
SOF1 WARE MANUAL

AMOS
MONITOR CALLS

DVVNI- 00100-42
REV. 601

eIpha mIcrD

AMOS MONITOR CALLS MANUAL Page ii

NOTE: This printing of the manuaL contains the contents
of Change Page Packet #1 for the "AMOS Monitor Calls
Manual" (DSS—10000—12), which may be ordered separately
from Alpha Micro.

First Printing: 1978
Second Printing: 1979
Third Printing: 30 ApriL 1981
Fourth Printing: 1 July 1981

'Alpha Micro', 'AMOS', 'AIphaBASIC'
'ALphaPASCAL', 'ALphaLISP', and 'ALphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This book reflects AMOS Versions 4.5 and later

© 1981 — ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

AMOS MONITOR CALLS MANUAL Page iii

PREFACE

We assume that the
proqramminq and the
is familiar with
Assembly Languqe

reader of this manual is I
AM—IOU instruction set. t
the PM—lOU macro asseinbl
Programmer's Reference i

NOTa
if yc
befor

large number
By making
programmer
describes

amiliar with assembly language
e also assume that the reader
y system described in the AMOS
anual (DWM—QOlOQ—43). This
tutorial on assembly language

u are just learning assembly
e reading this manual.

One of the major features of the
of monitor calls available to the
most common routines available
from having to repetitively write
these monitor calls.

AMOS operaUnq system is the
assembly Laguaae programmer.
in the monitor, AMOS frees the

the same ro4tine. This manual

rëlerence manual is mof emphatically
programming. Many such tutorials exist;
language, you should consult such a book

AMOS MONITOR CALLS MANUAL Page v

2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13
2.4.14
2.4.15
2.4.16
2.4.17
2.4.18
2.4.19

2.4.20
2.4.21
2.4.22
2.4.23
2.4.24

Table of Contents

JOBNAM
JOBBAS
J 08511
JOBUSR

JOBPRV
JOBPRG
JOBCMZ

JOBCMS

JOBERC
JOBTYP
JOBBPT
J OBBN K

JOBDEV
JOBDRV
JOBTRM
JOBRBK
JOBFPE

JOBRNQ

JOBDYS
JOB WAT

JOBEXT
JOSMSG

Word
ter Reset

2—1

2—2

2—3

2—3

2—3

2—3

2—4

2—5

2—5

2—6

2—6

2—6
2—6

2—6

2—7

2—7

2—7

2—7

2—7

2—8

2—8

2—3

2—9

2—9

2—9

2—9

2—10

2—1 0
2—10
2—10

(Changed 1 JuLy 1981)

3.1 MEMORY PARTITION FORMAT
3.2 MEMORY MODULE FORMAT
3.3 MANIPULATING MEMORY MODULES

1—1

1—1

1—2

2—4

2—4

2—5

2—5

CHAPTER 1 COMMUNICATING WITH THE AM—lOU MONITOR

1.1 MONITOR CALL CALLING FORMAT
1.1.1 Arguments
1.1.2 Standard Address Arguments

CHAPTER 2 JOB SCHEDULING AND CONTROL SYSTEM

2.1 THE JOB CONTROL BLOCK (JCB)
2.1.1 Example — Scanning The Job

Control Area
2.2 ACCESSING YOUR JCB

2.2.1 Calling Sequence
2.3 JOB SCHEDULING CALLS

2.3.1 SLEEP — PUT JOB TO SLEEP
2.3.2 WAKE — WAKE UP JOB

2.4 JOB CONTROL BLOCK FORMAT
2.4.1 JOBSTS — The Job Status
2.4.2 JOBSPR — The Stack Poin

Address
— The Job Name
— The Memory Base Address
— The Memory Partition Size
— The Current PPN
— The PriviLege Word
— The Current Program Name
— The Command File Size
— The Command File Status
— The Error Control Address
— The Job Type
— The Breakpoint Address
— The Memory Bank Pointer
— The Default Device
— The Default Drive
— The Terminal BLock Pointer
— The Run Control Block
— The Floating—Point Trap

Address
— The Scheduling Area
— The DYSTAT Address
— Semaphore Wait Chain Link
— Job Exit—Trap Stack Pointer
— Job Message System Area

Pointer
2.4.25 JOBIAL — Job Impure Area Link
2.4.22 JOBSIK — The Job's Stack Area

CHAPTER 3 MEMORY CONTROL SYSTEM CALLS

I

3—s

3—6

AMOS MONITOR CALLS MANUAL Page vi

3.3.1
3.3.2
3.3.3
3.3.4

3.4 MEMORY
3.4.1

3.4.2
3.4.3
3.4.4

ALlocating a Memory Module
Changing a Memory Module
Deleting a Memory ModuLe
Permanent and Temporary Modules
MAPPING SYSTEM
Internal Table Format
3.4.1.1 The MEMDEF Word
3.4.1.2 The JOBBNK Word
The Bank Switching Process
The BNKSWP Monitor Call
The DMADDR MonitOr Call (For Memory
Partition Controller)

H AND FETCH CALLS
Specifying the ModuLe Name
The Module Address
Flags
4.1.3.1 F.FCH — Fetch Module

From Disk
4.1.3.2 F.USR — Bypass System

Memory Search
4.1.3.3 F.ABS — Bypass Memory Search
4.1.3.4 F.FIL — Mark Module as

Permanent
4.1.4 CompLetion Codes

5—1

5—2

5—3
5—3
5—3
5—4

6—1

6—2
6—2

6—4

6—4

6—4

6—4
6—5

6—5
6—5

6—5
6—5

6—5
6—5

(Changed 1 July 1981)

6.1.1.13 Filename and Extension 6—6

LOADING ftND LOCATING MEMORY MODULES

4.1 THE SRC
4.1.1
4.1.2
4.1.3

3—8

3—8

3—8

3—8
3—9
3—10
3—10
3—11

3—12
3—12

5—13

4—1

4—1

4—2
4—2

4—2

4—3

4—3

4—3
4—3

CHAPTER 4

CHAPTER 5

CHAPTER 6

MONITOR QUEUE SYSTEM CALLS

5.1 INCREASING THE AVAILABLE QUEUE LIST SIZE
5.2 QUEUE BLOCK USAGE BY THE SYSTEM
5.3 QUEUE SYSTEM MONITOR CALLS

5.3.1 QGET — Obtain a Free Queue BLock
5.3.2 QRET — Return a Queue BLock
5.3.3 QADD, QINS — Manipulating Queue BLocks

THE FILE SERVICE SYSTEM

6.1 THE DATASET DRIVER BLOCK
6.1.1 DDB Format

6.1.1.1 Error Code
6.1.1.2 Flags
6.1.1.3 Buffer Address
6.1.1.4 Record Size
6.1.1.5 Buffer Index
6.1.1.6 Record Number
6.1.1.7 Queue Chain Link
6.1.1.8 JCB Address
6.1.1.9 Job Priority
6.1.1.10 Device Code
6.1.1.11 Drive
6.1.1.12 Call Level

AMOS MONITOR CALLS MANUAL Page vii

6.1.1,14 PPM 6—6
6.1.1.15 Open Code 6—6
6.1.1.16 Driver Work Area 6—66.1.2 Device Transfer Auffers 6—66.1. Error Handling 6—76.1.3.1 Error Codes 6—76.2 FILE SERVICE MONITOR CALLS 6—86.2.1 FSPEC — Process an ASCII Filespec 6—8

6.2.2 HUT — Initialize the DDB 6—96.2.3 LOOKIJP — Find the File 6—106.2.4 (WENT — Open a File for Input 6—106.2.5 OPF.NO — Open a File for Output 6—106.2.6 OPENA — Open and Append to
Existing File 6—106.2.7 OPENR — Open a File for Random
Processing 6—11

6.2.8 CLOSE — Close a File 6—116.2.9 READ — Perform a Physical Transfer 6—11
6.2.9.1 Sequential Devices 6—11
6.2.9.2 Random Devices 6—11
6.2.9.3 Interrupt Structure 6—12

6.2.10 WRITE — Perform a Physical Write 6—12
6.2.10.1 SequentiaL Devices 6—12
6.2. 10. 2
6.2.10.3

6.2.11 INPUT —
6.2.11.1

6.2.11.2
6. 2. 11.3

6.7.12 OUTPUT —
6.2.12.1

Random Devices
Interrupt Structure

Perform a LogicaL Read
Sequential File Processing
6.2.11.1.1 Example

ile Processing
Devices
a Logical Write
al File Processing

Random F
Special
Perform
Sequent i
6.2.12.1.1 Example

6.2.12.2 Random File Processing
6.2.12.3 Special Devices
DELETE — Delete a File
RENAME — Rename a File
ASSIGN — Assign a Device
DEASGN — Deassign a Device . .. -

ERVICE MONITOR CALLS
Calling Sequence
The Bitmap Are
6.3.2.1 The Status Word
6.3.2.2 The Bitmap DDB
6.3.2.3 The Bitmap Buffe
6.3.2.4 The Bitmap
6.3.2.5 Altering the Bitmap
DSKCTG — Allocate a Contiguous
DSKALC — ALlocate a Record
DSKDEA — Deallocate a Record
DSKBMR — Read the Bitmap

• 6.2.13
6.2.14
6.2.15
6.2.16

6.3 DISK $
6.3.1
6.3.2

6.3.3
6.3.4
6.3.5
63.6

6—12
6—12
6—13

6—13
6—13
6—13
6—14
6—14
6—14
6—14
6—15
6—15
6—15
6—15
6—15
6—16
6—16
6—16
6—17
6—17
6—17
6—17
6—18
6—18
6—18
6—18
6—19
6—19

Area

6.3.8
6.3.9
MAGNET
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

7.1 TERMINOLOGY
7.2 THE TERMINAL LINE TABLF

7.2.1 The Terminal Status Word
7.3 THE TERMINAL SERVICE CALLS

7.3.1 KAD (labeL) — Fetch a Line

Paqe viii

—i c
6—19
6—20
(—20
6—20
6—20
6—21

6—21

6—21

7.3.2 TTY — Output One Character 7—3
7.3.3 TIN — Get an Input Character 7—3

7.3.4 TOUT — Output One Character
7.3.5 TAB — Output
7.3.6 CRLF — Output

Li ne—Fe
7.3.7 TTYI. — Output
7.3.8 TTYL — Output

Indexed
7.3.9 PTYIN — Place

Buffer
7.3.10 PTYOUT — Fetch

Butte
7.3.11 TTYIN — Fetch
7.3.12 TTYOUT —

7.3.13 TRMICP —

7.3.14 TRMOCP —

7.3.15 TRMBFO —

7.3.16 TBIJF —
7.3.17 TCRT —

age—Return /

of Characters
of Characters

7—4

7—4

7—4

.7—4

7—5
7—5

7—5

7—5

7—5

7—6
7—6

7—6
7—7

7—7

7—7

7—8

St rinci
String

aracter n Input

Character from Output
r

Another Job's Input
a Character in Another
Output

55 Input Character

Functions
.1 Cursor Addressing
.2 Other Functions

AMOS MONITOR CALLS MANUAL

6.3.7 DSKBMW — Write the Bitmap
DSKDPL — Lock the Directory
DSKDPIJ — IJnlock the Directory

6.4 IC TAPE DRIVER MONITOR CALLS
REWIND Arg
WRTFM Arq
FMARK Arçi
FMARKR Arg
TAPST Argl,Arg2

CHAPTER 7 TERMINAL SERVICE SYSTEM

of Data

7—1

7—2
7—2

7—2

7—2

7—3One Tab
a Carri
ed
a

a

Ch

Place
Job's
Proce
Within Interface Driver
Process Output Character
Within Interface Driver
Process Output Characters
Within Terminal Driver

Output Large Amounts of Data
Call Special Terminal Driver
Routines

CHAPTER 8

7.3.17.1 standard
7.3.17.1
7.3.17.1

7.3.18 Message CaLls

CONVERSION MONITOR CALLS

8.1 NLJMFRIC CONVERSION CALLS
8.1.1 CalLing Format

8.1.1.1 Size Pyte
R.1.1.2 Flags

8—1

8—1

8—1

8—2

AMOS MONITOR CALLS MANUAL Page ix

8.2 RAD5O

8.2.1
8.2.2

9.1
9.2
9.3
9-4
9-5
9.6
9.7
9.8
9.9

CONVERSION MONITOR CALLS
RADSO Packing Agorithm
Packing and Unpacking Calls
8.2,2.1 PACK — Pack Three ASCII

Characters into RADSO
8.2.2.2 UNPACK — Unpack Three RADSO

Characters into ASCII

From a DDB

9—1

9—2
9—2

9—2

9—2
9—2
9—2

9—3
9—3

CHAPTER 10 MISCELLANEOUS MONITOR CALLS

EXIT — RETURN TO AMOS COMMAND LEVEL
CTRLC — BRANCH ON CONTROL—C
JLOCK, JUNLOK — PREVENT CONTEXT SWITCHING
RQST — REQUEST CONTROL OF A SEMAPHORE
RLSE — RELEASE CONTROL OF A SEMAPHORE
PCALL — INVOKE PROGRAM AS SUBROUTINE
AMOS — EXECUTE AMOS COMMAND AS SUBROUTINE

APPENDIX A DISK STRUCTURE FORMAT

A.1 PHYSICAL RECORD FORMAT
A.2 DISK RECORD TYPES

A.2,1 The Disk ID Record
A.2.2 The Bitmap
A.2.3 The Master FiLe Directory
A.2.4 The User FiLe Directory
A.2,5 Sequential File Data Records
A.2.6 Contiguous File Data Records

A.3 FILE STRUCTURE
A.4 MFD ITEM FORMAT
A.5 UFD ITEM FORMAT

APPENDIX B SYSTEM COMMUNICATION AREA

8.1 SYSTEM — SYSTEM ATTRIBUTES WORD
8.2 DEVTBL — ADDRESS OF THE DEVICE TABLE

8.3

CHAPTER 9

PRINTING CONVERSION CALLS
8.3.1 PFILE — Output a Filespec
8.3.2 PRNAM — Output a FiLename
8.3.3 PRPPN — Output a PPN

8.4 ALPHABETIC CONVERSION——LCS AND UCS

8—2

8—3
8—3

8—3

8—4

8—4
8—4
8—4

8—4

8—4

INPUT LINE PROCESSING CALLS

ALF — TEST A CHARACTER FOR ALPHABETIC
NUM — TEST A CHARACTER FOR NUMERIC
TRM — TEST A CHARACTER FOR TERMINATOR
LIN — TEST A CHARACTER FOR LINE TERMINATOR
BYP — BYPASS BLANKS
GTDEC — INPUT A DECIMAL NUMBER
GTOCT — INPUT AN OCTAL NUMBER
GTPPN — INPUT A PROJECT—PROGRAMMER NUMBER
FILNAM — INPUT A FILENAME

10.1
10.2
10.3
10.4
10.5
10.6
10.7

10—1

10—1

10—2
10—2

10—2
10—3
10—3

A—i

A—2

A— 2

A— 2

A—3

A— 3

A— 3

A—3

A— 3

A— 5

A—S

B—i

B—i

(Changed 1 July 1981)

AMOS MONITOR CALLS MANUAL Page x

6.3 DDBCHN — ACTIVE DDB CHAIN B—i
B.4 MEMBAS & MEMEND — USER MEMORY POINTERS 6—2
8.5 SYSBAS — BASE OF SYSTEM MEMORY 8—2
6.6 JOBTBL — ADDRESS OF THE JOB TABLE 8—2
8.7 JOBCUR — JCB ADDRESS OF THE CURRENT JOB 6—2
8.8 JOBESZ — JOB TABLE ENTRY SIZE B—?

6.9 TIME — THE TIME OF DAY 6—3

6.10 DATE — THE SYSTEM DATE 8—3

6.11 HLDTIM — THE HEAD LOAD TIMER 6—3

B.12 CLKFRQ — LINE CLOCK FREQUENCY 8—3

6.13 SPXSAV — STACK POINTER SAVE LOCATION 3—4

B.14 SPXINT — INTERNAL STACK 3—4

6.15 LPTQUE — LINE PRINTER SPOOLER QUEUE 3-4
B.16 TRMDFC — BASE OF THE TERMINAL DEFINITION

TABLE 3—4

8.17 TRMIDC — ADDRESS OF FIRST INTERFACE DRIVER ... 6—4
B.18 TRMIDC — ADDRESS OF FIRST TERMINAL DRIVER 6—4
B.19 TRMSCN — THE NON—INTERRUPT TERMINAL QUEUE 6—4
6.20 CLKQUE — THE CLOCK QUEUE B—S

6.21 SCNQUE — THE IDLE SCAN QUEUE 3—S

8.22 RUNQUE - THE JOB SCHEDULING QUEUE B—S

6.23 DRVTRK — THE DRIVE/TRACK TABLE B—S

6.24 MEMDEF & MEMBNK — MEMORY MANAGEMENT CONTROL .. B—S
6.25 ZSYDSK — ADDRESS OF SYSTEM DISK DRIVER 6—S

B.26 SYSMEM — SYSTEM MEMORY LINK B—6

B.27 MSGQUE — SYSTEM LINK COMMUNICATION B—6

6.28 MSGDAT — MESSAGE SYSTEM DATA AREA 8—6

6.26 QFREE — QUEUE SYSTEM CONTROL 8—6

APPENDIX C ALPHABETIC LISTING OF AMOS MONITOR CALLS

INDEX

(Changed 1 JuLy 1981)

CHAPTER 1

COMMUNICATING WITH THE AM—lOU MONITOR

The AM—lOU monitor contains over 70 routines available for use by assembly
language programs running in user or monitor memory. These routines arecalled by the supervisor calls SVCA and SVCB, which have been coded into
macro form to make them easy to incorporate into user programs. The macros
are included as a part of the system library tile SYS.MAC in account [7,7]
of the system disk. These calls have been grouped according to the function
they perform and are described in this chapter and the following chapters.

1.1 MONITOR CALL CALLING FORMAT

The general format for all monitor calls is:
(label:) opcode (arguments) {;comments)

As the format shows, the onLy required item in all calls is theitself, which is the name of the monitor call. A label may be u
desired, in which case it is assigned the address of the SVCA orinstructions which start all monitor call sequences. The total numbe
words generated by any monitor call depends upon the call itself.calls generate up to four words of code to perform the function.
calls which incorporate an ASCII message (such as the TYPE call) aenerstring of bytes varying in length depending on the message involved.
machine instructions, you may also place comments at the end of the
each line of comments is identified by a preceding semi—colon.

1.1.1 Arguments

Some calls require one or more arguments to specify
execution of the monitor call function. These arguments
source and/or destination address items for the data
the monitor call. Some calls allow you to specify the
parameters, while other calls operate with predefined
must set up beforehand. The following sections define eac

parameters for the
most normally are

being manipulated by
location of data
registers that you
h call and detail

opcode
sed if

SVCB

r of
Some

Those
ate a

As in
line;

COMMUNICATING WITH THE AM—lOU MONITOR Page 1—2

the required arguments. Normally you define the arguments as expression
values, standard addresses, or ASCII strings. An expression value may be
any valid source expression which, after full evaluation, results in a vaLue
within the range of the argument definition. ASCII strings are just that; a
string of characters typicaLly used as a message to he displayed. Standard
addresses are so important and complex that we devote the next entire
section (1.1.2) to explaining them.

1.1.2 Standard Address Arguments

NOTE

The following section is one of the most
important, and most frequently niisunder—
stood, sections of this manual. The concept
of standard arguments is fundamental to
understanding the monitor call calling
sequences.

Standard addresses form the heart of many of the more complex monitor calls;
you should therefore thoroughly understand them in order to gain maximum
flexibility from the system. A standard address argument is coded exactly
the same as a standard source or destination operand for a machine
instruction such as ADD or MOV. Some restrictions should he noted, however,
due to the method used in processing the standard address. Standard
addresses are only used with those monitor calls that are coded as SVCB
instructions. The SVCB pushes all user registers onto the stack, and it is
from these stored values on the stack that the monitor call processor gains
access to the address calculations using those registers. Standard
addresses may take the form of any of the valid WD16 addressing modes;
however, all autoincrement and autodecrement processing is done on a word
basis, even though the monitor call may be requesting only one byte of data.
In addition, the value used for SP register references is a dummy value
which is not reLoaded into SP when the monitor call exits, so the
autoincrementing and autodecrementing modes will he ignored if used with the
stack pointer register.

The monitor call processing software within the monitor actually duplicates
the hardware, calculating the target address from the stored register value
on the stack and the data from the extra word, if the address mode uses one.
This target address then becomes the address of the data to be manipulated
by the specific monitor call routine itself. This data may be only one
byte, or it may be several words or more. The target address calculated by
the processinq of the standard address argument always points to the first
byte of the data if more than one byte is required by the monitor call. A

special case occurs when the standard address argument specifies the direct
register address mode. In the WD16 hardware instructions, there is never
more than one full word of data involved for the standard source and
destination address modes, so direct register works on either the low byte
or the full word in the target register. In the processing of monitor call
standard addresses, however, this is not always the case since, as we

COMMUNICATING WITH THE AM—lOU MONITOR Page 1—3

pointed out, some calLs require several words of data to he manipuLated.
When direct register mode is used, the tarqet address is actuaLLy the
address of the stored register on the stack, which was a direct result ofthe SVCB hardware instruction orocessinq. If more than one word is used by
the caLL, it merely sequences right on through the stored words on thestack. In simple terms this means that if a monitor call wants three words
of data for an argument and you specify the register R? as the standard
address argument, the three words that are used are actually those in P2, P3
and R4, in sequence. This is often very useful when writing re—entrantcode.

CAUTION: If you specify a register for a call that wants more words than you
have registers (most I/O calls want a 20—word 0DB argument), the monitorcall will walk right on through your stack and most likely crash the entire
system.

One of the more common errors is forgetting that a standard argument needs a
pound—sign (fi) in front of a literal argument. For example, if you want the
program to sleep for 20 clock ticks, the code reads:

SLEEP #20.

Note that without the pound—sign, the proqram would sleep for the number of
ticks contained in program—relative location 20.

It is very important that you understand the concepts outlined above. Think
of the standard address arguments as source or destination addresses, as in
the machine instructions. When you use them incorrectly, you willdefinitely find out about it quickly, since the usual result is a system
crash.

The AMOS timesharing monitor alLocates jobs and schedules CPU time andresources for their operation. In order to properly write assembly Language
programs which make use of some of the more complex features of the system,
you must have a basic understanding of how jobs are scheduled andcontrolled. The theory behind job—handling is too encompassing to cover inone section of this manual, but we can explain the fundamentals of job
control by user programs.

Each job running in the system has two dedicated components which are notshared by any other job in the system: a monitor job controL block and auser memory partition. In the monitor memory area itself, a job controltable contains one area for each job that has been allocated to the system.One job is allocated for each JOBS command in the system initiaLization
command file, which gives the job name and the terminal to which it isconnected. The area allocated for each job in the job control tablecontains specific information about that job. This area is called the job
control block and will be referred to from now on as the JCB.

2.1 THE JOB CONTROL BLOCK (JCB)

The format of the JCB
system library file
name JOiixxx, where xxx
JCB being defined. Th
from the base of the
your program, wish to
instances modify it.
two ways:

is defined as a series of equate statements
SYS.iAC on DSKO:E7,7J. Each equate statement
is a 3—character code for the specific item

e value of this symbol is actually the offset
JCB to the item itself. You may, during the c
read the current data in your own JCI3 or

References to the JCB items should be made

in the
has the
of the

in bytes
ourse of
in some

in one of

1. Use the system monitor calls JOBGET, JOBSET, and JOB1DX; which isthe preferred method.

2. Locate the JCB for your job by moving &i#JOBCUR into a register and
then referencing all JCB items via JOBxxx(Rx).

(Changed 1 July 1981)

CHAPTER 2

JOB SCHEDULING AND CONTROL SYSTEM

I

I

JOB SCHEDULING AND CONTROL SYSTEM Page 2—2

Three words in the system communication area define the entire job control
system during time—sharing operation. These three words are not part of the
JCB areas but rather are non—sharabte parameters set up during system
initiaLization and not part of any one job. We point this out because the
names of these three words are JOBTBL, JOBCUR and JOBESZ; which appear to be
part of a user JCB but reaLly are not. JOBTBL contains the base of the JCB
table where all JCB's are stacked sequentially. This address is set up at
system initialization time and is never changed. JOBCUR always contains the
address of the JCB which has control of the CPU and is updated to point to
the new JCB each time the job scheduLer switches to a different job.
Therefore, a#JOBCUR always points to your JCB if you reference it, because
the reference is onLy executed while you have control of the CPU. JOBESZ
contains the size of the JCB in bytes and is used by the system and by user
programs for scanning through the JCB table. Since the size of the JCB may
expand as new features are added to the system, JCB table scans must be made
by setting an index to the base of the table (MOV Ei#JOBCUR,Rx) and then
adding the size to the index to get to the next entry (ADD 1#JOBESZ,Rx). In
a JCB table scan, the first word of each JCB is guaranteed to be non—zero
and the table is terminatedby a null (zero) word. Again, these three words
are a part of the master system communication area and not in the job table
itself.

2.1.1 Example — Scanning The Job Control Area

The following is a brief example of how to scan the JCB tabLe and process
each JCB entry (such as for a system status report):

MOV a#JOBTBL,RO ;set JCB table index RU to table base
;Loop here to process each job table entry (JCB)
LOOP: ;process JCB entry which is indexed by RO

;references to JCB items are via JOBxxx(RO)

ADD ;advance P0 to next JCB entry
TST aO ;is this end of JCB table? (null word)
BNE LOOP ; nope — go process vaLid JCB entry

;At this point we have finished the job tabLe scan

2.2 ACCESSING YOUR JCB

You use three monitor calls to gain access to your own JCB when necessary.
Two of the calLs are used to transfer a single word of data to and from a
specific word in the JCB; the other sets an index to a specific spot in the
JCB area so that multiple words may be transferred, or so that faster access
may be obtained when needed. These calls are as follows:

(Changed '1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2—3

JOBSET tag,itern ;Transfers one word from JCB item to tag
JOBSET tag,item ;Transfers one word from tag to JCB item
JOBIDX tag,item ;Sets absolute address of JCB item into tag

Since the locations may change, always use these calls as shown above.

2.2.1 CaLling Sequence

All calls share the same basic format, where tag is a standard argument used
for the transfer of one word of data in the JOBGET and JOBSET calls or to
receive the index address in the JOBIDX call. The item argument is one of
the JCB item tags (JOBSTS, JOBNAM, etc.), which identifies the item to be
used in the transfer or to have the index set to. These items are equated
to their relative offset value in SYS.MAC. Section 2.4 below explains how
to use these items and points out their importance to the user.

2.3 JOB SCHEDULING CALLS

Three calls, are used by various routines within the system monitor for
controlling the job scheduling processes. These calLs are JWAIT, JWAJTC,
and JRUN. JWAIT sets any job into the wait state. JWAITC sets your job
into the wait state. JRUN then reactivates a job to the run state. If the
JNXT flag is specified, the job is placed at the beginning of the run
queue; when J.NXT is not specified along with other JRUN flags, the job is
placed at the end of the run queue. JWAIT and JRUN require that the job
being controlled be indexed by RO (which must point to the base of the JCc3
for that job), and that the argument specify one of the status control bits
(in JOBSIS) to be used as the control flag. JWAITC assumes the current
user.

The

syntax for JWAIT, JWAITC and JRUN is as follows:

JWAIT flags
JWAITC flags
JRUN flags

2.3.1 SLEEP — PUT JOB TO SLEEP

SLEEP is a simple call that puts the user job to sleep for the number of
line clock ticks you specify in the argument. After the specified amount of
time has elapsed, the job is automatically awakened and execution continues
with the instruction following the SLEEP call. The Z—f lag is set if the job
slept for the specified number of clock ticks. The Z—flag is reset if the
job woke up prematurely because another job used the WAKE call.

CAUTION: A sleep call with an argument of zero cLock ticks puts the job to
sleep for about 18 minutes (65536 clock ticks).

(Changed 1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2—4

The normal AM—100 system runs with a clock frequency of 60 Hz; each cLock
tick, therefore, has a value of 16.7 milliseconds. Also, the first clock
tick may occur any time within the first 16.7 milLiseconds (not necessarily
a full clock tick).

Remember that SLEEP takes a standard argument; therefore, to cause the job
to sleep for one minute, you would execute:

SLEEP #3600

not

SLEEP 3600

Leaving off the pound sign (#) is a frequent coding error.

2.3.2 WAKE — WAKE UP JOB

This caLl wakes a specified job. RO must point to the base of the JCB of
the job you want to wake out of the sleep state. The Z—flag is set if the
call is successful, If the specified job was already awake, the i—flag is
reset.

2.4 JOB CONTROL BLOCK FORMAT

The following is a list of the entries contained in your JCB. Each of these
entries may be accessed via JOSGET, JOBSET, or JOBIDX by using the tag
defined in each entry.

2.4.1 JOBSTS — The Job Status Word

The first ward in each JCB is the job status flag word. Each bit in this
ward indicates a particular state in which the job may reside. Some legal
states are defined by more than one bit being on at a time. The system and
some of the system programs set and reset these bIts as the current state of
the job changes, but you should not alter this word without extreme caution.
Following is a brief List of the bits and the mneumonics assigned to them,
along with a basic description of the function of the bit when it is set.

J.ALC=1 ;Job entry is allocated (guarantees JOBSTS non—zero)
J.TIW2 ;Job is in Terminal Input Wait state
J.TOW=4 ;Job is in Terminal Output Wait state
J.SLP1O ;Job is in Sleep state
J.10W20 ;Job is in I/O Wait state
J.EXW=40 ;Job is in External Event Wait state
J.SMW100 ;Job is waiting on a semaphore
J.CCC=200 ;A control—C abort is waiting to be processed

(Changed 1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2—5

If
run
or J.SUS.

J . RUN=400
J .rloN=l000
J.L0D4000
J.SlIS=10000
J.LOK=20000
J .NXT=100000

;Job is running
;Job is in monitor
;Program is being
;Job is in Suspend
;Job has CPU locked
;Is aLways C) in JOBSTS

any of the folLowing flags are on, the job wiLt not be scheduled for CPU
time untiL the flag has been cleared: J.TIW, J.TOW, J.SLP, J.IOW, J.EXW,

2.4.2 JOBSPR — The Stack Pointer Reset Address

One word, JOBSTR,
calculated when
reset the stack
mode. The user

reloading
this

explanation of J

is used to store the stack pointer reset address which is
the system is initialized. This address is then used to

pointer each time the job exits back to monitor command
may aLLocate a larger stack area within his own partition by
address if desired. The JOBSTK field is no longer used; see
OBSTK later in this chapter.

2.4.3 JOBNAM — The Job Name

Two words, JOBNAM, contain the 6—character job name packed RADSO. This name
is set up by the JOBS command in the system initialization fiLe. If a user
program alters this word, it effectiveLy alters the name of the job.

2.4.4 JOBBAS — The Memory Base Address

address of the user memory partition if
This address is altered only by the

deaLLocates user memory partitions. We

unless you thoroughly understand the

2.4.5 JOBSIZ — The Memory Partition Size

One word, JOF3SIZ, contains the size of the
one has been allocated for this job. This
JOBBAS address word define the current
altered only by the MEMORY program and the

(Changed 1 July 1981)

user memory partition in bytes if
size word together with the above
user memory partition. JOBSIZ is
monitor command processor.

command mode (no program active)
Loaded for execution
state

(by user program command)

J OBBAS,
one has
MEMORY

advise
memory

one word, contains the base
been alLocated for this job.
program which aLLocates and

against altering this address
allocation process.

JOB SCHEDULING AND CONTROL SYSTEM Page 2—a

2.4.6 JOBUSR — The Current PPM

JOBUSR, one word, contains the current user PPM (account number) if the user
is logged In. Zero indicates that no user is currently logged into this
job. JOBUSR is modified by the LOG and LOGOFF programs and is tested by
various protection schemes in the system to allow user access to fiLes, etc.

2.4.7 JOBPRV — The Privilege Word

JOBPRV, one word, is used to store the privileges associated with the job.
This word is not currently used but is allocated for future implementations
of the security system. Further documentation will be provided when the
system is completed.

2.4.8 JOBPRG — The Current Program Name

Two words, JOBPRG, contain the 6—character program name which is currently
running or was the last job run if in monitor command mode. JOBPRG is
Loaded with the program name (packed RAD5O) by the command processor when
the program is loaded or Located for execution. CurrentLy, the only
significance of this program name is in the displays created by the SYSTAT
program (user terminal status dispLay) and the DYSTAT program (video
monitor).

2.4.9 JOi3CMZ — The Command File Size

JOBCMZ is one word containing the size of the current command file area in
the user memory partition if a command file is being processed. If this
word is zero, no command file is currentLy in effect. This word is set to
the initial size of a command fiLe when that file is loaded into the top of
the user partition and is decreased as each line is extracted from the area
and sent to the monitor command processor. When it gets to zero, the
command file is finished and the system returns to normal command mode input
from the user terminaL. The user should not alter this word.

2.4.10 JOBCMS — The Command File Status

JOBCMS is one word containing flags used by the command file processor when
a command fiLe is being processed. These flags should never be altered by
the user, so they are not detailed here. JOBCMS works in conjunction with
JOBCMZ to affect the command file processing scheme.

(Chdnged 1 JuLy 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2—7

2.4.11 JOBERC — The Error Control Address

One word, JOBERC, controls the processing of WD16 hardware bus errors as
described in the WD1Ô Programmer's Reference Manual. If JOBERC is zero a
bus error causes a message to be printed on the user terminal, and the job
is aborted, If JOBERC is non—zero a jump is made to the address specified
in JOI3ERC, which shouLd contain a valid routine for shutting down the
program. Note that the bus error is fataL for this user only and does not
normally kill the whole time—sharing system.

2.4.12 JOBTYP — The Job Type

JOBTYP, one word, specifies the type of job which is assigned to this
jobstream. The following flags are currently implemented:

• J.USR1 ;Job is a user partition
J,NUL=2 ;Job is currently running the null subroutine
J.NEW=4 ;Job is processing a new memory aLlocation
J.LPT=1O ;Job is running the line—printer spooler (LPTSPL)
J.HEX=20 ;Binary inputs and outputs are in hex (not octaL)
J.DER=4O ;Print disk error retry messages
J.VER=100 ;Activate auto—verify mode for disk writesI J.GRD=400 ;Terminal is guarded against SEND and FORCE commands

2.4.13 JOBE3PT — The Breakpoint Address

JOE3BPT is one word specifying the address to jump to if a breakpoint is
encountered during the execution of a user program. JOBBPT is used by the
DDT debug program for breakpoint handLing and not normally used by user
programs.

2.4.14 JO!3SNK — The Memory Bank Pointer

JOBBNK is one word used by the memory management system to define the bank
in which the job's current memory partition resides, It is actually a
pointer to the control item within the memory mapping table which is usedfor turning the bank on and off when the job is alLocated CPU time. This
word must not be modified by the user.

2.4.15 JQ[iDEv — The Detault Device

JOE8DEV, one word, contains the RAD5O device code for the default device to
be used if the file specification being processed by the FSPEC call does not
expLicitly specify a device. Normally this default device is DSK.

(Changed 1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2—8

2.4.16 JOBDRV — The Default Drive

One word, JOBDRV, contains the drive number in binary for the default drive
number to be used if the file specification being processed by the ISPEC
calL does not explicitly specify a drive number. Only used if the device
code matches the code in JOBDEV or if the device code is left to default
also. JOBDEV and JOBDRV normally contain the device and drive number set by
the LOG program when a user logs in. They specify the disk device and drive
which you usually use for processing.

2.4.17 JOBTRM — The Terminal Block Pointer

JOBTRM is one word containing a pointer to the terminaL definition block for
the terminal which is currently attached to this job. If no terminal is
currently attached, this word contains a zero. The first word in the
terminal definition block is the terminal status word, which is available to
you for modification to set various terminal parameters such as echo
control, image mode and lower—case processing. The old monitor call TIDX
would deliver the address of this status word back to you in register RO.
The TIDX call is no longer supported and must be replaced by the more
general call:

JORGET RO,JOBTRM ;Get status word index

As with alL of the JOBxxx calLs, the destination may be any vaLid address
and not just RO as in the example above. The above example will replace the
TIDX call exactly in performance, since TIDX used RO as its destination.

For further information on the format of the terminal definition block and
its use, refer to the source listing of the terminaL service routine
(TRrISER) which is made available to users on a speciaL source diskette, as
well as on the standard system disk pack. The terminal definition block is
defined at the beginning of this routine.

2.4.18 JOBRBK — The Run Control Block

JOBRBK, a 14—word area, is the run control bLock for the jobstream. It is
used for the loading of programs and overlays during job execution and is
set up by the user program with the parameters needed to fetch the next
program or overlay segment prior to the execution of a FETCH calL. Refer to
the description of the FETCH monitor caLl in section 4.1 for more details on
the use of this item.

(Changed 1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM

2.4.19 JOBFPE — The FLoating—Point Trap Address

Page 2—9

JOBFPE, one word, contains the address to jump to if a floating point error,
such as a divide by zero, is executed. A user program which executes
floating point instructions should enter its error trap address into JOBFPE
and not into the vector at memory location 76, since this would destroy the
sharabLe resource of that vector.

2.4.20 JOARNQ — The Scheduling Area

JOBRNQ, a 7—word area, maintains
context switching of this job.
changing links used during the job
the active run queue for future pro
words should be done with caution.

the parameters for job scheduling
The first four words are dynarni

scheduling process to place the job
cessing. Any aLtering of these four

The fifth and sixth words are used to determine the job's run priority.fifth word (at JOBRNQ+10) is the time counter which is decremented once
each clock interrupt whenever the job is running. When this count goes
zero, the job is put into the wait state and another job is activated.
sixth word (at JOI3RNQ+12) is the actuaL priority of the job (set up by
JOBPRI command) and is used to initialize the above time counter each
the job is given control of the CPU for running.

The seventh word is used for storage of the current stack pointer
the job is not in the active run state. The scheduLer restores
pointer from this word each time the job is reactivated.

2.4.21 JOBDYS — The DYSTAT Address

vaLue when
the stack

JOBDYS, one word, contains the address of the byte in the VDM screen memory
area for the job execution arrow. It is set by the DYSTAT program and
referenced by the monitor job scheduler. The user should not aLter this
address

2.4.22 JOBWAT — Semaphore Wait Chain Link

RQST and RLSE use this field to maintain a chain of JCBs waiting on aparticular semaphore. This field contains the JCB address of the next jobin this wait chain.

(Changed 1 JuLy 1981)

and
cal ly
into
lu-k

The
for
to

The
the

time

JOB SCHEDULING AND CONTROL SYSTEM Page 2—10

2.4.23 JOBEXT — Job Exit—Trap Stack Pointer

This field contains the value of the stack pointer the last time you
executed an AMOS or PCALL monitor call. It is reset to the previous value
each time you go through the exit—trap system.

2.4.24 JOBMSG — Job Message System Area Pointer

This field contains the address of the Link system message area for this
job.

2.4.25 JOBIAL — Job Impure Area Link

Reserved for future use. Do not use.

2.4.26 JOBSTK — The Job's Stack Area

JOBSTK is a 100—word area that acts as the stack for this job. SR is set to
the top of this area when a new program is initiated. You may reset your
own stack pointer by moving the address of a larger area within your own
partition, if the program needs more stack area. Be sure to allow at Least
20 extra words or so for possible reaL—time interrupt handling which needs a

valid stack area for register saves. The job scheduler also saves all user
registers and processor status on the user stack during job context
switching.

The label "JOBSIK" is not defined explicitly in SYS.MAC, but the area exists
as the last 100 words in the JCB. The area has not been labeled because the
JCB may be increased in size as the need arises, and the JOBSTK area should
not be referenced by a label which will change value in future releases.

(Changed 1 July 1981)

CHAPTER 3

MEMORY CONTROL SYSTEM CALLS

The AM—lOG system contains a fairly sophisticated memory control system,even though there is no memory protection or mapping hardware associatedwith it. In order to make maximum use of the memory resources available andminimize system crashes due to memory violations, the assembly language
programmer should understand how the monitor allocates memory and the rulesunder which memory should be accessed. This section describes the memoryallocation scheme and the monitor calls that assist you in using memory inthe proper way.

At present, memory may be handled in three different ways. Your AM—lOG orAM—100/T system may have only one 64—kilobyte memory board; you can addmemory boards to your configuration, jumpering them in such a way as toallow bank—switching; or you can use the AM—700 Memory Partition Controller(MPC) board to expand memory without requiring bank—switching. (For detailson MPC, refer to Memory Management With The Memory Partition Controller inthe "System Operator's Information" section of the AMOS Software UpdateDocumentation Packet..)

On the 64—kilobyte system, the top 256—byte portion is unavaiLable becauseit is mapped to the I/O ports. On a bank—switching system, 256 bytes ateach junipering junction are unavailable. On the MPC system, all memory maybe aLlocated for either the monitor or user partitions.
In aLl three memory systems, the AMOS monitor resides in Low memorybeginning at location zero and extending upward as far as the monitorrequires (typically around 14K bytes). The remaining memory above themonitor up to the end of the total amount of memory in your system isavaiLable for assignment as user memory partitions for each of the jobs.User partitions can be of varying sizes; none, however, may exceed 64K bytesminus the monitor size. The amount of memory a user program has availableis therefore defined as the single contiguous memory partition which hasbeen assigned to his job by the appropriate operator command (MEtIORY,JOI3NEM, or JOBSIZ).

This memory partition block is then allocated into smaller defined blockscalled "modules," which are used by the system and the user to containprograms and data areas. Monitor calls exist which aLLow the user programto locate the absolute boundaries of its own memory partition and also toallocate, change, and delete memory segments in the form of defined modules.

(Changed 1 July 1981)

MEMORY CONTROL SYSTEM CALLS
Page 3—2

These modules can be named just like files (filename.extension), so they maybe Located by that name. Any program loaded for execution will be in theform of a module. During execution, some programs create other modules fordevice buffers, data tables, etc.

3.1 MEMORY PARTITION FORMAT

The memory partition assigned to a job may be located anywhere in memorydepending on the memory that was available when the job assigned it using
the appropriate aLLocation command. The user program may not count on anyspecific location for this partition. Within the partition, memory modules
are allocated upward beginning at the base of the defined partition and
building moduLes on top of each other as Long as space permits. Modules maynot be built that will extend past the top boundary of the user partition.
As modules are deleted from memory, all modules above them are automatically
shifted downward to fiLl up the space that the deleted module left. Also,
when any module is changed in size, the moduLes above it are shifted in
position accordingly. This method insures that all available memory isalways at the top of your partition in one contiguous block. This method of
grabbing the first portion of free memory to Load a program into is the main
reason that all programs must be written in totally relocatable code.
Figure 3—1 shows a typical memory layout for three users bperating in a 64K
system. The free memory at the 56K boundary could be used by a fourth job
or by a current job that needs to expand.

Three monitor caLls return information about your memory partition as it
happens to be allocated. These three caLls alt, take a single standard
argument into which is delivered the absolute address of the base, end, or
free base of the user memory partition. The three calls and the addresses
that they return are listed below:

USRBAS arg — absolute base of user memory partition (last word)
USREND arg — absolute end of user memory partition (last word)
USRFRE arg — current base of remaining free memory (last module+2)

Since modules must always occupy an even number of bytes, the above calls
always return an even address. If no modules are aLlocated in the currentpartition, the USRFRE address equaLs the USRBAS address. Otherwise, the
USRFRE address is the word following the last currently alLocated module inthe memory partition. The remaining free user memory may be calculated by
subtracting the USRFRE address from the USREND address.

Figure 3—2 shows a typical user job partition during the execution of a
program which was loaded automatically by the operating system. The programitself was the first module to be allocated in the user partition and thenwas executed after being loaded. It remains in memory untiL it completesits task and exits to the monitor, at which time it is deleted by theoperating system monitor. During execution, the program allocates a 1K data
table module which may be used for storage of symboLs or some similarfunction. Two I/O files are then opened on disk which causes the operating
system file service routine to allocate the two disk butter modules. Theremaining memory in the partition has not yet been allocated in our example.

(Changed 1 July 1981)

>8k

>8k

16k

) 16k

) 12K

Free Memory

User a

56K

aSk

32K

User 2

MEMORY CONTROL SYSTEM CALLS Page 3—3

Note: Memory Sizes
are typical

Total resident monitor
size is 16K, leaving aSK
for Laser partitions

User I

Resident Programs

Resident Monitor

a

Memory Map for a Typical 64K System (3 users)
Fig 3—1

MEMORY COiTROL SYSTEM CALLS
Page 3—4

Command File (if used)

-c USRErJD

Free Memory Area

Available to this job only)

Disk Suffer 512 bytes

Disk Buffer 512 bytes

Data table 2K bytes

User Program (Running)

BK bytes

Memory Map for a typical User Job Partition
Fig 3-2

top:

Bottom:

USRFRE

These modules allocated by
GETMEM calls during the
execution of the program

User program module loaded
by operating system when the
program name was entered
as an operator command

USRSAS

MEMORY CONTROL SYSTEM CALLS
Page 3—5

Note that the IJSREND cad does not actually return the absolute end of thepartition hut rather the end of the available free memory at the time of thecalL. If a command file is in progress, it occupies the upper part of thepartition which we do not wish to alter during the execution of a program.In fact, the program should not have to take into consideration whether ornot it was called by direct command or from a command file. Use of theUSREND call insures that the user program may use all of free memory withouthaving to compensate for the remaining part of any command file module.

Although the standard use of memory by the operating system is through theuse of the memory management system calls (to be described next), you mayfind it easier to use tree memory without regard to module boundaries,especially for use in variable lenqth tables or hashing techniques. Forthis reason, the free memory space is always defined as the area between theaddresses returned by the USRERE and IJSREND calls. Note that theinitialization of files normally results in the allocation of a buffermodule; the operating system alLocates this buffer at the current setting ofthe USRFRE address, then updates that USRFRE address. Therefore, you musthe sure that all I/O buffers and any work modules are allocated beforefreely using the memory above the USRFRE address. The INIT and FETCH calls
both cause the indirect allocation of a memory module in addition to thedirect allocation or alteration of modules by the GETMEM, CHGMEM and DELMEMcal Is.

3.2 MEMORY MODULE FORMAT

Memory modules are the basic unit of formal data structure within the usermemory oartition. They are always allocated on word boundaries and mustcontain an even number of bytes to maintain this format. The monitor callsautomatically pad an odd—sized moduLe with a null byte to even it up. Allmodules contain five housekeeping words followed by any number of data wordsfrom zero to the maximum size left in the user memory partition. The fivehousekeeping words are always allocated, so a single—word module really
takes up six words of memory.

The module format is as follows:

Word 1 — total size of module in bytes including the housekeeping wordsWord 2 — module flag word
Word 3 — module filename packed RADSO
Word 4 — module filename packed RADSO
Word 5 — module extension packed RADSO
Words 6 thru n — module data area

Figure 3—3 gives a pictorial view of the above standard module format. Thedata area is usually the only area with which the user is concerned and soall references are made from the base of this area. The SRCH and FETCHcalls (described in section 4.1) return this absolute address when locatingor loading the requested module, instead of the address of the base of thehousekeeping words. References to the housekeeping words should therefore
he made via negative offsets relative to the data base address.

MEMORY CONTROL SYSTEM CALLS
Page 3—6

When scanning for a specific module or locating the end of the currentmodule string, you may set your index using the USRBAS call, which returns
the address of the size word of the first allocated module. You can thenmerely check the housekeeping words for the correct module name or other
determining parameters and, if the module is to be bypassed, add the size
word to the index. This bumps the index to the next module allocated. The
Last module always has a zero word following it, and you must be carefuL not
to destroy this zero word if you are manipulating free memory directly
without allocating it using the memory calls.

The module filename and extension follow the same format as the filenames on
disk if the module in memory is named. The name is optional and need be
used only if the module is to be located by name at a later time.

Modules may be either temporary or permanent depending on the method used to
load them into memory. A module is made permanent by setting the file bit
on in the housekeeping flag word when the module is allocated. Temporary
modules are automatically deleted by the monitor when the program finishes
and executes the EXIT call. Permanent modules are not automatically deleted
but may be deleted by either the operator DELETE command or the monitor
DELMEM call. Forcing a zero into the size word of the module is another way
of deleting it, but this is not the recommended way since it also deletes
all modules above it (the zero is the module area termination word).

3.3 MANIPULATING MEMORY MODULES

Three monitor calls are used to create, alter and delete these memory
modules. All three calls take a single standard wgument which must be the
address of a 2—word block called a memory control block (MCB). The first
word of this MCB contains the absolute memory address of the data area in
the allocated module (past the housekeeping words) . The second word
contains the size of the data area in bytes (ten bytes less than the total
module size since the housekeeping words are not included). The MCB
therefore is the user's block, which defines a contiguous area in memory by
its base address and size in bytes. You need not he concerned with the
housekeeping words unless you need to access them directly; such a necessity
should be rare.

The following three calls are used to manipulate memory modules:

GETMEM MCB — allocates a new memory module at current USRFRE
CHGMEM MCB — changes the size of the module defined by MCB
DELMEM tlCB — deletes the memory module defined by MCB

The Z—flag is reset if GETMEM and/or CHGMEM fail (i.e., there is insufficient
memory)

MEMORY COi'JTROL SYSTEM CALLS

+n

Page 3—7

+4

+2

Sass:

-2

-4

-e

—10

—12

User Program or Data Actual data area size as
specified in GETMEM call

Standard Memory Module Format
Fig 3-3

Module Extension (RAD5O)

Module Name Word 2 CRADSO)

Module Name Word I (RADSO)

Module Flag Word

Module Size Word*

SRCH, FETCH & SETMEM call!
return this address

5 housekeeping words

*Module size equals data
area size plus 10 bytes
(S words)

MEMORY CONTROL SYSTEM CALLS
Page 3—8

3.3A ALlocating a Memory Module

The following example shows the allocation of a 100—byte module

NOV #100.,MCB+2 ;set module size as 100 (decimal) bytes
GETNEM McB ;allocate module (NCR gets its address)
SNE NDMEM ;no memory available

MCB: WORD 0 ;receives address of module data area
WORD 0 ;size of module data area in bytes

NOMEM: EXIT

3.3.2 Changing a Memory Module

You may increase the size of the same module by:

ADD #20.,MCB+2 ;increase size word by 20 bytes
CHGMEM NCR ;change its size
BNE NOMEM ;not enough memory available

The above code causes the monitor to adjust the module housekeeping size
word to reflect the new size. The address of the module does not change.
However, note that the USRFRE address advances by 20 bytes and that any
modules allocated after the one at MCB are shifted up in memory; but their
corresponding addresses in their NCR are not adjusted by the monitor, I/Obuffers allocated after the NCR module will therefore be erroneously
addressed after the change, so the CHGMEM call must be used with care.

3.3.3 Deleting a Memory Module

To delete the above module we use the code,

DELMEM NCR ;c4elete the module

3.3.4 Permanent and Temporary Modules

Recall that all temporary modules are automatically deleted by the monitor
when the program exits. You may force the module to he permanently left inmemory by giving it a name and setting the file bit (defined in SYS.MAC as"FlU') in the flag word. The following example illustrates the allocation
of a 200—word module which is made permanent with the name "TABLEl.DAT":

MEMORY CONTROL SYSTEM CALLS
Page 3—9

MOV #200.,TBL1+2 ;set size as 200 bytes
GETMEN TBL1 ;allocate the module
BNE NOMEM ;no memory available
NOV TSL1,R0 ;set RO to index the data area base
NOV #[DAT],—(Rfl) ;set the module name and extension (RAD5O)NOV #ILE1J,—(Ro) ; into the housekeeping words
NOV #CTABJ,—(R0) ; in reverse order for efficient use of RU

#FIL,—(RO) ;set permanent file bit on in flag word

TELl: WORD 0 ;receives address of module
WORD 0 ;size of module in bytes

Permanent memory modules may be saved onto disk using the operator SAVEcommand, or they may be deleted from memory when done by the operator DELcommand. Refer to the AMOS User's Guide (DWM—O0l0O—35) for details onthese commands.

3.4 MEMORY MAPPING SYSTEM

The AMOS system is capabLe of support inc memory in excess of 64K by a simple
hank switching technique which turns selected memory boards on and off undercontrol of the operating system. This section defines some of the technical
aspects of that system. It is assumed that you are already familiar withthe operational aspects of the memory management system from the standpointof setting up the SYSTEM.TNI file commands and operating procedures.

You must define for your own application the normal 64K memory as two
general areas called sharabLe and switchable memory. Sharable memory alwaysstarts at location zero and extends upward far enough to totally contain the
resident operating system and any system programs or sharable memory areaneeded for the application, Switchable memory then may occupy the remainder
of the memory area up to the 64K address (octal 177376 inclusive).
There is only one sharable memory area that is always active. Theswitchable area, however, may be occupied by multiple memory boards referredto as "banks." Banks are defined to the operating system during systemstartup with the NENDEF statements. Each MEMDEF statement defines thememory hoard (or boards) which are to be activated when that bank isselected by the operating system. Selection of the bank for activation is
done when one of the user jobs which resides within that bank is granted CPUtime by the AMOS job scheduling system. This action is automatic andtransparent to the user. Only one bank may be active at a time, since allbanks effectively respond to the same memory addresses (the area defined asswitchable memory).

MEMORY CONTROL SYSTEM CALLS Page 3—10

3.4.1 Internal Table Format

The memory bank switching system is controLled by a tabLe which is buiLt by
the MEMDEF statements during system startuo time. The table is basicaLly a
Linked List of muLti—word entries that resides within the monitor area. One
entry defines the sharable memory area, and there is one entry for each bank
defined by a MENDEF statement. Two words that reside in the monitor system
communication area are used to controL the memory management system. These
words are Labled "MEMDEF" and "MEMBNK"; MEMDEF stores the base address of
the table just defined, and MEMBNK stores the memory bank which is currentLy
active. If memory manaaement is not in use (no MEMDEF statements appeared
in the SYSTEM.INI fiLe) both of these words contain a zero vaLue.

A system configured with an AM—700 or Memory Partition Controller (MPC) has
a different controLling data structure than one using traditionaL bank
swapping. (For information on the MPC, refer to the "System Operator's
Information" section of the AMOS Software Update Documentation Packet.) The
data structure is a linked list of queue eLements, each containing four
words. One element is aLlocated for the sharabLe memory area, one for each
job on the system, one for each piece of switchable system memory, and one
to indicate the end of physical memory. These elements are created by JOBS,
BITMAP, and SYSTEM during the system initialization procedure. The queue is
pointed to by the word labeled "MEMDEF" residing in the system
communications area.

3.4,1.1 The MEMOEF Word — The MEMDEF word in the system communication area
contains the address of the first entry in the table, which is always the
entry defining the sharable memory boundaries. The format for this entryis:

Word 1 — link to next entry
Word 2 — base address of sharable memory (0)
Word 3 — top address of sharable memory plus 1

The remaining entries define the switchabLe memory banks in use and have the
format:

Word 1 — Link to next entry (0 if this is last entry)
Word 2 — base address of this switchable bank
Word 3 — top address of this switchable bank plus 1
Words 4 through n — hardware controL codes for bank switching

The hardware control codes are one or more entries used to turn the memory
boards on and off during bank switching. There is one control code for each
physical board which has been defined as part of this bank. Each controL
code is two words in Length, with the first word containing the address of
the hardware port for the memory board and the second word containing the
switch—on and switch—off bytes (Low and high bytes, respectively) that aresent to that port. Note that in the MEMOEF statements you can specify more
than one board per bank (even different types of boards) by separating the

MEMORY CONTROL SYSTEM CALL.S

The element describing the sharable memory
element describing a switchable system memory
The last element has a C in word 1. The base
in words 3 and 4 are magnitude 256; that is, t
right eight bits. The sharable memory element
contains the end of the system area. The fi
word 3, as the base address is an offset from
The element for the sharable memory area is flfor jobs are next, occurring in the sequence
them. Next are the elements for switchable
reverse order of the BITMAP statements t
element indicates the end of physical memory.
what base and limit addresses are and how
documentation for the AM—700.

Page 3—11

ystem (see reference in section
data structure used by the

Each entry has the following

area has a 0 in word 2. An
module has a —2 in word 2.
and limit addresses contained

he real memory address shifts
has a 0 in word 3, and word 4

rst job on the system has 0 in
the end of the sharable area.
rst in the queue, the elements
that the JOBS statement lists

system memory, occurring in
hat generated them. The last
For more details on exactly

they work, refer to the hardware

3.4.1.2 The JOBBNK Word — The JOBBNK word in each job's JCB containsaddress of the word 4 in the above definition for the bank in which thecurrently resides. This address is the base of the control codes forhardware switching operation. The MEMBNK word in the system communicat
area always contains the same address as the JOBBNI< word for the job thatcurrently running. This is used by the scheduling and switching systemturn off the current job and turn on the next job for running.
For a Memory Partition Controller (MPC) system (see reference in section3.4.1 above), the JOBBNK word in a job's JCB points to word 3 in thecorresponding MEMDEF queue element. The MEMBNK word in the systemcommunications area always points to word 3 of the element corresponding tothe memory partition currently mapped in by the AM—700.

board definitions with slashes. The final hardware code is followedsingle word of zero to indicate the end of the codes for this hank.
On a Memory Partition Controller (MPC) s
3.4.1 above), the word MEMOEF points to the
operating system to control memory partitions
format:

by a

Word 1
Word 2
Word 3
Word 4

— Link to the next entry
— JCB pointer
— Base address of partition
— Limit address of partition

the
job
the
ion

is
to

MEMORY CONTROL SYSTEM CALLS Page 3—12

3.4.2 The Bank Switching Process

emory bank switchinq is performed by the job scheduler by a simple sequenceof steps:

1. Use the MEMBN}(word to locate the currently active bank entry.
2. Send the switch—off byte to the port address for each control code.
3. Use the JOBBNK word for the next job to be run to locate the bank

entry for that job.

4. Send the switch—on byte to the port address for each control code.

5. Store the new job's JOBBNK data into the MEMBNK word for next time.

3.4.3 The BNKSWP Monitor Call

Under normal operation of the AMOS system each user is confined to an areathat resides totally within any one defined memory bank. The BNKSWP call
may be used by a more sophisticated assembly language routine to allow one
user to access more than one hank of memory. The BNKSWP monitor call
expects register Ri to contain the address of word 4 of the bank which is to
be activated (similar to the automatic operation which uses the addresswithin the JOBBNK word). The currently active memory bank is switched off
and the new bank (per Ri address) is switched on. The MEMBNK word is
updated properly to reflect the newly activated memory bank. Register Ri is
also changed to contain the index to the previously operating bank, thereby
allowing a convenient return to reactivate the previous bank if Ri is not
altered.

Note that since the current bank is switched off, the BNKSWP call must be
executed from somewhere in sharable memory to prevent the return fromexecuting instructions in the new bank. This can he accomplished in one of
several different ways, including pushing the routine onto xour stack(within the JCB) or executing a special subroutine which has been loaded
into system memory.

On a Memory Partition Controller (MPC) system (see reference in section3.4.1 above), the BNKSWP call functions the same as it does on a bank
swapped system, except that Ri is expected to point to word 3 of the MEMDEF
queue element describing the memory partition the caller wants to map in.The same restrictions that existed before still apply. The user must checkbit 15 in the SYSTEM word residing in the system communications area. Ifit's on, he must realize that the MEMDEF queue is structured differentlythan it would he on a bank swapped system.

MEMORY CONTROL SYSTEM CALLS
Page 3—13

3.4.4 The DMADDR Monitor Call (For Memory Partition ControLler)
The AM—720 or Memory Partition Controller translates memory addresses forDMA devices as well as for the M—1Ofl/T processorS This feature aLlows DMAactivity to occur in one job's partition concurrently with another jobrLJnnjq in another partition. On bank swappina systems, only the job thatis dome DMA activity can he running. All other iohs are locked out for theduration of the DMA operation. Device drivers for DMA I/O devices (e.g.,the magnetic tape) must include a DMADDP monitor call when executing on anMPC system. The one argument passed to the DMADDR is the DMA level of thedevice. When called, DMADDR sets up the appropriate base address and limitaddress registers on the MPC. If DMADDR is called on a system configuredwithout the MPC, nothing is done at all.
In order to utilize the advantages of the MPC, the driver should test theword SYSTEM in the system connumications area; if bit 15 is set, other jobsshould be allowed to run while DMA activity is ongoing. If hit 15 is notset, the normal bank—swapping code should be executed. The calling sequencefor DMADDR anpears as follows:

DMADDR DMALE\j ; Set up MPC hardware for this DMA activity.
DMALEV is the DMA level of the device, which is constant for any particulardevice hut changes from one device to another. There are no returnarguments from DMADDR.

(For a more complete explanation of the Memory Partition Controller, referto the "System Operator's Information" section of the AMOS Software UpdateDocumentation Packet.)

CHAPTER 4

LOADING AND LOCATING MEMORY MODULES

Memory modules may contain an optional fiLename and extension, which may beused to locate modules, both in memory and on the disk. This chapter dealswith locating and loading modules via these optionaL filenames andextensions. Normally, when you enter a command from the tc.rminal, AMOSfirst searches for the reouested program in the resident system memory area,
then in your own memory partition. If the program is resident in either of
these places, it need not be loaded in from disk, and execution beginsimmediately using the resident program in system or user memory.

4.1 THE SRCH AND FETCH CALLS

The user may make use of two monitor calls (FETCH and SRCH) for locating andloading modules in memory by name. In actuality, the SRCH call is a
specialized version of the FETCH call and is included only for convenience
and compatibility with older programs that are still in the system.Basically, the SRCH call only locates a module if it is in memory, while the
FETCH call automatically loads a module into memory from the disk if it isnot found to be in memory already.

Both calls have the same basic format:

SRCH namebloc k,i ndex,cont rol—flags
FETCH nameblock,index,control_flaqs

4.1.1 Specifying the Module Name

Nameblock is a standard argument used in the SRCH and FETCH calls to specifythe name of the module to be located or loaded. The format of the actual
nameblock referenced is different in each case, however. In the case of theSPCH call, nameblock refers to a 3—word block of memory (or 3 contiguousregisters) containing the filename and extension of the desired module inRP.D5O packed form. For the FETCH calL, nameblock refers to a full fileDataset Driver Block (DDe) which allows the user to specify a full disk file

LOADING AND LOCATING MEMORY MODULES Page 4—2

specification to load the module from in case it is not located in memory.
The DDB has not yet been introduced and is defined and expLained in section
6.1.1. In brief, the DDS is a 24 (octal) word area in memory which containsall the information and work areas to define and manipulate a specific disk
tile in any area on any defined disk device. The DDB is normally set up by
processing an ASCII file specification with the FSPEC call (more on this
later)

4.1.2 The Module Address

The second argument is the index which is to receive the absolute memory
or loaded) memory module data area. Refer to figure
chapter for the layout of the memory module and the
set to. The index argument is also a standard
normal mode is to receive the module address in a
If the index argument is not specified in the
is register RD which is compatible with older

address of the located
3—3 in the preceding
place that this index is
argument, although the
generaL register (RO—R5).
call, the default used
versions of this system.

4.1.3 Flags

The third argument is the optional control flags which may he used to
control the operation of the SRCH and FETCH calls. This argument is any
valid expression which evaluates down to a value in the range of 0—17
(octal). Only the low order four bits are significant and they have been
given the following mnemonic definitions in the system library SYS.MAC:

;Fetch module from disk if not in memory
;Search user memory only
;Load absolute segment from disk
;Set module permanent file flag after load from disk

4.1.3.1 F.FCH — Fetch Module From Disk — F.FCH is the flag that actually
differentiates the SRCH call from the FETCH call, since they both
technically are the same SVCB supervisor call. The SRCH call forces this
bit off while the FETCH call forces this bit on. When set, the F.FCH bit
causes the nameblock to be interpreted as a full file DDP and the module to
be loaded from disk if not located in memory first. Since the use of this
bit is controlled by specifying either SRCH or FETCH as the calling opcode,
you should not include this hit in the control—flags argument of your call.

F. FCH=1

F. US R=2
F.ABS=4
F. FIL=1O

LOADING AND LOCATING MEMORY MODULES
Page 4—3

4.1.3.2 F.USR — Bypass System Memory Search — F.USR is the fLag used tospecify bypassing the searching of the resident system memory area for themodule and proceed directly to searching the user area only. This allowsspecific versions of modules to be loaded and used even though they may heduplicated in the system memory area. This flag is not normally used byprograms other than system software.

4.1.3.3 F.AAS — Bypass Memory Search — When set, F.ADS forces a directsearch to the disk for the requested module, bypassing all memory searchesthat would normally occur. The module is then loaded into memory at theabsolute address specified by the index argument in the calling seouence.No housekeeping words are allocated, and the first word of the module getsLoaded into the first word specified by the index argument. Note that thisform is the only time the index argument is used to pass an address to theFETCH processor instead of being used to receive the address of the locatedmodule. The F.ABS form of the FETCH call is used to load orogram segmentoverlays.

4.1.3.4 F.FIL — Mark Module as Permanent — F.FIL is used to force thepermanent file flag hit on in the module flag word after the module has beenloaded from disk. The FETCH call always places the filename and extensioninto the housekeeping words 3—5 so even if the module is only temporary, itmay still he located by name as boa as the program which loaded it is stillactive. This is useful for dynamic loading of subprograms and/or datamodules. Setting the F.FIL flag on in the control—flags argument means thatthe module will not be deleted from memory by the operating system when thecalling program finally exits. The operator LOAD command uses this methodto load a program into memory and leave it there to he calLed by name.

4.1.4 Completion Codes

When the SRCH or FETCH call returns, the user must test the status of theZ—bit to see if the module was located or loaded successfully. If the Z—hitis set (tested by BEG), the operation was successful. Tf the Z—bit is notset (tested by BNE), the module was either not located or would not fit intothe remaining free memory within the user's partition.

CHAPTER 5

MONITOR QUEUE SYSTEM CALLS

The monitor queue is a List of blocks in system memory which are linked toeach other in a forward chain. The base of this chain, and the count of theblocks in the chain, are contained in the QFREE monitor communications words(see Appendix B). Each queue bLock in the chain links to the next one bystoring its address in. the first word of the queue block. The last queueblock in the chain contains a zero link word to flag it as the end. Eachqueue block is currently S words (16 bytes) in size, although this value mayincrease with the next release of the fiLe system. The monitor initiallycontains 20 bLocks in the available queue list.
uring normal monitor operation various functions use these queue blocks toperform certain tasks. When a routine needs a queue block, it issues a QGETmonitor call, which delivers the first available queue block by returningits base address in register R3. The routine then uses this area totemporarily store information during processing. When the routine no longerrequires the block, it issues a QRET monitor call, which returns the queueblock to the available list for later re—use.
The monitor queue system is necessary to provide storage for interruptdriven hardware (AM—300 board) and for storage during memory managementoperations. The queue blocks always reside in sharable system memory andtherefore may be used by interrupt routines without regard to memorymanagement context switching. The monitor queue system will be used moreand more as the monitor is improved but is also available to the user ifdesired. The XLOCK subroutine (for multi—usej- locks in Alphabasic) uses thmonitor queue system to store the lock parameters.

5.1 INCREASING THE AVAILABLE QUEUE LIST SIZE

It is apparent that the number of queue blocks in use at any one time varieswith system loading, number of users, and tasks being performed. Someapplications may demand a larger available list of queue blocks to insuresafe system operation. A check is performed to see if the available queueis exhausted. However, you can increase the size of the available queuelist during system startup time.

The monitor is initially generated with 20 free blocks in the availablequeue. At any time in the SYSTEM.INI file prior to the final SYSTEM commond

(Changed 1 July 1981)

MONITOR QUEUE SYSTEM CALLS
Page 5—2

you may execute the QUEUE nnn command which allocates "nnn" more queueblocks for general use. A typical increase for a large system with severalusers running extensive applications might be 100 more blocks for a total of120.

Once the system is up and running no more queue blocks may be added to thelist, so you must give your best guess at your total requirements. The
QUEUE command takes on a new life once the system is running. If you type
the QUEUE command, the system responds by typing back the current number offree queue blocks in the available queue list. It is by this method that
you may keep a close eye on the relationship between the system operationand queue block usage.

5.2 QUEUE BLOCK USAGE BY THE SYSTEM

This section lists the areas of the monitor which currently make use of the
queue system, to give you a better idea on how to estimate your particular
needs. Remember that this list will probably expand in future releases ofthe monitor. Also, add to th.is any applications that you may write which
include the QGET and QRET calls (described in section 5.3).
The terminal service system makes frequent use of the queue system during
output operations. A typical terminal driver may have up to four or five
queue blocks in use at any one time, for Linking buffers and storing
immediate data values.

The monitor SLEEP call uses one queue block during the time the job isas leep.

The Persci disk driver uses one queue block while the head is loaded.
The XLOCK AlphaBasic subroutine uses one queue block for each separatesystem lock that is currently active by any job. This block is not returnedto the available list until the lock is released by the job that has itlocked.

The FLOCK Alphasasic subroutine uses a number of queue blocks that varieswith the number of jobs accessing flies, the number of files open at onetime, and the number of records open for each file. Currently, at any givenmoment during the use of FLOCK, the number of queue blocks being usedequals:

twice the number of different files open using FLOCK, plus
the number of different records open using FLOCK, plus
the number of jobs with files open using FLOCK, plus
the total number of FLOCK opens (i.e., ft of Action 0's)

that haven't been closed, plus
the total number of record uses (i.e., ft of Action 3's)

that haven't been released

If FLOCK changes in the future, the above formula may also requiremodification.

(Changed 1 July 1981)

MONITOR QUEUE SYSTEM CALLS
Paqe 5—3

The Last two factors of the above equation anticipate circumstances wherethe same fiLe and/or the same record is being accessed by more than one jobat a time. If two jobs are reading the same file, that is two opens or twoAction 0's.

The line printer spooler, as of version 4.1, uses the queue system to storethe printer queue as well as a list of printers connected to the system.

5.3 QUEUE SYSTEM MONITOR CALLS

You can utilize the monitor queue system by using one of• the four monitorqueue management calLs (QGET, QRET, QADD, QINS). These calls are fast foruse in interrupt level routines. All calls work through register R3 and noother registers are disturbed. Since most queue blocks will be used in someform of sharable resource chain or interrupt level routine, the processormust be locke& before executing any of the queue management calls.Violating this rule could destroy the available queue list or result ininter—job errors. None of the calls require any arguments to be passedexcept for the address in R3.

ns the first free queue block from the available list andaddress in R3. The 7—flag is set if the queue block wass reset if no queue blocks were available. The queue blockfrom the available List, and then all words in the bLock

5.3.2 QRET — Return a Queue Block

This call returns a queue hiock to the available queue List inThe address which was in the first word of the block (usually anext block in your chain) is returned in R3 after the bLock hasback into the available queue list. AU queue blocks thatallocated by OGET, QADD or UNS should eventually be returned toby the ORET call when they are no longer needed.

5.3.3 QADD, QINS — Manipulating Queue Blocks

Similar to the QGET call, these two calls obtain the first free queue blockfrom the available list. The 7—flaq is set if the queue block wasavailable, and is reset if no queue blocks were available. If available,the queue block is linked into your own specific list whose address is inR3. This is because most system calls use queue blocks as elements of somespecific List, depending on the application. The XLOCK subroutine, for

5.3.1 OGET — Obtain a Free Queue Block

This call obtai
returns its base
available, and i
is first removed
are cleared to zeros.

the monitor.
link to the
been linked

have been
the monitor

MONITOR QUEUE SYSTEM CALLS Page 5—4

instance, maintains a list of all active system locks and adds or deletes
queue blocks from this List as Locks are set and reset.

The standard format of these individuaL Lists foLLows the format of the freeList. Each bLock links to its successor by storing its address in the firstword of the block. ALL other words in the queue block are available for thestorage of specific data. The last block in the list contains a zero in
word 1 to mark the end of the list. The QADD caLL scans down the chain
marked by the address in R3 and then inserts the new Queue block at the endof the existing list. The QJNS call inserts the new queue block in the
chain at the point indexed by R3 and links the remaining list elements (if
any) to the newly inserted block. Roth calls then return the address of the
second word of the new queue block in R3. This is the base of the data area
of the queue block where you may store the data.

Remember that the current size of each queue block is eight words in length.
The QADD and QINS calls place a link in the first word, leaving seven words
of data storage for your application. The QRET call always requires the
address of the first word when returning the queue block to the available
List, regardless of the call used to obtain the block.

CHAPTER 6

THE FILE SERVICE SYSTEM

The AMOS monitor has a simple yet powerful device—independent fiLe servicesystem which relieves the programmer of the task of I/O coding for eachdevice with which he wishes his program to interface. In addition to thisdevice independence, the monitor contains all routines to manage the diskfiLe system on a Logical—call basis. The programmer need not he concernedwith the exact physical placement of files on the disk except in rare
instances where the system software is being developed or tested. Themonitor also contains an efficient means for developing new device driversto he incorporated into the system when unsupported devices must heinterfaced. This section gives a general overview of the file service
system and describes the Dataset Driver Block (abbreviated as DDB) which isthe descriptor link for all I/O and file calls to the monitor.

6.1 THE DATASET DRIVER BLOCK

ALL I/O operations and file operations are accomplished by monitor calls
with reference to a DDB, which defines the device or file being operated
upon. Whether the operation is to a unit—record device such as a printer,or to a specific file within a file—structured device such as a disk,
depends upon the parameters passed to the monitor through the referenced
DOS. There is no limit to the number of devices or files that may be activeat any given time, but there must be one separate 0DB for each device orfile in use concurrently. There are no internal channel numbers or devicenumbers to limit the number of concurrently active devices or files. Thegeneral sequence of events for the compLete processing of a device or file
operation can be summed up as follows:

1. The DOS is set up with the defining parameters such as device name,
drive number, filename and extension, project—programmer number,etc. This data normally comes from the processing of an ASCII file
specification such as DSK1:FILTST.MAC[1o1,1] by an FSPEC call.

2. The I/O buffers are allocated either directly by the user programor by an INIT call referencing the DOS in use.

THE FILE SERVICE SYSTEM
Page 6—2

3. The logical opening processes for the device or tile are performed,
normally by an OPEN call referencing the DDB.

4. Data transfers to or from the device are performed by either READ
and WRITE calls for physical transfers or INPUT and OUTPUT calls
for logical transfers.

5. The Logical closing processes for the device or file are performed,
normally by a CLOSE call referencing the DDe.

The monitor contains complete error processing routines which aLlow the
programmer to specify (by flags in word 1 of the DDe) whether any
uncorrectable errors are to result in an automatic error message to the
operator on his terminal, an aborting of the program and return to monitor,
or both. You may also elect to process the errors yourself by checking the
error code returned in word 1 of the DDe.

6.1.1 DDB Format

Fioure 6—1 shows the format of the DDB which must be allocated within the
user program area and set up by the user before any I/O operations can take
place. The DDB is 24 (octal) words in size and is usually allocated by a
BLKW 24 statement. The DDB can be assigned any tag which will then become
the reference tag for atl subseauent operations to that dataset. Some of
the items in the DDB you must set up before certain operations may be called
for, whiLe other items are set up and used by the monitor file service
routines. The following descriptions explain the use of each item.

6.1.1.1 Error Code — This byte is set to a non—zero code at the completion
of an I/O operation that was unsuccessful for various reasons. A zero
indicates the operation was successful. You need to test this byte only if
the error control flag in the ftags byte (DDB+1) specifies returning to the
user on an error condition or if the operation allowed a non—fatal error
condition to occur. The error codes are listed at the end of this section.

THE FILE SERVICE SYSTEM
Page 6—3

ODE:

+2

+4

+6

+ 10

+ 12

+ 14

+ 16

+20

+22

+24

+ 26

+30

+ 32

+ 34

+ as

+40

+42

+44

+45

(Changed 1 JuLy 1981)

Dataset Driver Block
Fig 6—1

OSICIIFILNANI .EXT(10114)

Flags Error Code

Buffer Address

Record Size

Suffer Index

Record Number

Driver Address

JCB Address

Job Priority

Device Code

Call Level Drive

Filename

— Ti., —

Extension

PPN

Open Code

-_ Driver Work Area —

£5 words) —

>

THE FILE SERVICE SYSTEM Page 6—4

6.1.1.2 Flags — This byte is used to control the flow of the I/O operation
and the handling of error codes by the file service routines. The following
functions are controlled by the eight flag bits:

1 — set by user to force a return on error condition (abort if clear)
2 — set by user to bypass printing of error messages on error conditions
4 — real—time transfer flag (currently not implemented)

10 — spare
20 — transfer initiated (for internaL file service use onLy)
40 — read if 0 or write if 1 (for internal file service use only)

100 — device INITed — set by INIT call or user if expLicit buffer in use
200 — dataset busy (transfer initiated or queued)

6.1.1.3 Buffer Address — This is the 16—bit absolute address of the base of
the buffer to be used for all dataset transfers (read and write). It is set
by the INIT call which allocates a buffer, or by the user program if it is
allocating its own buffer and not using the INIT call. This address is used
in conjunction with the flag bit 6 above, which indicates that a buffer has
been allocated either by the INIT call or by the user. No transfers can
take place without a buffer.

6.1.1.4 Record Size — This is the size in bytes for the physical transfer
to use. The READ call transfers this number of bytes from the device to the
user buffer beginning with the address in DDB+2. The WRITE call transfers
this number of bytes from the user buffer to the user device. The INIT call
sets this size to the standard buffer size, or you can set the size if you
are doing your own buffering. You may modify the size for transferring
records of variable sizes as long as it does not exceed the buffer size of
the capacity of the device or driver in use. Various logical file service
routines set this size word during processing, such as the OPEN call for the
disk which must perform directory operations on a 512—byte buffer at all
times.

6.1.1.5 Buffer Index — This is a byte counter which is used by Logical
routines (INPUT and OUTPUT calls) for keeping track of bytes transferred
into and out of the user buffer. Various calls reset this value, and you
then use it and increment it as bytes are transferred into and out of the
buffer. Details are given in later sections where the calls themselves are
described. This buffer index word is normally not a true buffer pointer but
rather an offset from the buffer base (per DDB+2) to the current byte being
manipulated.

(Changed 1 July 1981)

THE FILE SERVICE SYSTEM
Page 6—5

6.1.1.6 Record Number — You set the record number to read or write aspecific random record from a random access device such as disk. The firstrecord on the device is considered record zero, and the record numbersincrement sequentiaLly from there. This record number is actualLy used onLyby the physicaL driver routines for READ and WRITE calls, but other logicalcalls set this word to perform transfers to specific disk areas such asdirectory operations on disk. Most non—disk devices are not random access,in which case this record number is ignored by the respective drivers.

6.1.1.7 Queue Chain Link —
link used by the I/O queueing
should not alter this word.

6.1.1.8 JCB Address —
controlling job's JCB s
corresponding job for
also for internal use only.

This word is for internal use only, It
routines for interrupt driven transfers.

is set here by
transfer in queued
byte of this word

6.1.1.10 Device Code — The 3—character device code (packed RAD5D) must be
set here by an FSPEC call or directly by the user before any I/O operationsmay be performed.

6.1.1.11 Drive — Used only by drivers for devices with multiple drives,
this byte must he set to specify the drive to he used for the transfer. A
—1 byte (octal 377) may be used to indicate the current default drive
number. If the device is DSK, the default drive used is the drive ontowhich you are currently logged. Other devices may have different defaults.

6.1.1.12
track of
recovery
executed.

CaLl Level
the Level of
handling.

— For internal use only, this byte is used to keep
nesting of the file service calLs for proper error
This byte must be zero before the first file calL is

is the
You

File
o that
activat

service routines store the address of the
interrupt driven drivers can locate the

ion on transfer complete status. This word is

6.1.1.9 Job Priority — The current software job priorityfile service routines to specify the priority of the
operations. This byte is for internal use only. The top
(DDB+17) is currently not used.

THE FILE SERVICE SYSTEM Page 6—6

6.1.1.13 Filename and Extension — These are three words which contain the
RADSO packed filename and extension for file—structured devices. These
words are ignored by drivers for devices which are not file—structured, but
they may cause inaccurate error messages if they are not set to zero values.

6.1.1.14 PPN — This is the octal project—programmer bytes for the area to
be used to locate the file. It is used only on file—structured devices
which are multi—user based such as disk. A zero causes the default value to
be the current PPN which the job is Logaed in under. To prevent inaccurate
error messages, this word should be zero, if not used.

6.1.1.15 Open Code —
of the open statement
ignored by drivers
internal use only and
top byte of the word
codes are in use:

6.1.1.16 Driver Work Area — The remaining five words are for internal use
by the device drivers for links, record counts, etc., and should not be
modified by the user during processing. Not all drivers make use of the
work area, but it must he there if device independence is to be preserved.

6.1.2 Device Transfer Buffers

Each dataset must have an associated transfer buffer to handle input and
output operations. This buffer must be allocated either directly or through
use of the INIT call which allocates the buffer as a memory module by using
a GETMEM call. The INIT call allocates a standard size buffer for the
device being used (the size of the buffer is defined within the driver
itself). If you do not wish to use the INIT call, you may allocate any size
buffer you wish (must be lame enough for any logical calls to be performed)
and then set its address in DDB+2. Refer to the section detailing the I/O
calls themselves for more details on the use of these buffers.

This byte is set by the OPEN call to indicate the mode
for future processing operations. It is normally
for devices which are not file—structured. It is for
should not be modified by the user. The corresponthng

(DDB+35) is currently not used. The following open

0 — file is not open
1 — file is open for sequential input (OPENI call)
2 — file is open for sequenti..l output (OPENO call)

10 — file is open for appending (OPENA call)
4 — file is open for random input/output (OPENR call)

THE FILE SERVICE SYSTEM
Page 6—7

.1.3 Error Handling

When an error occurs during any file service call, the file service routinesnormally perform typical error correction procedures. If the error is fatal(uncorrectable), two operations may or may not take place depending on thesettina of bits 0 and 1 in the flags byte at DDB÷1. First, bit 1 is testedand if it is not set, the monitor outputs a standard error message to theuser terminal, giving the type of call that failed, the file specificationfor the device that the error occurred on, and the reason for the error.The appropriate error code is also placed in the error byte at DDB+0 forlater testing by the user. Second, bit () of the flags byte is tested and ifit is not set, the user program is aborted by the file service system andyou are returned to monitor mode. You normally set these hits on before anyI/O calls are made, if you wish to process the errors within the userprogram itself.

6.1.3.1 Error Codes — The following list gives the error code (in octal)returned in the DDB error byte by the file service system, along with thereason for the error:

01 — file specification error (FSPEC)
02 — insufficient free memory for buffer allocation (INIT)
03 — file not found (OPENI, OPENR, OPENA, DELETE, RENAME)
04 — file already exists (OPENO)
05 — device not ready (all calls)
06 — device full (OUTPUT)
07 — device error (all calls)
10 — device in use (ASSIGN)
11 — illegal user code (all file calls)
12 — protection violation (OPENO, OPENR, DELETE, RENAME)
13 — write protected (all output calls)
14 — file type mismatch
15 — device does not exist (all calls)
16 — illegal block number (READ, WRITE)
17 — buffer not initiated (all calls except INIT)
20 — file not open (READ, WRITE, INPUT, OUTPUT, CLOSE)
21 — file already open (all OPEN calls)
22 — bitmap kaput (all disk bitmap calls)
23 — device not mounted (all calls)
24 — invalid filename (OPENO, FSPEC, DSKCTG)

At the conclusion of every file service monitor call, the error byte at thebase of the DDB is tested for the convenience of the user program. Thisallows you to test for an error status directly after the call with a BNE
instruction without having to first explicitly test the byte with a TSTBinstruction. This, of course, only applies if you have the error trappingbit set in the 0DB status word to prevent the job from being aborted on afile error.

THE FILE SERVICE SYSTEM Page 6—8

6.2 FILE SERVICE MONITOR CALLS

This section describes the tile service calls which are available to the
user program for both Logical and physical I/O operations. All calls havethe same general format, which uses a single argument representing the
dataset driver block (DOS) to he used for the operation, See the precedingchapter for a complete description of the DOS format. In brief, the calls
described in this section are:

FSPEC process a device specification
INIT initialize a dataset driver block buffer
LOOKUP lookup a fiLe to see if it exists
OPENI open a file for sequential input
OPENO open a file for sequential output
OPENA open a tile for appending
OPENR open a file for random input/output
CLOSE close a file to further processing
READ read a physical record
WRITE write a physical record
INPUT read a logical record
OUTPUT write a logical record
DELETE delete a tile
RENAME rename a tile
ASSIGN assign a device to a job
DEASGN deassign a device from a job

6.2.1 FSPEC — Process an ASCII Filespec

The FSPEC call is used to process an ASCII file specification from a command
line (or any other ASCII buffer) and set up the parameters in the DOS
according to the results of the processing. The ASCII file specification
must be indexed by R2 and must be in the standard format of
dev:fiinam.ext[p,pn] with a valid termination character, if a short default
specification is used.

The FSPEC call is slightly different from the rest of the I/O calls in thatit allows you to use a second argument if you wish. This argument must he
the default extension for the filename parameter to be used in the event
that the file specification does not contain an explicit extension
(identified by a period after the filename), It the second argument does
not exist, the FSPEC processor does not process the input file specification
past the colon which terminates the device/drive parameters.

The device code (3 characters) is packed RADSO and stored in DDB+20 if it
exists as marked by the terminating colon. The drive number is stored in
the byte at DDB+22 if it exists. If the device code does not exist, the
current default device (stored in the job's JCB item JOBDEV) is stored in
DDP+20, If the drive number is not in the input specification an octal 377
is stored in 008+22 to flag the default drive number to the device driver.

THE FILE SERVICE SYSTEM
Page 6—9

The filename and extension are then processed unless no second argument wasused in the caLl, in which case the FSPEC processor returns to the user atthis point. The filename and extension are packed RA050 and stored in thethree words at 0DA+24 through DDB+30. If no fiLename is entered in theinput specification, the word at DDB+24 is cleared to zero to flag theabsence of the fiLename parameter. If a filename is entered but noextension is entered, then the default extension specified in the secondargument of the FSPEC calL is stored as the extension in DDB+30.

If a project—programmer number is in the fiLe specification (marked by aleft square bracket iI[fI) it is processed and stored in DDB+32. If no p,pnis entered, 008+32 is cLeared to zero to flag its absence.
At the conclusion of the processing of the input file specification, theindex P2 is pointing to the termination character (the first characterfollowing the file specification string). If an error in the input stringis detected, the FILE SPECIFICATION ERROR message is printed (unLesssuppressed by bit 1 in 008+1) and the program is aborted <unless suppressedby bit 0 in 006+1). The error code 01 is set in 006+0 error code byte.

No other modifications take place to the 006 area except that the error byte
at 008+0 is cleared at the start of the FSPEC processing. If you do not use
the FSPEC call to set up your 006, you must use some other form of explicit
code to insure that the 006 is set up properly to define the device and file
for any subsequent I/O operations.

6.2.2 INIT — InitiaLize the 008

The INIT call is the normal means for allocating the dataset buffer andinitializing the 0DB for processing. The INIT call Locates the device
driver (searching [1,61 on 05KG: if not in mernciry), then aLlocates astandard size buffer based on the size specified in the dri\/er. Bit 6 ofthe flag byte at 006+1 is set to indicate the initiaLization. The addressof the buffer is set into 006+2, and the size in bytes is set into 006+4.
No calls deallocate the buffer once it has been allocated by the INIT caLl.
Multiple OPEN—CLOSE processes may be performed on the 008 once the INIT has
been done. The buffer is temporary and is deaLlocated automatically whenthe program exits to monitor, or it can he explicitly deallocated by using
the DELMEM caLl with the address stored in 006+2. Recall that the buffer is
allocated as a standard memory module with a GETMEM call.

NOTE

ALL file service calls with the exception of
the FSPEC caLL require the use of a disk
buffer, and therefore must be preceded by
the INIT caLl for processing.

THE FILE SERVICE SYSTHM Page 6—10

6.2.3 LOOKUP — Find the FiLe

This is a form of the OPEN caLl which does nothing except search for the
file and return an error code if it is not found. The file is not actually
opened for processing, and an OPENI catl must be used if the file is to be
subsequently read from. The LOOKUP call is useful for determining if a file
that is about to be opened for output already exists, so that it can first
he deleted by the DELETE call. The LOOKUP call is ignored for devices which
are not file—structured.

The LOOKUP call is also useful for some system programming techniques since
it returns parameters about the file in the DDe work area. The work area is
located in the last five words of the DDB. The first three words of this
work area are loaded with the three words of the directory item if the file
is found. These three words are the numher of records in the file, the
number of active data bytes in the last record, and the record number of the
first data record in the file. Refer to Appendix A, "Disk Structure
Format," for complete details on the directory format.

6.2.4 OPENI — Open a File for Input

The OPENI call locates a file in a file—structured device and sets
DDB parameters (work area) for subsequent INPUT processing.
results if the file is not found. The code 01 is set into DDB-f34
the OPENI operation. The OPENI call is normally followed by a
INPUT calls which deliver sequential records from the file to
buffer. The OPENI call is ignored for devices which
file—structured.

6.2.5 OPENO — Open a File for Output

The OPENO call first searches the specified device in
area and returns an error if the file already exists.
DDB is set up for OUTPLIT processing. The code 02 is set
the OPENO operation. The OPENO call is normally followed
OUTPUT calls which transfer data from the user buffer to s
in the file. The OPENO call is ignored for devices
fi [c—structured.

The OPENA call is similar to OPENO, except that it allows you to append data
to an existing file. The code 10 is set into DDB+34 to fLag the OPENA
operation. The OPENA call is normally followed by a series of OUTPUT calls
which transfer data from the user buffer to the end of the file. This call
is ignored for devices which are not file—structured.

up the
An error
to flag

series of
the user

are not

the specified user
If it does not, the
into DDBt34 to flag

by a series of
equential records

which are not

6.2.6 OPENA — Open and Append to Existing File

TIlE FILE SERVICE SYSTEM
Page 6—11

6.2.7 OPENR — Open a File for Random Processing

The OPENR executes basically the same as the OPENI call, but the code stored
in DDB+34 is 04 to flag random processing. The file located for random
processing must be a contiguous file. The OPENR call is normally followedby a series of INPUT and OUTPUT calls which transfer data between specificrecords in the file and the user buffer in both directions. The OPENR callis also ignored for devices which are not file—structured.

6.2.8 CLOSE — Close a File

The CLOSE call finishes up LogicaL processing of a file and clears the open
code in DDB+34. No further INPUT or OUTPUT operation may occur once a file
has been closed. No action is normally done on a file which is open for
input. For files open for output, the final record is written out and thefile is added to the directory system on the specific device. The CLOSE
call is ignored for devices which are not file—structured.

6.2.9 READ — Perform a Physical Transfer

This is the physical transfer call for reading input data from a device. No
check is made for file open status since the READ call is not a logical filecall.

6.2.9.1 Sequential Devices — For sequential access devices such as a paper
tape reader, the READ call delivers one record from the device to the userbuffer. The size of this record is normally the number of bytes specifiedin 1)1)8+4, but this may not necessarily be true if the driver does not
transfer under the rules of the system. If the device is not capable of
generating the requested number of bytes per DDB+4 (such as a tape readerwhich runs out of tape), a lesser number may be transferred in which case
the count in DDB4-4 is adjusted to reflect the true number actually
transferred to the user buffer.

6.2.9.2 Random Devices — For random access devices such as disk, you must
specify the record number to be located and read, by placing that number
into 1)1)6+10 before executing the READ call. Most random access devices
always transfer the requested number of bytes per 1)08+4 into the userbuffer. (If the buffer is larger than the physical block, the system readsmultiple contiguous blocks to fill up the buffer.) An error results if the
record number is not within the range of the specific device. For example,the standard AMOS floppy disk is structured as 500 (decimal) records of 512
bytes each. The legal record numbers therefore range from 0 through 499,decimal. Similar range restrictions apply for each random device.

(Changed 1 July 1981)

THE FILE SERVICE SYSTEM Page 6—12

6.2.9.3 Interrupt Structure — The system allows interrupt driven devices to
be queued and processed in a priority fashion. Normally, the execution of a
READ call suspends the running of the user program until the transfer has
been completed, at which time the user job is reactivated. You must theneither test the dataset busy bit (bit 7) of the flag byte or use the WAIT
call to stalL untiL the transfer has been completed. The dataset busy flagis reset when the transfer has been completed. You must then check for
errors. The realtime bit is ignored for devices which are not interrupt
driven or whose drivers do not run under the I/O queue system.

6.2.10 WRITE — Perform a Physical Write

This is the physicaL transfer call for writing data to a device. No check
is made for fiLe open status, since the WRITE calL is not a logical filecall.

6.2.10.1 Sequential Devices.— For sequential access devices such as a
printer, the WRITE call delivers one record to the device from the user
buffer. The size of this record is the number of bytes specified in DDB+4.
The driver is responsible for the correct transfer count, and you may alter
the number in DDB+4 for each new WRITE call to the same device for the
writing of variable length records.

6.2.10.2 Random Devices — For random access devices such as disk, you mustspecify the record number to be located and read, by pLacing that number
into DD6+10 before executing the WRITE call. Most random access devices
always transfer the requested number of bytes per DDB+4 into the userbuffer. An error results if the record number is not within the range of
the specific device. The standard AMOS fLoppy disk is structured as 500
(decimal) records of 512 bytes each. The legal record numbers, therefore,
range from 0 through 499, decimal.

6.2.10.3 Interrupt Structure — The system allos interrupt driven devices
to be queued and processed in a priority fashion. Normally, the execution
of a WRITE call suspends the running of. the user program until the transfer
has

been completed, at which time the user job is reactivated. You must
then either test the dataset busy bit (bit 7) of the flag byte or use the
WAIT call to stall until the transfer has been completed. The dataset busy
flag is reset when the transfer has been completed. You must then check forerrors. The realtime bit is ignored for devices which are not interrupt
driven or whose drivers do not run under the I/O queue system.

(Changed 1 July 1981)

THE FILE SERVICE SYSTEM
Page 6—13

6.2.11 INPUT — Perform a Logical Read

size into DDB+4, so you may not use this call to transfer non—standard
record sizes. The number of bytes actually read may be less than the
standard record size due to the driver processing or due to an end—of—file
condition. The actual number of bytes transferred is set into DDB+4 by the
driver routine.

6.2.11.1 Sequential File Processing — The INPUT call is mainly used infile processing; it sets up the buffer index value in
processing of the data by the user routines. This indexhe offset to the first byte of vaLid data within the user

address is at DDB+2. For unit record devices, the value
data within the buffer is user data. For sequential disk
first word in each record within the file is a link word
therefore, the value set into DDB+6 by the disk driveris 2, so that processing starts with the third byte in the user buffer.

6.2.11.1.1 Example — The following subroutine is normaLly used to get each
byte of data from a sequential file:

;Subroutine to get next byte from file defined as INODS and leave it in Ri

INBYTE: CMP
PLO

INPUT
CMP
B EQ

INBG: PUSH
ADD
MOVB

A ND

INC
RTN

INDDB+6,INDDB÷4
INOG
INDDB
INDDB+6, INDDB+4
INEOF
INDDB+2
INDDB+6,ESP
(SP)+,R1
#377, Ri
INDDB-i-6

;is the buffer empty?
; no — get next byte
;read next logical record into buffer
;check for end of file (no data transferred)
; go to end of file routine
;stack the buffer base address
; and add the index offset to get position
;pick up the next byte from user buffer
;insure upper byte is cleared in Ri
;increment the buffer index for next time
;subroutine return

6.2.11.2 Random File Processing — A special situation arises for files
opened for random access by the OPENR caLl. Instead of the next sequential
record being read, the specific relative record whose number is in DDB+1O is
read into the user buffer. You first set this number up and then execute
the INPUT call. The record number is actually relative to the base of the
file and has no direct relationship to the physical record on the device as
would be returned by a READ call.

The INPUT call is the logical equivalent of
processing of datasets. The INPUT call reads
or device dataset under the control of
dataset must be opened for input (OPENI) or
INPUT calls are performed. The INPUT call

the READ call for logical
a logical record within a file
the specific driver in use. A

random access (OPENR) before
first sets the standard buffer

logical sequential
DDB+6 to direct the
value is actually t
buffer, whose base
is zero since all
files, however, the
to the next record;

THE FILE SERVICE SYSTEM Page 6—14

6.2.11.3 Special Devices — For devices that do not implement special
processing of logicaL calls, the INPUT call performs a READ call instead.

6.2.12 OUTPUT — Perform a Logical Write

The OUTPUT call is the logicaL equivaLent of the WRITE call for logical
processing of datasets. The OUTPUT call writes a logical record to a file
or device dataset under the control of the specific driver in use. A
dataset must be opened for output (OPENO) or random access (OPENR) before
OUTPUT calls are performed. The OUTPUT call transfers the number of bytes
in DDB÷4, but it normally does it as a standard record (depends on the
driver in use). We discourage attempts to use the OUTPUT call for
transferring non—standard record sizes.

6.2.12.1 Sequential File Processing — The main use of the OUTPUT call is in
logical sequential file processing. The OUTPUT call sets up the buffer
index value in DDB+6 to direct the processing of the data by the user
routines. This index value is actually the offset to the first byte
position for valid data within the user buffer whose base address is at
DDB+2. For unit record devices this value is zero, since all data within
the buffer is user data. For sequential disk files, however, the first word
in each record within the file is a link word to the next record;
therefore, the value the disk driver sets into DDB+6 is 2, so that
processing starts with the third byte in the user buffer.

6.2.12.1.1 Example — The following subroutine is normally used to put each
byte of data to a sequential file:

;Subroutine to put next byte from Ri into file defined as OTDDB

OUTBYT: CMP OTDDB+6,OTDDB1-4 ;is the buffer full now?
BLO OUBYT ;no — add this byte
OUTPUT OTDDB ;yes — write it

MOUFIYT: PUSH OTDDB+2 ;stack the buffer base address
ADD OTDDB+6,SP ; and add index offset to get position
MOVB R1,a(SP)i- ;move data byte to user buffer
INC OTDDB+6 ;increment the buffer index offset value
RTN ;subroutine return

THE FILE SERVICE SYSTEM - —rage b—J5

6.2.12.2 Random File Processing — A special situation arises for filesopened for random access by the OPEJR call, Instead of the next sequentialrecord being written, the specific relative record whose number is in 0DB-FlUis written out from the user buffer. You first set this number up and thenexecute the OUPUT call. The record number is actually relative to the baseof the file and has no direct relationship to the ohysical record on thedevice as would be written by a WRITE call.

6.2.12.3 Special Devices — For devices that do not implement specialprocessing of logical calls, the OUTPUT call performs a WRITE call instead,

6.2.13 DELETE — Delete a File

The DELETE call deletes a specific file from a file—structured device. Thefilename, extension and p,pn (if used) must he set in the 0DB beforeexecuting the call. An error results if the file is not found. The DELETEcall is ignored for devices which are not file—structured.

6.2.14 RENAME — Rename a File

The RENAME call renames a specific file on a file—structured device. Thefilename, extension and p,pn (if used) must be set in the DOS beforeexecuting the call. The new filename and extension must be packed RADSOinto the three words immediately following the DOS in memory. The RENAMEcall merely locates the directory item for the file and replaces the threewords which store the filename and extension. The RENAME call is ignoredfor devices which are not file—structured.

6.2.15 ASSIGN — Assign a Device

The ASSIGN call is used to assign a non—sharable device (such as a printer)to the current user's job by setting a flag in the device's entry in thedevice table in monitor memory. Once a device has been assigned by thiscall, any attempt to assign it by another job results in an error. Thedevice stays assigned to this job until deassigned by the DEASGN call. The
ASSIGN call performs no action if the specified device is sharable, such asa disk.

THE FILE SERVICE SYSTEM Pag 6—16

6.2.16 OEASGN — Deassiqn a Device

The DEASGN call is used to deassign a device which has been assigned to theuser's job by the ASSIGN call. Once deassigned, the device becomes
available for assignment by other jobs. The DEASGN call performs no actionif the specified device is sharable or if it is not currently assigned to
the user's job. All devices are deassigned when the program exits to the
monitor.

6.3 DISK SERVICE MONITOR CALLS

In the previous section we covered the file—oriented monitor calls. Those
calls allow you to access data files without regard to the actual structure
of the data on the device. Internally, of course, AMOS does have to deal
with the structure of the data. This section deals with the monitor calls
used to manipulate that structure. A description of the data structures
used to maintain files on a device can be found in Appendix A, "Disk
Structure Format."

The disk presents special problems which require the use of special monitor
calls to control the accessing of the directory and bitmap records. These
records have a non—sharable attribute associated with them, even though the
disk in general is a sharable device. For instance, two user programs may
not both be updating the same directory records at the same time. The same
holds true for the bitmap records. The following monitor calls are used to
control the access to these non—sharable records:

DSKCTG — allocates a contiguous file for random processing
DSKALC — allocates the next available record on disk
DSKDEA — deallocates a specific record on disk
DSKBMR — reads disk bitmap and sets re—entrant lock flag
DSKBMW — rewrites disk bitmap after user modification
DSKDRL — sets re—entrant directory lock for a specific user
DSKDRU — clears re—entrant directory lock for a specific user

The access to these records is normally done by the monitor routines as a
direct result of normal I/O processing by tile service calls. It is a
somewhat tricky process and the disk calls should not be used except with
extreme caution, since misuse could violate the integrity of the file
structure on the disk. The -following descriptions are directed at those
system programmers who are familiar with shared file techniques.

6.3.1 Calling Sequence

All calls use a standard argument which is the address of the associated DDB
to be used for the call. In addition to the first argument which is the
0DB, some calls use an optional second argument for processing. The second
argument is detailed in the description of the, call.

THE FILE SERVICE SYSTEM
Page 6—17

6.3.2 The Bitmap Area

The bitmap area is an area in monitor memory which is allocated by theBITMAP program run at system startup time by the BITMAP command in thesystem initialization command file. This area consists of a status word, aDDB for bitmap reads and writes, and a buffer for the actual bitmapincluding the hash total words. The format of the bitmap area is asfollows:

B LKW

BLKW

BLKW
B L KW

The device table entry for each drive has the address of the correspondingbitmap area to be used for that drive. More than one drive may share the
same bitmap area, forcing a rewrite each time a different drive isreferenced. This is not efficient with regard to time but can save some
memory for larger devices where the bitmap buffer may be several hundred
words or more.

6.3.2.1 The Status Word — The status word (first word in bitmap ar±a)
contains two flags which are used to control bitmap actess. Bit U is tLL
bitmap lock flag and is set to flag that the bitmap is locked and being read
or modified by some user job. The DSKBMR calL sets this flag on, and it isup to you to clear it after you have finished the bitmap access andmodification. Bit 1 is the bitmap rewrite flag which is set to indicatethat one or more modifications have been made to the bitmap in memory, andthdt it must be rewritten to disk before being discarded. If the user
program modifies the bitmap in memory, it must set the rewrite flay toinsure that the bitmap is rewritten.

6.3.2.2 The Bitmap DDB — The bitmap DDB is a partial DDB because no files
are ever referenced, and the rest of the DDB is not needed. The bitmap isnormally allocated as record 2 of each disk, and it extends across
successive records for those devices which overf low one record.

6.3.2.3 The Bitmap Buffer — The bitmap buffer arearequired to contain the entire bitmap from the disk.
allocated to contain the hash total which is used to in
the bitmap in memory and on disk. Each time the bitmap
the bitmap is rewritten, this hash total is checked andit is bad. The hash total is merely the double—wordentire bitmap buffer. You must update this hash totalthe bitmap, or else an error results when it is time toto disk.

(Changed 1 July 1981)

is the exact size
Two extra words are

sure the integrity of
is read, or before
an error results if

binary sum of the
each time you modify
rewrite the bitmap

I 0
12
B i t map—si z e
2

;Bitmap status word
;Partial DDB for bitmap I/O
;Bitmap buffer (size depends
;Hash total words

on device)

THE FILE SERVICE SYSTEM Page 6—18

6.3.2.4 The Bitmap — The bitmap itself contains one bit for each Logical
record on the disk structure. This bit is off if the record is free, and onif the record is in use by anyone, including the system structure records
themselves. Each word in the bitmap can define up to 16 records. The first
word in the bitmap defines records 0 through 17 (octal) with bit 0 defining
record 0 and proceeding upward throughout the word. The second word defines
records 20 through 37, and so on. To define the 500 decimal records in a
standard IBM—compatible AMOS floppy disk, we need 32 words (32 times 16 =
512) with the last word not being totally used. The bitmap itself therefore
takes up 34 words, including the two hash total words.

6.3.2.5 Altering the Bitmap — Altering the bitmap is tricky but the
sequence recommended is:

1. Read the bitmap using the DSKBMR call
2. Alter the bitmap as necessary (recompute the hash total)
3. Set the rewrite flag (status word bit 1)
4. Clear the bitmap lock (status word bit 0)
5. Rewrite the bitmap using the DSKBMW call

6.3.3 DSKCTG — Allocate a Contiguous Area

The DSKCTG call is used to allocate a contigous file on a random access
device. A standard argument is used as the second argument which represents
the number of records to be allocated in the file. A search is made to find
the first available area on the disk which can fully contain the reouested
number of records. These records are marked as in—use on the disk bitmap,
and a file descriptor item is added to the user directory. The word which
gives the number of bytes in the last record is set negative to flag this
file as contiguous, distinguishing it from the normal sequential files. A

device—full error results if no area can be found on the disk which is large
enough to contain the file.

6.3.4 DSKALC — Allocate a Record

The DSKALC call is used to allocate one record for use by this user as a
directory record or as a file record. A standard argument is used as the
second argument, which represents the word that is to receive the record
number of the allocated record. An error results if there are no free
records left on the specified disk. A DSKBMR call is first performed to
insure that the current job has access to the bitmap, and then the firstfree record is located and marked in use. The bitmap record is flagged as
modified, causing it to be rewritten at the next DSKBMW call or if it must
be swapped out to make room for another bitmap sharing the same area in
memory.

(Changed 1 July 1981)

THE FILE SERVICE SYSTEM
Page 6—19

6.3.5 DSKDEA — Deallocate a Record

The USKOFA call is used to deallocate a specific record on a disk and makeit immediately available for use by another user (or the same user). Astandard argument is used as the second argument, which represents theaddress of the word containing the record number of the record to hedeallocated. No check is made to insure that this record is allocated toeither the current user or any other user. A DSKBMR caLl is first performedto insure that the current job has access to the bitmap, then the specifiedrecord's bit is set to zero to indicate that the record is free. The bitmaprecord is flagged as modified to force a rewrite.

6.3,6 DSKBTW7R — Read the Bitmap

The DSKBMR call locates the bitmap area in monitor memory for the specified
disk and insures that it is not locked by another job. If it is locked, astall is made until it is released. It is then locked for this job and areturn is made to the user. The address of the bitmap area is set into theword specified by the second argument in the calling sequence. The secondargument is a standard argument in format. Refer to the description of thebitmap area above and note that the second argument receives the address ofthis area and not the address of the bitmap itself. You may locate thebitmap itself because its address is in the second word of the bitmap area
(second word of the bitmap 0DB).

6.3.7 DSKBMW — Write the Bitmap

The DSKBMW call locates the bitmap area in monitor memory for the specifieddisk and insures that it is not locked by another job. If it is Locked, astall is made until it is released. It is then locked for this job andrewritten to disk from memory unless the hash total is bad. After therewrite is complete both the rewrite and lock flags are cleared and a returnis made to the user.

6.3.8 DSKDRL — Lock the Directory

The DSKDRL call locks the directory for the specified drive for modificationby the user program. It is used by such tile service routines as CLOSE foroutput files, DELETE and RENAME calls. If the directory is already lockedby another job, a stall is made until it is released. The user program orroutine must unlock the directory via the DSKDRU call after themodifications have been made.

THE FILE SERVICE SYSTEM Page 6—20

6.3.9 DSKDRU — Unlock the Directory

The DSKDRU call unlocks the directory for the specified drive after it has
been locked by the DSKDRL call for modification. No action is performed if
the directory is not locked by the current job.

6.4 MAGNETIC TAPE DRIVER MONITOR CALLS

Language programs to
r information on using
the Maqnetic Tape

AMOS Software Update
the terms we

access the
the magnetic

Unit in the
Documentation

use in the

Before you begin use of MTU.DVR, make sure your magnetic tape units are
defined in your system device table, and that the program MTSTAT.SYS has
been included in the monitor (via the SYSTEM command in the system
initialization command file).

In addition to the magnetic tape drive monitor calls detailed below, you can
use the READ and WRITE calls to input and output data to and from the
magnetic tape unit, in the same way you would use them to perform disk I/O.

6.4.1 REWIND Arg

This call issues a rewind command to the specified tape
accepts a standard argument that represents a DDe on which you
performed an FSPEC, an INIT, and an OPEN monitor call.

unit. REWIND

have already

The DDB selects the device to which you want to issue a REWIND command. If
an error results from this call, you see the standard system file operation
error messages (e.g., ?Cannot INIT Devn: — device does not exist).

6.4.2 WRTFM Arg

This call issues a write—file—mark comrrend to
WRTFM accepts a standard argument that represents a
already performed an FSPEC, an INIT, and an OPEN mon

the specified tape unit.
DDB on which you have
itor call.

The 0DB selects the device to which you want to write a file mark. If this
call results in an error, you see the standard system file operation error
messages.

Some monitor calls allow your assembly
magnetic tape unit driver, MTU.DVR. Fo
tape utility programs, refer to Using
"User's Information" section of the
Packet. That document also defines some of
following discussion.

THE FILE SERVICE SYSTEM
Page 6—21

6.4.3 FMARK Arg

This call ISSUOS & find—file—mark command to the specified tape unit. EMARKaccepts a standard argument that represents a 0DB on which you havepreviously performed an FSPEC, an INIT, and an OPEN monitor call. The DOSseLects the device to which you want to issue a find—file—mark command. TheFMARK call causes the MTh driver to read forward on the specified tape untilit finds a file mark. Any errors resulting from this call are indicated bystandard file operation error messages.

6.4.4 FMARKR Arg

FMARKR causes the MTU driver to read in reverse on the tape until it finds afile mark. The call accepts a standard argument that represents a 0DB onwhich you have previously performed an FSPEC, an INIT, and an OPEN monitorcall. The 0DB selects the device to which you want to issue the FMARKRcommand. Any resulting error is indicated by standard file operation errormessages.

6.4.5 TAPST Argl,Arg2

This call issues a read—tape—status command to the specified tape unit.TAPSI accepts two standard arguments. The first, Argi, represents a 0DB onwhich you have previously performed an ESPEC, an INIT, and an OPEN monitorcall. The DOS selects the device whose status you want to return. Thereturned status code appears in Arg2. The staus bits TAPST returns are asfollows:

BIT FUNCTION COMMENTS

0 7—track Indicates that unit is in 7—track mode.
1 NRZI mode Indicates that unit is in NRZI recording mode.
2 End—of—tape Indicates that end—of—tape was detected during

the previous command.

CHAPTER 7

TERMINAL SERVICE SYSTEM

The AMOS monitor has several calls which deliver data to and from both theuser terminal and other terminals connected to the system. A terminal isdefined as an ASCII character—oriented device which is capable of bothoutput and input. This is the formal definition and does not preclude theuse of output—only devices on terminaL designated ports. Also, the systemincludes software terminals known as "pseudo terminals," which can be usedto control jobs that are not actually associated with a hardware interfaceon a designated port address. The caLls listed here normally input from oroutput to the terminal which is controLLing the job that is executing thecaLl. Some calls (as specified) will input from or output to anotherterminal not connected to the current job or to a pseudo terminalcontroLling another job.

Programs which make use of the standard terminal service caLLs thatcommunicate with the user terminal can be run without modification in a jobcontrolled by a pseudo terminal. Keyboard input calls and terminal outputcalls always go to the controlling terminal, regardless of which job theyare running in. Therefore, you need not be concerned with the physical portaddress or attributes of the terminal which is controlling the job. Themonitor routines handLe alt this automaticalLy.

7.1 TERMINOLOGy

Due to a holdover from older system terminology, most terminaL output calL,reference the device name of "TTY," which used to define the teletype deviceon systems that normally used teletypes as terminals. The input device ofthe teletype was then called the keyboard, and the calls reference thedevice name of "KBD." These are strictly mnemonics and do not necessarilyreflect the physical attributes of the terminals, which now are morecommonly the higher speed video display terminals.

(Changed 1 July 1981)

TERMINAL SERVICE SYSTEM Page 7—2

7.2 THE TERMINAL LINE TABLE

Each terminal has associated with it a terminaL line table which is a work
area in monitor memory set up to contain the parameters and work areas
associated with the control of the terminaL device. Most of the items inthis terminal line tabLe are for internal use only, and you need not be
concerned with them. The JOGGET Rx,JOBTRM calL may be used to set an index
to the associated terminaL line table, so that you can inspect or modify the
items within.

7.2.1 The TerminaL Status Word

Normally, you need to be concerned only with the terminal status word, which
is the first word in the terminal line table. This word has certain flags
in it that you may modify to alter the operation of your terminal calLs.
The terminal status word has the foLlowing flag positions defined:

1 — user sets to force image mode input (see KBD call)
2 — user sets to suppress echoing of input characters
4 — user sets to aLlow escapes to be processed (as in EDIT)

10 — engages data mode to allow complete data transparency on input
("C, nulls, bit 8 characters).

20 — user sets to allow lower—case input (disables cohversion)
200 — internal flag used to indicate output is in progress

1000 — flag used to indicate 'thog" mode for terminal (set by TRMDEF)
2000 — user sets to indicate terminaL runs in local mode (no echo)

The terminal status word is cleared each time the user program exits back to
monitor mode upon program completion, thereby restoring normal terminal
operation regardless of program operation.

7.3 THE TERMINAL SERVICE CALLS

AMOS includes 17 monitor calLs to perform input and output between the
system and any of its connected terminaLs.

7.3.1 KBD {label} — Fetch a Line of Data

The KBD caLL accepts one full line of input from the user terminal into a
monitor line buffer, then sets index R2 to the base of that buffer for the
user reference. During the inputting of the Line, the user job is set into
the terminal input wait state, thereby consuming no CPU time until the Lineis finished. All normal line editing features are active (rubout,
control—U, tab, etc.) and a control—c input aborts the job unLess the user
has set up control—c trapping via the JOBICP item in the JCB for the job.
If you specify a Label with the KBD call, the program automatically branches
to that Label. The line is terminated when a carriage—return or a line—feed
is entered. The monitor automatically appends a line—feed to the
carriage—return, and a null byte is set after the Line—feed character.

(Changed 1 JuLy 1981)

TERMINAL SERVICE SYSTEM
Page 7—3

If the echo—suppress flag is set in the terminal status word, normal echoingof the input characters is Suppressed, such as when the password is beingentered for the LOG command. If the imace—mode input flag is set, the KPDcommand has a different effect. No editing is performed and instead of oneline being accepted, only one character is accepted and it is delivered backto you in register Ri instead of register R2 being set to the monitor linebuffer. Image—mode input echoing is still under control of theecho—suppress flag as in normal line mode.

7.3.2 TrY — Output One Character

The TTY call outputs one character from register Ri to the controllingterminal and then returns. Tabs are echoed as spaces up to the nextmodulo—8 carriage position, unless the image—mode output flag is set in theterminal status word. If the job is running under the control of a commandfile, the character will only he output to the terminal if the outputsuppress command is in the normal state (:R revives it, :5 silences it).

7.3.3 TIN — Get an Input Character

TIN gets the next input character from either the terminal input buffer orfrom the command string if the job is controlled by a command file. Thecharacter is delivered in Ri. This call is normally only used within theoperating system itself and not by user programs.

7.3.4 TOUT — Output One Character

TOUT outputs one character to the controlling terminal of the job or to thejob which has this job attached (by the address in the JOBATT item). Thiscall differs from the aeneral TTY call in that the command file status isnot checked by the TOUT call. The TOUT call, like the TIN call, is normallyonly used within the operating system itself.

7.3.5 TAB — Output One Tab

This convenience call outputs a single tab character to the user terminal.In effect, it is the same as the code sequence:

MOVI ii,Ri
TTY

TERMINAL SERVICE SYSTEM Page 7—4

7.3.6 CRLF — Output a Carriage—Return / Line—Feed

This convenience calL outputs a carriaae—return and line—feed pair to the
user terminal. In effect, it is the same as the code seouence:

MOVI 15,R1
TTY
MOVI 12,R1
TTY

7.3.7 TTYI — Output a String of Characters

The TTYI call outputs a string of characters which follows the call itself
up to hut not including a null byte. The call couLd be used as follows to
output two Lines of data to the user terminal:

TTYI
ASCII /LINE 1 DATA!
BYTE 15
ASCII !LINE 2 DATA!
BYTE 15,0
EVEN

The TTYI call also automatically appends a line—teed to all carriage—returns
included in the string.

7.3.8 TTYL — Output a String of Characters Indexed

The TTYL call is similar to the TTYI call in that it outputs a string of
ASCII characters up to a null byte. The string of characters for the TTYL
call may be anywhere in memory and not in line with the call itself in the
program flow. TTYL takes one standard argument——the address of the message
to be output. It is therefore useful for outputting from a table of
messages by setting an index to the specific message within the table (per
some numeric director code), and then using that register as the argument to
the TTYL call. The TTYL call also appends a line—feed to each
carriage—return in the string.

7.3.9 PTYIN — Place Character in Input Buffer

The PTYIN call allows one job to force a character into the input buffer of
another job which is probably controlled by a pseudo terminal. This call
takes two standard arguments. The first is the data byte to be sent to the
other job and the second argument is the address of the JCB of the job into
which the character is to be forced. PTYIN is the call through which the
FORCE operator command functions.

TERMINAL SERVICE SYSTEM
Page 7—5

7.3.10 PTYOUt — Fetch Character from Output Suffer
The PTYOIjT call allows one job to get a character from the terminal outputbuffer of another job which is controlled by a pseudo terminal. If nooutput is available from the specified job, the calling job is put to sleepuntil a character is available. The PTYOUT call takes two standardarguments. The first argument is the address of the byte which will receivethe data character, and the second argument is the address of the JCR fromwhich the character is to be taken.

7.3.11 TTYIN — Fetch Another Job's Input

The TTYIN call allows one job to get waiting input data from the terminalinput buffer of another job. This call has not yet been fully inplemented.

7.3.12 TTYOUT — Place a Character in Another Job's Output

The TTYOUT caLl allows one job to put data into another job's terminaloutput buffer. This call, like the TTYIN call, is not yet fullyimplemented.

7.3.13 TRMICP — Process Input Character Within Interface Driver
The TRMICP call is executed from within a terminal interface driver toprocess one character which has just been received from the terminal by thehardware interface. Ri must contain the input character to be processed,and R5 must index the terminal definition table entry for the specificterminal being serviced. TRMSER then takes the character and passes it tothe terminal driver input routine for pre—process-ing if desired. When theterminal driver passes it back to TRMSER, it is then edited for controlcodes and other special characters and then added to the terminal inputbuffer. All the pertinent flags are set automatically to indiciate actionsto be taken by the application program when it requests the input data. Ifthe input character is a break character (line—feed), or if image mode isactive, the associated job is awakened to process the available data.

7.3.14 TRMOCp — Process Output Character Within Interface Driver
The TRMOCP call is executed from within a terminal interface driver to getfrom TRMSER the next output character to be sent to the terminal. This isusually in response to an interrupt from the interface hoard, indicatingthat the prior character has been fully output and the board is ready totransmit the next character. R5 must index the terminal definition tableentry for the specific terminal being serviced, and Ri nets the nextavailable character upon return from TRMSER processing of the call. If

TERMINAL SERVICE SYSTEM Page 7—6

there is no more output available in the output buffer, Ri is set to —1 as a
flag, and the associated job is awakened to fill the output buffer again.

7.3.15 TRMBFQ — Process Output Characters Within Terminal Driver

The TRMBFQ call is a physical output caLl usually executed from within a
terminal driver or a monitor routine. There are, however, times when it can
be used by an assembly language application program. The TRMBFQ call
effectively adds a buffer full of data characters to the output buffering
system for a specific terminal. It does this by linking the buffer into the
dynamic output queue list used by TRMSER for this terminal. When this call
is used, P2 must index the buffer to he queued, P3 must contain the number
of characters in the buffer, and P5 must index the terminal definition table
entry for the specific terminal. The TRMBFQ call performs the output
initiation function if the output system for the terminal is currently idle.

.H-

7.3.16 TBUF — Output Large Amounts of Data

The TBIJF call is the normal call for user programs to use for queueing up
large amounts of data into the terminal output system of a terminal where
the single character calls are considered inefficient. It is a buffered
call in that it works through the two output buffers for the terminal, as
opposed to going directly into the output queue system. If you try to
output more data via the TRUE call than there is currently room for in the
output buffers, the user job is suspended while the output buffers are
unloaded to the terminal. Each time one of the output buffers is emptied,
the job is awakened and the TRUE call proceeds to fill that buffer. This
continues until the original amount of data is exhausted, at which time the
call returns to the user program. When the call is executed, P2 must index
the buffer to be output and P3 must contain the number of characters to be
output (similar to the TRMBFQ call). PS need not index the terminal
definition table entry since this is a user level call.

7.3.17 TCRT — Call Special Terminal Driver Routines

The TCRT call is the linkage into the special processing routine portion of
a terminal driver. Ri usually contains a 2—byte code which is interpreted
by the terminal driver routine as a special function, such as cursor
positioning or special editing action. The only action actually performed
by the TCRT call within TRMSER is to locate the terminal driver for the
attached terminal and call the driver control routine within it. You must
refer to the actual driver listing to determine the action performed
relative to the code passed to it in Ri.

TERMINAL SERVICE SYSTEM
Page 7—7

7.3.17.1 Standard Functions — The TCRT calL is most commonly used forcontrolLing such special CRT functions as cursor addressing and screenclearing. To maintain compatibility between terminal drivers, Alpha Microhas defined the foLlowing functions within the terminal drivers it supports.

7.3.17.1.1 Cursor Addressing — To perform cursor addressing, Ri is loadedwith a 2—byte argument defining the screen row and column to which thecursor is to be moved. The high—order byte is loaded with the row, and thelow—order byte is loaded with the column. The uppermost—Leftmost (Home)position is column 1, row 1.

7.3.17.1.2 Other Functions — To perform other special CRT functions, thehigh—order byte of Ri should be Loaded with 377 (octal). The low—order byteis then loaded with one of the special function codes Listed below.
o Clear Screen and set normal intensity
1 Cursor Home (move to 1,1)
2 Cursor Return (move to column 1 without line—feed)
3 Cursor Lip one row
4 Cursor Down one row
5 Cursor Left one column
6 Cursor Right one column
7 Lock Keyboard
8 Unlock Keyboard
9 Erase to End of Line

10 Erase to End of Screen
11 Enter Background Display Mode (reduced intensity)
12 Enter Foreground Display Mode (normal intensity)
13 Enable Protected Fields
14 Disable Protected Fields
15 Delete Line
16 Insert Line
17 DeLete Character
18 Insert Character
19 Read Cursor Address
20 Read Character at Current Cursor Address
21 Start Blinking Field
22 End BLinking Field
23 Start Line Drawing Mode (enable alternate character set)
24 End Line Drawing Mode (disable alternate character set)
25 Set Horizontal Position
26 Set Vertical Position
27 Set Terminal Attributes

Not all terminal drivers have all of the above functions, simply because allterminals do not have all of the functions. If your terminal has additionalfeatures, Alpha Micro recommends starting at 100 (octal) when assigning
function codes.

TERMINAL SERVICE SYSTEM Page 7—8

7.3.18 Message Calls

Three calls have been defined in SYS.MAC as macros using the FTYI caLl.
These calls are for the convenience of the programmer and to make the
program more readiLy understandable. They aLL take a single argument which
is an ASCII message string to be output to the user terminal. Due to the
way that macro arguments are processed, if the message has Leading ortrailing spaces, or if it has imbedded commas, it must be enclosed in angle
brackets or part of it will be lost. The three caLls are:

TYPE msg ;Types the message on the user terminal as is
TYPESP msg ;Types the message and appends one space to it
TYPECR msg ;Types the message and appends a CRLF pair to it

The macros are defined in SYS.MAC as foLLows:

DEFINE TYPE MSG

TTYI
ASCII /MSG/
BYTE 0
EVEN
ENDM

DEFINE TYPESP MSG
TTYI
ASCII /MSG' I
BYTE 0
EVEN

ENDM

DEFINE TYPECR MSG

TTYI
ASCII IMSC,I
BYTE 15,0
EVEN
ENDM

It should be noted that the message may not contain any slashes, since these
are used as delimiters for the ASCII statement in the macros.

CHAPTER 8

CONVERSION MONITOR CALLS

8.1 NUMERIC CONVERSION CALLS

The AMOS monitor contains two calls which perform conversions from a single
binary word value to an ASCII formatted decimal or octal string. Optionsfor the conversion allow the string to be sent to the user terminal, to anoutput file or to a buffer in memory. Options also allot,, control of theresult format.

8.1.1 Calling Format

Both calls have the same general format and take two arguments, each of
which must be an expression that evaluates down to a byte value within thespecified range. The two calls are:

DCVI size,f lags ;Convert binary number in Ri to decimal
Ocvi size,flags ;Convert binary number in Ri to octal

; (hexadecimal if J.HEX is set for this job)

8.1.1.1 Size Byte — The size byte determines the number of digits in theoutput result. A zero size specifies a floating format in which the numberof digits used is just enough to fully contain the result. A non—zero sizespecifies a fixed number of digits for the result with leading zeros beingreplaced by blanks. In either form, if the Ri value is zero, at least onezero digit will be output as the result.

(Changed 1 JuLy 1981)

CONVERSION MONITOR CALLS
Page 8—2

8.1.1.2 Flags — The flags
destination of the result
The following List gives the
the flag is set:

1 — disables Leading zero blanking
2 — outputs the result to the user terminal
4 — outputs the result to the tile whose DDB

10 — puts result in memory at buffer indexed
20 — adds one leading space to the result
40 — adds one trailing space to the result

is indexed by R2
by R2 and updates P2

Note that the maximum value which can be displayed using these calls is
maximum value of a 16—bit word. All numbers are considered unsigned solargest decimal number is 65535, the Largest octal number is 177777, anclargest hex number is FFFF.

If the size byte is non—zero, the sense of the leading zero blanking flea
described below is reversed. In other words, when the size byte is zero,the conversion calls default to leading zero blanking, with bit U turningthat blanking off. When the size byte is non—zero, the calls default toleading zeroes, with bit 0 specifying that leading zeroes are to be blanked.

8.2 RAD5O CONVERSION MONITOR CALLS

Radix—SO packing is used throughout the system wherefilenames and other data entities lends itself. Radix—SO (PA
a system by which three ASCII characters may be packed into a
word using a special algorithm based on the value ofcharacter set that may be packed RAD5O is limited inalphanumeric characters, the period, the dollar sign, and
following list gives the legal characters that may be packedequivalent octal codes:

(Changed 1 July 1981)

the packing of
D50) packing is
single 16—bit
octal SO. The
scope to the

the blank. The
RAD5O and their

byte contains six flags which control the
string and also some other formatting options.

flag bit positions and the action taken when

-I c,

the
the
the

The following examples may clarify things a bit.
value in Ri is 964 (decimal), and the letter "b"
indicates a blank.

All examples assume the
in the result field

DCVT 0,22 prints b964
DCVT 0,42 prints 964b
DCVT 5,2 prints 00964
DCVT 5,3 prints bb964
DCVT 5,43 prints bb964b
DCVI 5,62 prints b00964b
DCVT 2,2 prints 64 (the 9 is lost)

CONVERSION MONITOR CALLS Page 8—3

Character RAD5O code

blank 0
A—Z 1—32
a—z 1—32

$ 33
34

0—9 36—47

There is no character for the RAD5O code 35.

8.2.1 RAD5O Packing Algorithm

The packing algorithm for a 3—character input to a 16—bit RAD5O result is:
1. The first character code -is multiplied by 3100 octal (SOxSO).

2. The second character code is multiplied by 50 and added to thefirst.
3. The third character code is added to the above to form the result.

The unpacking algorithm merely reverses the above sequence to get thetriplet. I

8.2.2 Packing and Unpacking Calls

There are two monitor calls which perform the above packing and unpackingalgorithms. Both calls use registers Ri and R2 as indexes to the components
and require no caLling arguments.

8.2.2.1 PACK — Pack Three ASCII Characters into RAD5O — The triplet (3ASCII characters) indexed by R2 is packed into RAD5O form and the result is
left in the word indexed by Ri. Ri is increme&ted by 2 to receive the nextresult word for multiple packing. R2 is left indexing the first character,
which was not incLuded in the packing of this triplet. The PACK callterminates packing and forces blank fiLl for any input which does not
contain three valid RAD5O characters. For the PACK call, a blank isconsidered an illegal input character and terminates packing.

(Changed 1 July 1981)

CONVERSION MONITOR CALLS Page 8—4

8.2.2.2 UNPACK — Unpack Three RAD5O Characters into ASCII — The word in the
address indexed by Ri is unpacked, and the triplet is left in the three
bytes beginning with the byte currentLy indexed by P2. Ri is incremented by
2 for the next word, and R2 is incremented by 3 for the next tripLet result.
Blanks are legal in unpacking and are placed into the result if they are
decoded from the input word.

8.3 PRINTING CONVERSION CALLS

There are three calls in the monitor which accept a system unit input and
convert the unit to standard printable form and then output it to the user
terminal. These calls are used to print out file specifications, fiLenames,
and project—programmer numbers. Each call takes one standard argument which
addresses the system unit to be converted and printed.

8.3.1 PFILE — Output a Fit.espec From a DDB

The argument addresses a file DDB, and the PFILE calL extracts the
parameters in the file specification words. It then prints them on the user
terminal in the standard format of dev:filnam.ext[p,pn].

8.3.2 PRNAM — Output a Filename

The argument addresses a 3—word filename.extension block (packed RAD5O), and
the PRNAM call prints the converted result on the user terminal in the
standard format of fiLnam.ext.

6.3.3 PRPPN — Output a PPN

The argument addresses a 1—word project—programmer code, and the PRPPN call
prints the converted result on the user terminal in the standard format ofproj,prog. The p,pn is output in octal, regardless of the setting of J.HEX.

8.4 ALPHABETIC CONVERSION——LCS AND UCS

The AMOS monitor inlcudes two calls that switch between upper— and
lower—case alphabetic characters. LCS converts one character in Ri to lower

case.
UCS converts one character in Ri to upper case. The Z—flag is set ifthe call is successful.

(Changed i July 1981)

CHAPTER 9

INPUT LINE PROCESSING CALLS

When a program is executed by an operator command, register P2 is Left
pointing to the first non—blank character on the command Line which follows
the command name itself. The remainder of the line is normally interpreted
by the particular program and used to determine the files to be acted on,
the record number to be dumped, the devices to be accessed, etc. For
exampLe, the MACRO call requires the name of the program and any switch
options to follow the MACRO command name on the same Line. The macro
assembly program then processes the proaram name and the switch options byway of the P2 index which was left indexing the rest of the command line.
This command line is actuaLly the user's terminal input buffer.

9.1 ALF — TEST A CHARACTER FOR ALPHABETIC

c

leaves P2

c

The character indexed by P2 is tested for alphabetic (A—Z; a—z); the Z—flagis set if it is, and cleared if it is not. P2 is not chanqed.

In addition to the command input line, the KBD monitor call also
set to the input line buffer which contains the user input data. Also,various translators and tile processing programs may read in a line of data
and then set index P2 to the base of that line for scanning For this
reason, there exists a number of monitor calls which perform scanning and
conversion functions based on an input line which is indexed by P2. Some ofthe calls merely test the character indexed by P2 for a spe ific ondition
and return with flags set, based on the result of the test. In theseinstances P2 is not modified. In calls which perform scan conversions, P2is updated to point to the character which terminated the conversion. With
the exception of the FILNAM call, none of these calls require any arguments.
Conversion results are always delivered back to the user in register Ri.

INPUT LINE PROCESSING CALLS Page 9—2

9.2 NUN — TEST A CHARACTER FOR NUMERIC

The character indexed by P2 is tested for numeric (0—9); the 7—flag is setif it is, and cleared if it is not. R2 is not changed.

9.3 TRM — TEST A CHARACTER FOR TERMINATOR

The character indexed by R2 is tested for a legal terminator defined as a
blank, tab, comma, semicolon, carriage—return, line—feed, or null. The
7—flag is set if the character is a terminator, and cleared if it is not.
R2 is not changed.

9.4 LIN — TEST A CHARACTER FOR LINE TERMINATOR

The character indexed by P2 is tested for a leoal end—of—line defined as a
semicolon, carriage—return, Line—feed, or null. The 7—flag is set if the
character is an end—of—line character, and cleared if it is not. P2 is not
changed.

9.5 BYP — BYPASS BLANKS

Index P2 is advanced past aLl characters which are blanks or tabs and left
indexing the first non—blank, non—tab character it finds.

9.6 GTDEC — INPUT A DECIMAL NUMBER

Index P2 is used to process a decimal number whose value may be from 0 to
65535 in the input line (leading zeros are legal), and to deliver the
resultant binary value back in Ri. The N—flag is set if there is an error
(i.e., result is greater than 65535). R2 is updated to poinS to the
character following the decimal input number. In the case of an error, P2
is left indexing the digit that would have caused the overflow past 65535
for double—word processing techniques.

9.7 GTOCT — INPUT AN OCTAL NUMBER

Index P2 is used to process an octal number whose value may be from 0 to
177777 in the input line (leading zeros are legal), and to deliver the
resultant binary value back in Ri. The N—flag is set if there is an error
(i.e., result is greater than 177777). P2 is updated to point to the
character followinci the octal input number. If J.HEX is set for this job
(via the SET HEX command), this cell processes input in hexadecimal instead
of octal.

INPUT LINE PROCESSING CALLS

9.8 GTPPN — INPUT A PROJECT—PROGRAMMER NUMBER

9.9 FILNAM — INPUT A FILENAME

Page 9—3

Index P2 is used to process a
RADSO packed 3—word result
specified as the first argument
standard monitor call argument
extension to be used in case no
string. R2 is updated to indexif there was no filename to
legal RADSO character).

filename.extension input string, leaving the
in the three words starting with the address
of the call. In format, this argument is a

The second argument is a 1— to 3—character
explicit extension is entered in the input
the terminating character. The 7—bit is set
process (i.e., the first character was not a

Index P2 is used to process a project—programmer number in the standardformat of proj,prog, and to deliver the resultant binary code back in Ri.The format dictates that project numbers be octal numbers with a value
between 1 and 377, and programmer numbers be octal numbers with a valuebetween C) and 377. The N—flag is set if the PPN was not in valid format.
R2 is updated to point to the character following the PPN.

CHAPTER 10

MISCELLANEOUS MONITOR CALLS

This section deaLs with the monitor calls which do not fit into any of the
cateqories treated thus far.

10.1 EXIT — RETURN TO AMOS COMMAND LEVEL

This is the normal means that a program uses to terminate processing and
return to monitor command mode. The EXIT call takes no arguments. The
monitor, upon executing the EXIT call, deletes all temporary memory modules
in the user partition and resets any parameters that are program dependent
such as JOBICP, JOBBPT, etc. All assigned devices are also released at this
time. The user terminal is then placed in the monitor command mode, ready
to process another operator command.

10.2 CTRLC — BRANCH ON CONTROL—C

Whenever a control—C is entered on a terminal
program), no action takes place immediately,
JCB status word which must be tested Later
is used within an application program to chec
fLag (in the JCB status word) and branch to
is set. This call is a convenience since the
task with a few instructions by locating
checking the J.CCC flag within it. The format

CTRLC routine—address

keyboard (usually to abort a

but rather a flag is set in the
by the program. The CTRLC calL
k the status of the controL—C
a specific address if the flag
user couLd perform the same

his own JCB status word and
of this call is:

where routine—address is the address to branch to within the program if the
control—C fLag is set.

The CTRLC call does not reset the J.CCC flag but mereLy indicates that it is
set (this allows nested routines to unwind themselves correctly). The user
program must then reset the flag explicitly by clearing it in the JCB status

MISCELLANEOUS MONITOR CALLS Page 10—2

word or implicitly by performing the EXIT caLl, which kills the program and
returns to monitor mode, clearinn J.CCC.

10.3 JLOCK, JUNLOK — PREVENT CONTEXT SWITCHING

The JLOCK call prevents context switches from occurring and allows the
current user to run. JUNLOK reverses the effect of JLOCK.

10.4 POST — REQUEST CONTROL OF A SEMAPHORE

P0 points to a 2—word semaphore which may conventionally be associated with
any type of resource (disk, buffer, queue block, etc.). When a job requires
access to a resource, it should ROST the semaphore associated with that
resource. RQST decrements the semaphore count (representing the number of
available resources) by 1. If the resulting count is greater than or equal
to 0, the RQST returns, allowing access to that resource. If the difference
is less than 0, the job is placed in a wait chain until the resource is
available.

To illustrate, suppose a job needs to access one of 20 avaiLable queue
blocks. A semaphore with an initial value of 20 (to represent the available
queue blocks) could be set up and accessed prior to any attempts to allocate
a queue block. A POST call decrements the count from 20 to 19, confirms
that 19 is greater than or equal to 0, then returns control of the job so it
can get a queue block. If none of the 20 queue blocks were available (i.e.,
the semaphore count < 0), the job would be placed in a wait state until a
queue block was identified as freed via a RLSE call (see section 10.5
below).

10.5 RLSE — RELEASE CONTROL OF A SEMAPHORE

If, upon execution of the POST call (see section 10.4 for explanation), the
semaphore count is less than or equal to 0 (i.e., none of the resources
requested is available), the requesting job is put to sleep in a wait chain.
When one job is finished with one of those resources, a RLSE call on the
semaphore associated with that resource increments the count by 1 and
determines if the result is less than or equal to 0. If it is, the next job
in the wait chain is awakened and allowed to finish the POST.

For example, if none of 20 queue blocks is currently available, the count is
less than or equal to 0——let's say it's 0. Before a job tries to get a
queue block, a POST on the semaphore decrements the count from 0 to —1 and
places the job in a wait chain. After a job frees a queue block, it uses
the PLSE call on the semaphore associated with "queue blocks." This call
increments the semaphore count by 1, resulting in 0, and wakes the first jobin the wait chain, which allows it to continue on and allocate a queue
block. The following diagram illustrates the semaphore:

MISCELLANEOUS MONITOR CALLS Page 10—3

SEMAPHORE
RD >

count

wait chain

10.6 PCALL — INVOKE PROGRAM AS SUBROUTINE

PCALL is similar to the standard machine instruction call (JSR), exceptreturn is not done via the RTN instruction but is accomplished via the EXITsupervisor call. The format is:

PCALL subroutine—address

where the subroutine address is the address of the program you wish to calL.

If
you wish to use the PCALL monitor call to execute a program that locatesits stack area in the user partition (e.g., VUE), you must first place yourown stack area in your user partition.

10.7 AMOS — EXECUTE AMOS COMMAND AS SUBROUTINE

When AMOS is used as a monitor call, the character string pointed to by R2is treated as a monitor command line, and the AMOS command in this commandline is executed without leaving the current program.

If
you wish to use the PCALL monitor call to execute a program that locatesits stack area in the user partition (e.g., VUE), you must first place yourown stack area in your user partition.

(Changed 1 July 1981)

APPENDIX A

DISK STRUCTURE FORMAT

The AMOS monitor supports a flexible disk fiLe system which relieves you of
the task of keeping track of files, links and record counts. The structure
of the standard disk format used in the AMOS system is described here for
those programmers who wish to do some disk file manipulation or system
software programming.

A.1 PHYSICAL RECORD FORMAT

The logical record size for all disks used within the AMOS file structure,
regardless of type, is 512 bytes. For efficiency, the hard—disk structures
(such as the AM—500 or Trident subsystems), and the AMS floppy format all
define the physical record size to be this 512—byte logical record size. To
maintain compatibility with other systems, the standard IBM—compatible
floppy disk format is somewhat different and will be expained in more detail
here.

The standard IBM—compatible floppy disk has 2002 128—byte physical records
on 77 tracks, each track having 26 sectors numbered 1 through 26. The AMOS
system uses a logical record size of 512 bytes (256 words) for each record,
so the actual record is made up of four standard size 128—byte records on
the floppy disk itself. The disk driver routine is responsible for
translating the AMOS record number (0—499) to the proper four physical
records on the disk. There are only 500 records of 512 bytes each, as far
as the proorammer is concerned, and the last two 128—byte records on the
floppy disk are lost to his use.

The driver translates the AMOS record number into a starting record number,
which is four times as great. In addition, a physical sector interleave
factor is used so that a 512—byte record requires only one rotation of the
disk instead of four, which would be the case if an attempt was made to
access four physically contiguous sectors on the floppy disk. The
interleave factor is 5, meaning that there are four sectors between each
Logically contiguous pair of sectors.

DISK STRUCTURE FORMAT Page A—2

A.2 DISK RECORD TYPES

There are six different record types in use in the AMOS system, categorized
by their use in the logical processing of files. Each record is 512 bytes
Long, but their internal structure differs due to different usage in the
system. The six record types are:

1. Disk ID record
2. Bitmap records
3. Master File Directory record (MFD)
4. User directory records
5. Sequential file data recOrds
6. Contiguous file data records

The foLlowing three record types take care of records 0—2, which are the
same on all disks. Initializing the disk by using the "I" command in the
SYSACT program writes out record 1 (empty MFD of aLl zeros) and record 2
(bitmap with records 0—2 allocated), logically clearing the disk of all
users and files and making all remaining records (3—499) available. These
records are then allocated as either user directory records or file data
records.

A.2.1 The Disk ID Record

The Disk ID record is always record 0 and is not currently used by the AMOS
system, It has been reserved for use by user routines which may want to
store disk identification information in it. It is permanently allocated,
so it will not accidently be used as a data record by any system routine.
Since this record is reserved for the disk ID, you should not attempt to use
it for other purposes.

A.2.2 The Bitmap

The bitmap is one or more records which always begin with record 2 and
extend into as many sequential records as necessary to represent the entire
disk. Each word in the bitmap is capable of representing the state of 16
logical records with one bit being used for each record. The bit is set if
the record is in use and cleared if it is free. The last two words of every
bitmap are a double—word hash total used to maintain bitmap integrity during
processing. Any remaining words in the last bitmap record are unused. The
bitmap itself is permanently allocated but contains no links to other system
disk records. If you destroy the bitmap, you can run the DSKANA program to
recover it.

DISK STRUCTURE FORMAT
Page A—3

//
A.2.3 The Master File Directory

The master file directory record is always record 1 and forms the root of
the file structure tree. It contains one entry of four words for each userPPN which is allocated to this disk by the SYSACT program. A maximum of 63
users may he allocated on any one disk, since only one MFD record isavailable.

A.2.4 The User File Directory

User directory records contain up to 42 entries of six words each to
describe user files in the corresponding PPN. The first word of each
directory record is a link word to the next directory record in the event
that more than 42 files are allocated in the current user area. The final
directory record has a zero link word indicating that no more directory
records follow.

A.2.5 Sequential File Data Records

Sequential file data records have a link word and 255 data words. The link
word is the record number of the next record in the file. A zero Link word
indicates this is the last record in the file. The last record in the file
may have anywhere from 0 to 509 active data bytes in its data area. The
directory record item contains this number. Sequential files are normally
processed as one long string of bytes from start to finish.

A.2.6 Contiguous File Data Records

Contiguous file data records have 256 data words and no links. Contiguous
files must be allocated as a block of records with no intervening recordsbelonging to other files. They must be allocated before their use while
sequential files are aLlocated one record at a time as they are required.
Contiguous files allow random access processing, since any record may be
located as a direct offset relative to the base record.

A.3 FILE STRUCTURE

The file structure is depicted in figure A—i and resembles a tree with the
MFD record as its root. The MFD record has one item for each allocated user
on this disk. Each MFD item then contains the record number of the first
user directory record for that PPN number. The user directory record hasone item for each data file in this user's area. Each directory item then
contains the record number of the first data record in he fiLe. Sequential

DISK STRUCTURE FORMAT Page A—4

DIRECTORY RECORDFOR [2020]

— — —TO SND. GAS
FILE

— S-TO REC. GAS
FILE

— — —TO REC. PUN
FILE

FILE DATA RECORDS

— —TO REST
OF E0IT PRG

— — TO REST
OF DIR. RRG

Disk File Structure
Fig A-I

IMFO 1LC0 IJ
(LINKS TO
\OIRECTORV RECORDS

— —ETC.

0

— — To MAP. PRG
FILE

- —TO SASIC.PRG
FILE

— — TO RUN. PRS
FILE

Stan. GAS

REC. GAS

REC. RUN

ETC.

4
ETC.

TO SYSTEM.
FILE

DISK STRUCTURE FORMAT
Page A—5

files then chain through the data records by link words as shown in thediagram. The two files that are partially depicted are EDIT.PRG and DIR.PRGin user area [1,4] which happens to be the system program area. Contiguousfiles have no link words and must occupy physically adjacent recordsbeginning with the first record as addressed in the directory item.Contiguous files are not depicted in the diagram since they are sostraightforward in organization.

A.4 MED ITEM FORMAT

Each MFD item is four words long and contains the PPN specification, user
directory link, and password. The format of the item is:

Word 1 — user PPN (proj and proq are each one byte)
Word 2 — record number of first user directory record
Words 3—4 — password packed RADSO (up to 6 characters)

Word 2 is zero if no files have been allocated to this user yet, meaning nodirectory records have yet been allocated. Words 3—4 are zero if nopassword is required to gain access to this user account when logging on viathe LOG command.

MED items are added, deleted, and changed by the SYSACT program.

A.5 UFD ITEM FORMAT

Each user directory item is six words long and contains information aboutthe data file which it defines. The format of the item is:

Words 1—3 — filename.extension of the file packed RAD5O
Word 4 — number of data records in this file
Word S — number of active data bytes in last record
Word 6 — record number of first data record in file

Word 1 is —1 (octal 177777) if this file has been erased and the directoryitem is available for another file definition. Word 1 is zero, to mark thelogical end of the user directory. The byte count in word 5 is negative ifthis is a contiguous file. It also represents the negative active bytecount of the file if the contiguous file has been opened for output andwritten into sequentially.

APPENDIX P

SYSTEM COMMUNICATION AREA

One area in monitor memory starting at location 100 (octal) is called thesystem communication area. It is defined mnemonically in SYS..MAC andcontains specific parameters that deal directly with singular systemresources and root addresses. They are briefLy defined here for those userswho wish to carefully reference them; but such action should be rare andmust be undertaken with great caution. ALL references to these parametersshould be made symbolically in the absolute addressing mode. For example,the instruction MOV a#JOBTPL,Rfl should be used to set the base of the userjob table into index register RO.

6.1 SYSTEM — SYSTEM ATTRIBUTES WORD

This word contains system attribute and status flacis. Currently it is onlyused to indicate that the system has been properly loaded when bit 0 is seton.

8.2 DEVTBL — ADDRESS OF THE DEVICE TABLE

Set up by the DEVTBL program in the system initialization command file, thisword contains the absolute address of the device table in monitor memory.

8.3 DDBCHN — ACTIVE DDB CHAIN

This is the base of the active DD6 chain for interrupt driven routines. Itis set up and altered by the file service routines as new I/O DDB's arequeued for transfer requests, and goes to zero each time there are norequests pending. It is not used for non—interrupt driven devices.

SYSTEM COMMLINICATION AREA -'

6.4 MEMBAS & MEMEND — USER MEMORY POINTERS

rclye crc

These two words define the beginning and end of the complete user memoryarea. MEMBAS is the address of the first word following the complete
resident monitor, including the system memory area for user resident
programs. MEMEND is the address of the last word in the total physically
contiguous RAM memory in the machine. It is set up by the INITIA program
when the monitor first starts up, by a memory scan technique which locates
the last available 1K bank. If memory management is active, MEMEND can onlyreflect the end of switchable memory within bank 0, and its use in the
system diminishes.

6.5 SYSBAS — BASE OF SYSTEM MEMORY

This is the
user programs
command file.

address of the system memory area which is used to contain any
set up by the SYSTEM command in the system initializationIt is zero if no system memory area exists.

6.6 JOBTBL — ADDRESS OF THE JOB TABLE

This is the address of the user job table which contains one JCB entry for
each user aLlocated via the JOB command in the system initialization commandfile. For a complete description of the job table and JCB entries, refer to
Chapter 2, "JOB SCHEDULING AND CONTROL SYSTEM."

6.7 JOBCUR — JCB ADDRESS OF THE CURRENT JOB

This word always contains the address
currentLy running and has control
always points to your own JCB as long
are referencing this word you must
the job scheduler in the time—sharing

6.8 JOBESZ — JOB TABLE ENTRY SIZE

of the JCB for the job that is
of the CPU. For the user proqram, it

as you are running. Obviously if you
be running. JOBCUR is updated onLy by
monitor.

This word is set up when the monitor is built and contains the size in bytes
of the JCB entry in the job table. This way, when the JCB item expands, the
programs which scan the job table will not have to be reassembLed since they
get the JCB size dynamicalLy from JOBESZ. This includes routines within the
monitor itself.

SYSTEM COMMUNICATION AREA
Page 6—3

8.9 TIME — THE TIME OF DAY

THIS 2—word field isincremented each time the line clock interrupts. Itrepresents the current time of day, stored as the number of ticks sincemidnight. You can reference this parameter to keep track of the time ittakes to do something on the machine. Remember, TIME is used to count clockticks and not seconds or milliseconds. To calculate the actual time inseconds, divide the elapsed time in ticks by the clock frequency which isstored in the CLKFRQ constant described further on. This, of course,assumes that the CLKFRQ command has been used in the system initializationcommand file to properly set up the constant for your particular frequency(50 Hz overseas, remember?).

6.10 DATE — THE SYSTEM DATE

This 2—word field is used by various date routines to store the current datein some specific format. Its use depends upon the applications which aredefining the format. The DATE field is not accessed or altered by thesystem monitor itself.

8.11 HLDTIM — THE HEAD LOAD TIMER

This 2—word area controls the head—load timing for the AM—200 floppy disksystem when used with the Persci Floppy Disk Drive. The second word (at
HLDTIM+2) is set up by the HEDLOD program, in the system initialization
command file, to the number of clock ticks desired to wait before unLoadingthe disk heads during periods of inactivity. Each time the head is Loadedor another disk transfer is initiated, the count in the second word istransferred to the first word. Each time the clock interrupts, the count inthe first word is decremented, and if it ever gets to zero the head isunloaded.

6.12 CLKFRQ — LINE CLOCK FREQUENCY

This word is set up by the CLKFRQ command in the system initializationcommand file to contain the frequency at which the line clock is running.It is used by routines which compute elapsed time by counting the clockticks in the TIME constant. It is normally set to 60 for systems in NorthAmerican countries and to 50 for systems running overseas.

Remember that CLKFRQ specifes only the local line frequency. ChanginqCLKFRQ has no effect on the execution speed of the computer.

SYSTEM COMMUNICATION AREA Page 6—4

6.13 SPXSAV — STACK POINTER SAVE LOCATION

This word is used by the clock interrupt routine for saving the user stackpointer just prior to switching to the internal stack.

6.14 SPXINT — INTERNAL STACK

This is the address of the internal work stack used for processing clockinterrupts. It is set up by the initial load routine and used by the clockinterrupt processor.

8.15 LPTQUE — LINE PRINTER SPOOLER QUEUE

This is the dynamic link address to the base of the line printer spooler
queue. The format of the spooler queue is subject to frequent change, so it
is not detailed here.

6.16 TRMDFC — BASE OF THE TERMINAL DEFINITION TABLE

This is the link to the base of the terminal definition table. There is one
entry in this table for each terminal defined at system startup by a TRMDEF
statement in the SYSTEM.INI file.

6.17 TRMIDC — ADDRESS OF FIRST INTERFACE DRIVER

This is the link to the first terminal interface driver defined in the
system. Each driver then links to the next one in the chain.

6.18 TRMTDC — ADDRESS OF FIRST TERMINAL DRIVER

This is the link to the first terminal driver defined in the system. Each
driver then links to the next one in the chain.

6.19 TRMSCN — THE NON—INTERRUPT TERMINAL QUEUE

TRMTSC is the link to the chain of queue blocks for all terminals which are
defined as non—interrupt driven and which require terminal scan service eachclock tick.

SYSTEM COMMUNICATION AREA
Page B—S

B.20 CLKQIJE — THE CLOCK QUEUE

CLKQUE is the Link to the clock queue which gets scanned every clockinterrupt. This queue has some entries that remain constant and some thatare continuously added and deleted (such as SLEEP command queue blocks).CLKQUE is actually the base entry in the queue chain and therefore is twowords in size.

8.21 SCNQUE — THE IDLE SCAN QUEUE

This is the link to that point within the clock queue chain which definesthe idle scan queue or that portion of the clock queue which will becontinuously scanned when the system is idle. SCNQUE is actually the baseentry in the queue chain and therefore is. two words in size.

8.22 RUNQUE — THE JOB SCHEDULING QUEUE

This S—word block forms the base and end entries for the job scheduling aridrun queue, along with the necessary control information. Its format isunimportant to the user, and you should never alter it.

3.23 DRVTRK — THE DRIVE/TRACK TABLE

DRVTRK is a 4—byte block that stores head track positioning information forfloppy disks used in the system. It is used only by the head unload andhead positioning routines in various floppy disk drivers.

13.24 MENDEF & MEMBNK — MEMORY MANAGEMENT CONTROL

These two words are used by the memory management system (when active) tostore the base of the memory bank definition table and the currently activebank index. They are explained in detail in Chapter 3, "MEMORY CONTROLSYSTEM CALLS."

3.25 ZSYDSK — ADDRESS OF SYSTEM DISK DRIVER

This word contains the base address of the system disk driver within themonitor. It is used by MONGEN to overlay the disk driver with another onewhen changing the resident disk type.

(Changed 1 July 1981)

SYSTEM COMMUNICATION AREA Page 6—6

8.26 SYSMEM — SYSTEM MEMORY LINK

This word contains the address of the bank—switched system memory, typicallycontaining bitmaps.

6.27 MSGQUE — SYSTEM LINK COMMUNICATION

This word is the base address of the Link system interrupt queue.

8.28 MSGDAT — MESSAGE SYSTEM DATA AREA

This word points to the system data communication area for the Link system.

8.29 QFREE — QUEUE SYSTEM CONTROL

QFEE consists of two words, the first containing the number of queue blocks
currently available, the second pointing to the first available queue block.
Queue blocks are allocated and deallocated by getting and returning themfrom the front of the list controlled by this addrss, automatically
incrementing or decrementing the free count in the process. The operation
of the queue system is more fully explained in Chapter 5, "MONITOR QUEUE
SYSTEM CALLS."

(Changed 1 July 1981)

APPENDIX C

ALPHABETIC LISTING OF AMOS MONITOR CALLS

The following is a quick rference to all AM—lOD monitor calls:

ALF

AMOS

ASSIGN
BNKSWP
SIP
C H GM EM

CLOSE
CRLF

CT PLC

F) C VT

DEASGN

DELETE
F) ELM EM

DSKALC
DSKBMR
DSKBMW

DSKCTG
DSKDEA
DSKDRL

DSKDRU
EXIT

FILNAM
FMA P K

F MA P KR

F SPEC

GETMEM
GTDEC

GTOCT

GTPPN
HTIM
INIT
IN PUT
JLOCK
JOF3GET

processes a
find file ma
read in reve
processes a
allocates a
converts
converts
converts
sets up
initiali

tests the character indexed by P2 for alphabetic
executes AMOS commend without exiting current programassigns a non—sharable device to a job
changes banks when running under memory management systembypasses all spaces and tabs in the strinq indexed by P2changes the size of a user memory module
closes a logical dataset
prints a carriage—return line—feed pair on the user terminal
checks for a control—c pending
converts a binary value to decimal and prints it on
deassigns a non—sharable device from a job
deletes a file from a file—structured device
deletes a user memory module from his partition
allocates next available record on disk arid returns
reads disk bitmap and sets re—entrant lock for user
rewrites disk bitmap after user modification
allocates a contiguous file for random processing
deallocates a record on disk and makes it availablesets re—entrant directory lock for a specific user's
clears re—entrant directory lock for a specific userexits from user program and returns t

FETCH fetches a

the user terminal

block number
modification

for use again
directory

'5 directory
tor command mode
unless already in memory

by P2 into RAD5O format

0 moni
module from disk into user memory
filename specification indexed
rk on specified magnetic tape unit
rse to find file mark on specified magnetic tape unit
complete file specification indexed by P2 and sets up 0DB
user memory module in his partition

a decimal number indexed by P2 into binary and returns it in Ri
an octal number indexed by P2 into binary and returns it in Ri
a p,pn format indexed by P2 into binary and returns it in Ri

the diskette head unload timer function
zes a dataset driver block (DDE) for I/O processing

performs a logical record input I/O function on an open dataset
prevents context switches and allows current user to run
retrieves a job control block item for the current job

ALPHABETIC LISTING OF AMOS MONITOR CALLS Page C—?

JOBIOX set an index to a job control block item for the current job
JOBSET sets data into a job control. bLock item for the current job
JRUN restores a waitina job to the run request state
JUNLOK enables context switches (reverses effect of JLOCK)
JWAIT sets an active job into the wait state
JWAITC sets your job into the wait state
KBD accepts input from user terminal. keyboard (character or line mode)
LCS converts one character in Ri to lower case
LIN tests the character indexed by P2 for valid end—of—Line character
LOCK Locks the processor against interrupts (performs IDS instruction)
LOOKUP looks for a specific file on disk and returns information about it
NUM tests the character indexed by P2 for numeric
OCVT converts a binary value to octaL and prints it on the user terminal
OPEN general form of the I/O logical dataset open calls
OPENA opens a logical dataset for appending
OPENI opens a Logical dataset for input
OPENO opens a Logical dataset for output
OPFNR opens a logical dataset for random access
OUTPUT performs a logical record output I/O function on an open dataset
PACK packs an ASCII triplet into its RAD5O code
PCALL invokes program as subroutine
PFILE prints a complete file specification on user terminal from a DDB
PRNAM prints a filename specification on user terminal from its packed format
PRPPN prints a p,pn specification on user terminal from its packed format
PTYIN forces one character into another jobs terminal input buffer
PTYOUT retrieves one character from another job's terminal. output buffer
QADD adds a queue block to the end of a queue list
QGET gets a queue block from the free List and clears it for use
QINS inserts a queue bLock into a queue list at a defined point
QRET removes a oueue block from a queue List and returns it to the free list
READ performs a physical record read I/O function on a dataset
RENAME renames a file on a fiLe—structured device
REWIND rewind magnetic tape on specified magnetic tape unit
RLSE releases control of a semaphore and allows waiting job to access source
RQST requests control of a semaphore to access source or to wait in wait chain
SCAN forces a single scan of the idle scanner queue (SCNQUE)
SLEEP puts the user job to sleep for a specified number of line clock ticks
SRCH searches for a named memory module and returns its address
TAB sends a tab character to the user terminal
TAPST read tape status of specified magnetic tape unit
TBIJF queues up a variabLe Length data buffer for output to a terminaL
TCRT executes the special function CRT routine in the active terminal driverTIN reads one character from the user terminal input buffer
TOUT sends one character to the user terminal output buffer

tests the character indexed by R2 for a valid termination character
TRMBFQ adds a data buffer to the active output queue of a terminal
TRMICP processes one input character (used within terminal drivers)
TRMOCP processes one output character (used within terminal drivers)Tfl outputs one character to the user terminal
TTYI outputs an in—line messaa e to the user terminal
TTYIN retrieves one character from any job's terminal. input buffer
TTYL outputs a message to the user terminal
TTYOUT forces one character into any job's output buffer

ALPHABETIC LISTING OF AMOS MONITOR CALLS
Page C—3

TYPE types an ASCII message on the user terminal
TYPECR types an ASCII message on the user terminal with appended CRLF pairTYPESP types an ASCII message on the user terminal with one appended spaceUCS converts one character in Ri to upper caseUNLOCK unlocks the processor for interrupts (performs lEN instruction)UNPACK unpacks a RAD5O code word into its equivalent ASCII tripletUSRBAS returns the address of the current user's memory partition baseUSREND returns the address of the current user's memory partition endUSRFRE returns the address of the current user's free memory areaWAKE wakes a job out of sleep state
WRITE performs a physical record write I/O function on a datasetWRTFM write a file mark to specified magnetic tape unit

AM—iQO

AM—lOB/I - -

AM—700
AMOS .

ASSIGN

Bitmap Format
Bitmaps -

BNKS1P
EYP

3—13

CHGMEM

CLKFRQ

CLuuE
Cluck Frequency
CLOSE

Contiguous Files
Cont ro 1—C -

Convnjence Macro
CRLF
CTRLC
Cursor Addressing

(Changed 1 July 1981)

3—6
8—3

8—5

8—3

6—11

A—3

10—1

7—8
7—4
10—1
7—6

Page Index—i
AMOS MONITOR CALLS MANUAL

ALF

Alphabetic conversion

Index

6—1
Buffer Address 6—4
Buffer Index 6—4
buffers 6—6Call Level 6—s
Device Code 6—5
Drive 6—5
Driver Work Area 6—6
Error Code 6—2
Error Handling 6—7
Extension
FiLename

6—6
6—6

Flags

AMOS MONITOR CALLS MANUAL

JCB Address . . 6—5Job Priority . . 6—5
Open Code . . . 6—6
PPN 6—6
Queue Chain Link 6—5
Record Number . • 6—5
Record Size . . 6—4

DOB Format . • . . 6—2
DDBCHN 8—1
DEASGN 6—16
Decimal Input . . . 9—2
DecimaL Output . . 8—1
DELLTE 6—15
DELMEM 3—6
DEVTBL 6—1
DEVTdL program . . 61
Disk File Structure A—3
Disk ID Record . . A—2
Disk Record Types . A2
Disk Service Monitor o—io
Disk Structure . . A1
DSKALC 6—18

6—19
DSKCTG 6—18

6—19
DSKDk[J 6—20

EXiT 10—1

FETCH
4—1Flos 4—2

File marks . . . 6—21
File Service Monito 6—8
File Service System o—i
File Structure . . A3
Filenames 8—4, 9—3
FiLespecs 8—4
FILNAM 9—3
FMARK 6—21
FMARKR 6—21
FORCE command . . . 7—4
FSFEC 6—8

I-lead Load lime 8—3
HEDLOD program . 6—3
Hexadecimal Input 9—2

(Changed 1 July 1981)

Page Index—2

Calls

r Calls

GETMEM
GTDEC .

GTOCr .

GTPPN .

3—6, 6—6
9—2
9—2

9—3

AMOS MONITOR CALLS MANUAL Page Index—3

Hexadecimal Output . 8—1
I-ILDIIM

INtl 6—6, 6—9
INPUT

6—13
Input Line Processing Calls 9—1Interface Drivers 7—5, 8—4

JCB 2—1, 3—2Size 6—2
JCB Entries

JOBBAS 2—5
JOB}3NK 2—7, 3—11
JUC8PT 2—7
JOBBRK 2—8
JCBCMS 2—6
CUC1lZ 2—6

JOBDEV 2—7
JOBDRV 2—8
JOBDYS 2—9
JCERC 2—7

JOBEXT 2—10
JOHFPE 2—9

JOLIAL
2—10

JOL'MSG 2—10
JOBNAM 2—5
JQIPRG 2—6
JCUF'RV 2—6
JOiRNQ 2—9
JULSjZ 2—5
JCUSPR 2—5
JOi3STK 2—9
JO6STS 2—4
JOSIRM 2—8
JOE1TYP 2—7
JObUSR 2—6

JLOCK 10—2
Job Cmtrol Block 2—1, B—2

SILL 8—2
Job Thble 8—2
JOBEAS 2—5
JOBBNK 2—7, 3—11
JOEiPT 2—7
JOBtnK 2—8
JOBCMS 2—6
JOE3CMZ 2—6
JOBCUR 2—1, 8—2
JOGDEV 2—7
JO8uv 2—8
JOBDYS 2—9
JOBERC 2—7
JOBESZ 8—2

CChanued 1 Juty 1981)

AMOS MONITOR CALLS MANUAL

KBI)

• 2—10
• 2—9

• 2—1,
• 2—10

9—1

Page Index—4

L1R 9—2
Line Printer Spooler 6—4
LOOKUP 6—10
LPTOE 8—4

Magnetic tape drivers
Mdster FUe Directory
MEMSAS

MEMOrK

MEMGEF Program
MEMEND

Memory Management
Memory Mapping
Memory Modules • •

Memory
Memory

(Charged 1 July 1981)

A—3,

1 —1

6—15
3—12
9—2

JOBEXT
JOBEPE
JOSGET
JOBIAL
JOBIDX
JOBMSG
JOSNAM
JOBPRG
JOBPRV
JO8RNQ
JOBSET
JOESIz
JOBSPR
JOBSTK
JOL3STS
JUOToL
J GET i H
J OBTYP
JOBLJSR

JRUN
JUNLOK
JWA1T
JtJAI iC

2—3

2—3

2—3

to 6—21
A—S

6—5

8—5

4—1

to 3—13

A—S

Partition Controller
Partitions

MFD

Miscellaneous Monitor Calls
Monitor Calls

ALF
Alphabetic conversion
AMOS

Arjuroents
ASSIGN
BNKSWP
BYP

Calling
CHGMEM

CLOSE
CRLF

CTRLC
DCVT
DEASGN

DELETE
DELMEM

Disk Se
OS KA L C

OS KB MR

DSKBMW

DSKCTG
DSKDEA
DSKDRL
DSKDRU

EXIT
FETCH

FiLe Se
F MARK

F MA R K R

FSPEC

GETMEM
GT bE C

GTOCT
GTPPN
INIT
INPUT
Input Li
JLOCK
JOSGET
JOBIOX
JOBSET
JRIJN

JUNLOK
JWAIT
JWAITC
KBD
LIN
LOOKUP
Magnetic tape drivers
Memory Control •

MisceLLaneous . . .
NUM

Numeric Conversion
OCvT
OPENA
OPENI
OPENO
OPENR
OUTPUT
PACK

(Changed 1 July 1981)

2—3

2—3
2—3

Page Index—S
AMOS MONITOR CALLS MANUAL

Format

rvice .

rvice . .

ne Processing

4—1

6—6

6—9

9—1

to 6—21

AMOS MONITOR CALLS MANUAL

lVi.\.L V
TI
TI
Ti H:
Tiu . -

TTIL.
TYPE
UNPACK
USkLJ,
LJSR[•:Q
USF(rRE
WAKE

WRITE
WRT Eli

MEC - . -

MSGUATMSGQUE
ri1u.cv

10—3
8—4

8—4

8—4

8—4

7—4
7—5

5—3
5—3

5—3

5—3

8—2

6—11

6—15
6—20
1 0—2

10—2
2—3
7 C.)

1—2

7—3

6—21
7—6
7—6
7—1

2—8

7—3
7—3

9—2

7—6
7—5

7—5

7—3
7—4,
7—5

7—4
7—5

1 —1

3—4

3—2

3—2
3—2
2—4

6—12
6—20
3—10
8—6

B— 6

—2J

Page Index—6

NUN —2

Numeric Conversion Monitor Calls
fl 1 C Input

(Changed 1 July 1981)

8—1

9—2

PCALL
PFILE
Printing Conversion
PRNAM

PRPPN
PTYIN
PTYOUT
OADD
QUET
QINS
QRET
RADSU Conversion
READ

RENAME

RE;IND

SLLEP

StiiJard Address Argument - -

TAU
TAPT

lCr,1
T.2rminal Service
flex (obsolete)

4—1

7—8

to 3—13

to 6—21

Octal Input
Octal Output
OCVT .

OPENA .
OPENI . -

OPENO .
OPENR . . . *

OUTPUT .

PACK
PCALL
PFILE
Physical Disk Record Format
PPNs

Printing Conversion Monitor
PRNAM

Project—Programmer Numbers
PRPPN

Pseudo Terminals
PIVIN
P-fl/OUT

8—3

10—3
8—4
A—i

8—4, 9—3
8—4
8—4

8—4, 9—3
8—4

7—4 to 7—5
7—4
7—5

QADD

QFREE
QGET

QINS
QRET

QUEUE command
Queue System

Manipulating Queue Blocks
Obtaining a Free Queue BLock
Returning a Queue Block

RAD5O Conversion Monitor Calls
Random File Processing
Random Files

5—3

8—6

5—3

5—3

5—3

5—2

5—1, 8—6
5—3
5—3

5—3

SCNQUE

Semaphores
Sequential Files
SLEEP
SPXItJT
SPXSAV
SRCH

Flags

1 July 1981)

AMOS MONITOR CALLS MANUAL
Page Index— 7

CalLs

8—2

READ

RENAME

REWIND
RLSE
RQST

RUNQUE

6—13

10—2

Standard Address Argument
SYSJ-1AC

CLKFRQ - . -

CLKQUE .
DATE
DDBCHN - . -

DEVTI3L
DRVTRK
I-ILDTIM
JOE3CUR

JOBESZ
JOI3TBL .

LPTQUE

IIErIBNK
MEMbEr
t1EMEND

MSGDAT . -

?ISGQIJE -

OFREE .
RUNQUE -

SCNGUE -

SPXINT
SPXSAV . -

SYSBAS
SYSMEM . .
SYSTEM
TIME . -

T1MDFC
T1*1IDC
TRMSCN

TfMTDC . . -

ZSYDSK
System Date

• - . . 5_i
• - - - 8—1

TAB
TAPST
TBUF
TCRT

Terminal Definition
Terminal Drivers
Terminal Input
Terminal Service Monitor
Terminal Status Word
TIDX (obsoLete)
TIME
Time of Day
TIN

7—3
6—21
7—6

7—6

8—4

7—6,
7—2

7—1

7—2

2—8

8—3
B—3

7—3
TOUT . 7—3

AMOS MONITOR CALLS MANUAL

SYSBAS
SYSMEM

SYSTEM
System Communication

QFREE

System Communication Area

Page Index—B

B— 2

8—6
B—i

8—5

8—5

Table

Call $

(Changed 1 July 1981)

AMOS MONITOR CALLS MANUAL
Page Index—9

TRM
9—2

TRMBFQ
7—6

TRMDFC
B—4

TRMICp
TRMIDC

8—4
TRMOCP

7—5
TRMSCN

B—4
TRMTDC

8—4
ITY

7—3
TTYI

7—4, 7—8
TTYIN
TTYL 74
TTYOUT

7—5
TYPE

1—1, 7—8
TYPECR 78
TYPESP 7_a

UFD
. A—3, A—S

UNPACK 8—4User File Directory A—3, A—S
USREAS

3—2
USREND

3—2
USRFRE

3—2

WAKE
2—4

WRITE
6—12

WRTFM 6—20

ZSYDSK
B—S

(Changed 1 JuLy 1981)

