data record: 67@E)

Number of records to allocate: S0GED
Entries per index block: 10@ED

Empty index blocks to allocate: 20(EED
Primary Directory? N (meT) :

Secondary index to file: LABELSGEE)
End of primary file
No records loaded

I Now we can run our sample program:

<RUN MATLGEED

USING ISAM FROM WITHIN BASIC ' Page 7-12

10
20
30
40
50
60
70
80
90

{
!
!
!
!
!
!
!
!

SAMPLE BASIC ISAM PROGRAM

ISAM Sample Program,

This program is a simple example of how to handle ISAM files, both
primary and secondary, It simulates a very simple=minded mailing
List program, with the addresses keyed by baoth name and user
defined hash code.

Define the Mailing List file record.

100 MAP1 LABEL

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

280
290
300
310
320
330
340
350
360
370
380
390
400
410
415
420
430
440
450
460

- MAP2 NAME,S,25
MAP2 ADDRESS,S,25
MAP2 STATE,S,2
MAP2 71P,S,S

MAP2 HASH,S,10
! pefine record sizes.
MAP1 RECSIZE,F,&,67 ! Size of data record.
! Open the primary and secondary files.
OPEN #1, "LABELS", INDEXED, RECSIZE, RELKEY1
OPEN #2, "HASH", INDEXED, RECSIZE, RELKEY1
PROMPT :
PRINT
INPUT "ENTER FUNCTION 2
(1=ADD,2=DELETE,3=INQUIRE,4=PRINT,99zEND): s FUNCTION
ON FUNCTION 60TO ADD'RECORD,DELETE'RECORD,INQUIRE'RECORD,PRINT'LABELS
IF FUNCTION=99 THEN GOTO END'IT
GOTO PROMPT
ADD'RECORD:

INPUT "ENTER NAME: ": NAME

INPUT "ENTER ADDRESS: '"; ADDRESS

INPUT "ENTER STATE: "; STATE

INPUT "ENTER ZIP: . ZIP

INPUT "ENTER HASH: ": HASH
! Add Trailing blanks to the keys,

NAME = NAME + SPACE (25-LEN (NAME))

HASH = HASH + SPACE (10-LEN (HASH))
! Look up name to verify that it is not a duplicate. (If ERF(1)=0, then
! ISAM found the key in the data file.)

ISam #1, 1, NAME

IF ERF(1) = O THEN PRINT "DUPLICATE NAME" : GOTO ADO'RECORD
! Verify that hash is not a duplicate,

ISAM #2, 1, HASH

IF ERF(2) = (0 THEN PRINT "DUPLICATE HASH" GOTO ADD'RECORD

Y

USING ISAM FROM WITHIN BASIC | Page 7-13

470 ! Get free data record from primary file and write record out.

480 ISAM #1, 5, NAME _
490 IF ERF(1) © O THEN GOTO ISAM'ERROR

500 WRITE #1, LABEL

510 ! add key to primary index file.

520 I[SAM #1, 3, NAME

530 IF ERF(1) <> O THEN GOTO ISAM'ERROR

540 ! Add key to secondary jndex file.

550 [SAM #2, 3, HASH

560 IF ERF(2) < O THEN GOTO ISAM'ERROR

570 GOTO PROMPT

580

590 DELETE'RECORD:

600 INPUT "™ENTER NAME: "2 NAME

610 NAME = NAME + SPACE (25-LEN (NAME))

620 ! Verify that the key exists.

630 ISAM #1, 1, NAME . '
640 IF ERF(1) = 33 THEN PRINT "RECORD NOT FOUND" - GOTO PROMPT
650 I[F ERF(1) < 0 THEN GOTO ISAM'ERROR

660 READ #1, LABEL

670 ! pelete the key from the primary index.

680 I[SAM #1, 4, NAME

690 IF ERF(1) <> 0 THEN GOTO ISAM'ERROR

700 ! pelete the key from the secondary index.
710 I[SAM H2, 4, HASH

720 IF ERF(2) < O THEN GOTO ISAM'ERROR

730 ! pelete the data record in data file.

740 I[SAM #1, 6, NAME

750 IF ERF(1) <> 0 THEN GOTQ ISAM'ERROR

760 GOTO PROMPT '

770

780 INQUIRE'RECORD:

790 INPUT "BY NAME (1) OR HASH (2): "; FUNCTION
800 IF FUNCTION = 2 THEN GOTO BY '"HASH

810 INPUT "NAME: "; NAME

820 NAME = NAME + SPACE (25=LEN (NAME))

830 ! Locate the record.

840 ISAM #1, 1, NAME

850 IF ERFC1) = 33 THEN PRINT "RECORD NOT FOQUND" - GOTO PROMPT -
860 IF ERF{1) < 0O THEN GOTO ISAM'ERROR

870 ! Read the record.
380 READ'RECORD -

890 READ #1, LABEL
900 PRINT NAME, HASH
910 PRINT ADDRESS, STATE, zIP

920 GOTO PROMPT

USING ISAM FROM WITHIN BASIC Page 7-14

930 ! Locate record by hash -code. (& i
940 BY-'HASH:) '

950

960

970

9280

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230

1240

1250

ENO'IT: P
! Be sure and close files before we exit. : L

INPUT "HASH: "; HASH .

HASH = HASH + SPACE (10~LEN (HASH))

ISAM #2, 1, HASH.

IF ERF(2) = 33 THEN PRINT "RECORD NOT FOUND" : GOTO PROMPT
IF ERF(2) < 0 THEN GOTO ISAM'ERROR

GOTQO READ'RECOROD

PRINT'LLABELS:
! Read null key to get to front of file.,

NAME = SPACE(25)
ISAM #1, 1, NAME

! Loop thru file doing sequential reads until we hit the end.
LOOP:

ISAM #1, 2, NAME ‘

IF ERF(1) = 38 THEN GOTO '‘PROMPT ! We hit end-of-file.
IF ERF(1) < 0 THEN GOTO ISAM'ERROR

READ #1, LABEL

PRINT

PRINT NAME, HASH

PRINT ADDRESS, STATE, zIP

GOTO LooP

CLOSE #1
CLOSE #2
END

ISAM'ERROR: ! ERF(X) returned an ISAM error

PRINT "2FATAL ISAM ERROR" ! other than RECORD NOT FOUNO.
END

ISAM SYSTEM USER'S GUIDE

Adding data records , .

Adding symbolic keys .
AMOS monitor calls , .,
CoOPY . & v . 4 . ..
EXIT
FETCH

GETMEM . , , .

BASIC
Adding data records .
Closing files . , . .
Deleting data records
ERF(X) . v & o o . .
Error processing . .
I[SAM codes . , . . .
ISAM error codes . .
ISAM statement . . .
OPEN statement , , .
Opening an ISAM file
READ statement . , .
Reading data records
Sample ISAM program .
Updating data records
WRITE statement . . .

Block split

Closing ISAM files

Code
Completion codes . . .
IS.EOF .,
Is.suC-
Compressing index files

Compression factor .
Condition codes . . .
Condition flags . . .
Contiguous file . . .
Counted update mode .
Creating ISAM files

bata file, . .
beleting data records ,
beleting symbolic keys
Directory Rock

L] L - L] L[] - *

- L - .

" 8 s 3 8

4 = a s 3

a 8 8 & g

Index

-3, 7-5
7=8
=11
7=9
7=3, 7=5
2=5

1-6, 5«4, 7-5
7=3

5-2, 6~1

5-9

5-2

4~1

b=1

5-2

5=2

1-4

1=5, 5«4, 7=2
2=1, 71

1-2 to 1~4
5-5, 7=4, 7-10
5-8, 7-4

1-4

fage Index-1

ISAM SYSTEM USER'S GUIOE

Displaying the data file
Displaying the index -file

ERF function ., . , .
Error processing . ,
Exclusive open mode .

File channel ., ., ,
File interlocking .
File pair number .
File parameters . . .
Filespec , ., . . - e e .
Finalizing 1SAM processing
Finding data records , .,
Finding free data regords
Finding symbolic keys . .
Finding the next key . .

Index file

Index levels . ., , . . .
INDEXED . ., . ., . * s s
Indexed sequential file .
Data filte ., ., ,
Index file . ., . .. -
INDEXED'EXCLUSIVE -
Indicators ., ., . ., . . s
Initializing 15aM . , . .
sam |, ... * e a e
[SAM access modes . .
ISAM calls , . , . « .
ICLOS ., . .. * e a
JIDELK ., . . L, .
JIOLFR . .. L
JIFIN . . L L L L, “«
LIGTFR , ., . . . * o
CJINIT o o L. ...
JIOPNR ., . " s e s .
.IREDR L) - » - L Y] - -
<IRLRD ., . ., . . “ .
LIRLWT “ o a
« IWRTR " 2 s a4 oe
.SREDR 4 & % 2 s g e
ISAM. codes , ., . . . « =
ISAM error codes . , . .
ISAM file extensions
WI0A L. L L. ., -
LIOX ..., . .
IIDY - - - - L] L I L d »
ISAM statement ., , . -
IsmeLo ., , ., . « s % s @
tsmcom ,, - e s .
[SMomP | , , ., * s s s
IS"FIX - " a - . > ‘s g -

L * L] L[] - - L] -

3=-2
3~2

7-4
7-5
1-5 to 16, 5-4, 7-2

7-1 to 7-3
1=-5 to 1-6
5-3 to 5~4
2~2

7=2

5-3

§5=7, 7~4
5-5, 7-4
7=4

" 5-8, 7-4

1«2 to 1~3
T=4
7=2
1-3-
1=3
1-3
1=6
5-2
5-2
1-1
1«5

7=3
1-3, 2=1, 7-1, 7-11
4=1
3-1
1-8

Page Indax-?

ISAM SYSTEM USER'S GUIDE

ISUsSYM.ma¢
Loading ISAM files . . .

Memory allocation routine

Memory deallocation routine

Memory requirements ., . .
Mode - - - L] - - - - - -

Opening ISAM files . . .

Primary index file . . .

Reading data records . .
Record size
Relative key . .,
Relative record number .
Return codes .« . & o o

Sample BASIC ISAM program
Sample ISMBLDO dialog . .
Secondary index file . .

L] L] - - -

Suppressing Exclusive Open mode

Symbolic key . + + o« o .
Table offsets

Unloading ISAM files , .
Updating data records , .

Writing data records . .

1-2, 7-2

7-11
7-11

1-3 to 1-4
1=6, 2=4, 3=1
7-3

3-1
5-6, 7-9

Page Index-3

