SOFTWARE MANUAL

AMOS
MONITOR CALLS

DWM-00100-42
REV. BO1

AMOS MONITOR CALLS MANUAL Page i1

NOTE: This printing of the manual contains the contents
of (hange Page Packet #1 for the "AMOS Monitor Calls
Manual' (D$SS-10000-12), which may be ordered separately
from Alpha Micro.

First Printing: 1978

Second Printing: 1979 .
Third Printing: 30 April 1981
Fourth Printing: 1 July 1981

"Alpha Micro', 'AMOS', 'AlphaBASIC'
'AlphaPASCAL', 'AlphaLISP', and *AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This book reflects AMOS Versions 4.5 and later

© 1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92?14

A-M-6/81

AMOS MONITOR CALLS MANUAL

Cne

mast

PREFACE

Page i1

of the major features of the AMOS operating system is the Llarge number
of monitor calls aveilable to the assembly language programmer. By making

common

rout ines

available

in the

monitor, AMOS frees the programmer

from having to repetitively write the same routine. This manual describes
these monitor calls.

We assume that the reacder of this manual is familiar with assembly Language

programming and the AM-100 instruction set.
with

18 familiar

Assembly Language

the
Programmer's

AM=100

We also assume that the reader

macro assembly system described in the AMOS
Reference

Manual (DWM-00100-43) . This

reference

programming.
Language, you should consult such a hook befare reading this manual.

manual ds

most emphatically NOT & futorial on assembly Language
Many such tutorials exist; if you are just Llearning assembly

AMOS MONITOR CALLS MANUAL Page v

Table of contents

CHAPTER 1 COMMUNICATING WITH THE AM=100 MONITOR
1.1 MONITOR CALL CALLING FORMAT vvecvovvvoenmooennn 1-1
12121 ArQUMENES o aetieiennensvaccasnceennns 1-1
1.1.2 Standard Address Argumentseveees 1-2
CHAPTER 2 JOB SCHEDULING AND CONTROL SYSTEM
2.1 THE JOB CONTROL BLOCK (JCB) muvcmccouceconcens 2-1
2.1.1 Example - Scanning The Job
CONtrol Area ..iuweeecececoveumncacnnann 22
222 ACCESSING YOUR JCB cevucvemumccnccocnccaaonens 2=-2
2.2.1 Calling Sequenceoeoeu. camueseveneas 2-3
2.3 JOB SCHEDULING CALLS ruceveocccocccoacoeannnns 2=3
2+3.1 SLEEP = PUT JOB TO SLEEP uuveevcmecenes 2=3
2.3.2 WAKE = WAKE UP JOB .oviecevecuneonnncnen. 2=
2.4 JOB CONTROL BLOCK FORMAT ©vcneceesenacucecnnas 24
2.4.1 JOBSTS - The Job Status Word 2-4
2.4.2 JOBSPR - The Stack Pointer Reset
Address ..ieccieccceaeccuan e== 25
2.4.3 JOBNAM = The JoOb NamMe sueccececcecceons 2=5
2.4.4 JOBBAS -~ The Memory Base Address 2-5
2.4.5 JOBSIZ - The Memory Partition Size 2-5
2.4.6 JOBUSR = The CUrrent PPN wececeeevenan. =i
2.4.7 JOBPRV = The Privilege Word ...cevecnn. 2-6
2.4.8 JOBPRG - The Current Program Name 2-6
2.4.9 JOBCMZ -~ The Command File Size ..ou.... 2-4
2.4.10 JOBCMS - The Command File Status ..ee.. 2-6
2.4.11 JOBERC ~ The Error Control Address 2-7
2.4.12 JOBTYP = The JObD TYPe o ricuesceaencne. 2~7
2.4.13 JOBBPT - The Breakpoint Address 2-7
2.4.14 JOBBNK -~ The Memory Bank Pointer 2-7
2.4.15 JOBDEV =~ The Default Pevice ,.veuweouwoon. 2-7
2.4.16 JOBDRV = The Default Drive weoeveceecees 2-8
2.4.17 JOBTRM - The Terminal Block Pointer ... 2-&
2.4.18 JOBRBK -~ The Run Control Block w.eee... 2~&
2.4.19 JOBFPE -~ The Floating-Point Trap
Address .ooeiieeccccccanns ema 2%
2.4.20 JOBRNQ - The Scheduling Area o.o..eeou.. 2-9
2.4.21 JOBDYS = The DYSTAT AdAress .u...ooe... 2-9
2.4.22 JOBWAT - Semaphore Wait Chain Link 2=G
2.4.23 JOBEXT - Job Exit-Trap Stack Pointer .. 2-10
2.4.24 JOBMSG - Job Message System Area
Pointer ... s ueneeennanncacnes 2-10
2.4.25 JOBIAL -~ Job Impure Area Link 2-10
-4.22 JOBSTK = The Job's Stack Area eoweeow.. 2-10
CHAPTER 3 MEMORY COMTROL SYSTEM CALLS
3.1 MEMORY PARTITION FORMAT cebuarmmasaNmedn s =7
3.2 MEMORY MODULE FORMAT wvcvceveneeans Geaemsmumeu 3-5
2.3 MANIPULATING MEMORY MODULES .ol iiiaeiceenannan 3-6

{Changed 1 July 1981)

AMOS MONITOR CALLS MANUAL Page vi
3.3.1 Allocating a Memory Module ..ceeeweeanmn. 3-8
3.3.2 changing a Memory Module ...ceveeeonaas 3-8
3.3.3 Deleting a Memory Module weveveweooaens 2-8
3.3.4 Permanent and Temporary Modules 3-8
3.4 MEMORY MAPPING SYSTEM mwececececcnaanancanannnn 3-
3.4.1- Internal Table fFormat .oneceecccnnvenas 210
3.4.1.1 The MEMDEF WOPD eeeeeuaanmnmns 3-10
3.4.1.2 The JOBBNK WOrd eveeeeeececnmea 2-11
3.4.2 The Bank Switching Process ...ecoeceens 3-12
3.4.2 The BNKSWP Monitor Call ...cieeeeavanes 3-12
3.4.4 The DMADDR Monitor Call (for Memory
Partition Controller)c.cececvacn. 3~13%
CHAPTER 4 LOADING AND LOCATING MEMORY MODULES
4,1 THE SRCH AND FETCH CALLS .i.vecacancaconcannns 4
4.1.1 Specifying the Module Name .e.cucevcee- 41
4.1.2 The Module Address ..u.cccoecccocaanas 4-2
4.1.3 FLlAagS cucececanscnacanas esemascucacanan 4-2
4.1.3.1 F.fCH - Fetch Module
. From Disk .eucuiuannannn 4-2
4.1.3.2 F.USR - Bypass System
Memory Search .c.seces 4-3
4.1.3.3 Ff_ABS - Bypass Memory Search . 4=3
4.1.3.4 F.FIL - Mark Module as
' PErmanent .e..eseee-s 4-3
4.1.4 Completion Codes eovcenenncans Casecanne 4=3
CHAPTER 5 MONITOR QUEUE SYSTEM CALLS
5.1 INCREASING THE AVAILABLE QUEUE LIST SIZE 5=1
5.2 QUEUE BLOCK USAGE BY THE SYSTEM ..vvceecacecas 5-2
5.3 QUEUE SYSTEM MONITOR CALLS cmsmamEssuena 5-3
5.3.1 QGET - Obtain a fFree GQueue Block .o.... 5-3
5.3.2 QRET - Return a Queue BLOoCK vs.cenaceve- 5-3
5.3.3 QADD, QINS - Manipulating Queue Blocks 5-4
CHAPTER & THE FILE SERVICE SYSTEM
; 6.1 THE DATASET DRIVER BLOCK .evueveucaansonnnonans 6-1
62121 DDB FOrMat s.uueeeceeceacacancaasacaana 6-2
6.1.1.1 Error Co0de .o.cascnaceceansasa 6-2
6.7.07.2 FLAYS weeececennacccannanaanas 6-4
6.1.1.3 Buffer Addresseceenccesas 6-4
6.1.1.4 Record S17€ coeenieicccccuneaa 64
6.1.1.5 Buffer INdeX .veecececcnnanane b6~4
6.1.1.6 Record NUMDEr wocueeeccacuecns 6=-5
6.1.1.7 Queue Chain Link seeeacuceonnn 6-5
6.1.1.8 JCB Addresscicecececcsan- 6-5
6.1.1.9 Job Priority weeeececcameconn- 6-5
6.71.1.710 Device (0de cevivecanaancenanns 6-5
6.7.7.7T1 Drive ..i.euvecocnmcncauacsanaans 6-5
6.1.1.12 Call Level ..iiaceecncnncnnnca 6-5
6.1.1.13 Filename and Extension 6-6

(Changed 1 July 1981)

AMOS MONITOR CALLS MANUAL

Page wvii
6.1. .14 PPN i iiantecancosncnacanans B=6
6.1.7.15 Open €0de tvveencvoneonnnn. eee H-6
L 1 16 Driver WOrk Area ...ceeevecoes b6=6
6.1.2 Device Transfer Buffers Y
6.1.% Error Handling s.eecinscncncecansinenne 6=7
6.7.3.1 Error Codes .oveeeveoenennnnn. 6-7
6.2 FILE SERVICE MONITOR CALLS ctetMsamsasccmeannn 6-8
6.2.1 FSPEC - Process an ASCITY Filespec 6-8
6.2.2 INIT -~ Initialize the PDB ..ovvuunvonn... 6~9
6.2.3 LOOKUP ~ Find the File .euweevononooonos 6-10
6.2.4 OPENI - QOpen a File for Input 4~10
A.2.5 OPEND - Open a File for Cutput 6-10
6.2.6 OPENA - Open and Append to
Existing File ...ciuimnecnnnn.. 6-10
6.2.7 OPENR - Open a File for Random
Processing cuocerieeneencccnann. 5-11
6.2.8 CLOSE ~ CloSe @ File weueeeeoeovennnnn. 6-11
6.2.9 READ -~ Perform a Physical Transfer 6-11
£.2.9.1 Sequential Devices .eweennnnn. &-11
6.2.9.2 Pandom Devices .uevewvencwonn. &-11
6.2.92.3 Interrupt Structure ..ooeo...... 6-12
6.2.10 WRITE - Perform a Physical Write 6-12
6.2.10.1 Sequential Devices .oeeweevnn. 6=12
6.2.10.2 Random Devices ..ouecveenvennn. 6-12
6.2.10.3 Interrupt SEructure ...ooeee... 6-12
6.2.11 INPUT - Perform a Logical Read ..oe.... A=13
6.2.11.1 Sequential File Processing ... 6-13
6.2.11.1.1 Example ..ovevwon.. 6-13
6.2.11.2 Random file Processing 6-13
6.2.11.2 Special DeVIiCeS wecemewnnnnon.. 6-14
6.2.12 DUTPUT ~ Perform a Logical Write 6~14
6.2.12.1 Sequential File Processing ... 6-14
6.2.12.1.1 Example ooeoee.o... 6-14
6.2.12.2 Random File Processing 6-15
6.2.712.3 Special Devices .oweeeceonunn. 6~15
6.2.13 DELETE = Delete a File cweeveeooonnnn.. 615
6.2.14 RENAME = Rename & File wccmvueeucennnn. 6~15
6.2.15 ASSIGN = ASsSian a DeviCe .eeeeomonnnn.. 6-15
6.2.16 DEASGN — Deassign a Device weeewen..... 6-16
6.3 DISK SERVICE MONITOR CALLS it imiiccaneenan 6-16
6.2.17 Calling Seauence .. eeeeceweoeooonnnnn. 6-16
6.5.2 The Bitmap Area meeeoeeeceevoeonoonon. 6-17
6.3.2.1 The Status WOrd «oevewecennn.. 6-17
6.3.2.2 The Bitmap DDB cveevemccncunnan 6-17
6.2.2.3 The Bitmap BuUffe wuoeeoceooenn. &6-17
6.3.2.4 The BitmMap seeeevecnenenoononn. 6-18
6.3.2.5 Altering the Bitmap cveeeeenn. 6-18
6.3.3 DSKCTG - Allocate a Contiguous Ares ... 6-18
6.3.4 DSKALC - Allocate a RecOrd woewenwn..... 6-18
6.3.5 DSKDPEA - Deallocate a Record 6-19
6.3.6 DSKBMR - Read the Bitmap cievnvccuenca. 6-19

AMOS MONITOR CALLS MANUAL

CHAPTER 7

CHAPTER 8

Page
6.3.7 DSKBMW - Write the Bitmap cveceeeenmeen- A-19
6.3.8 DSKDPL = Lock the Directory eeeacescees 6-19
6.3.9 DSKDRU = Unlock the DIirectory ceeessecss 6=-20
6.4 MAGNETIC TAPE DRIVER MONITOR CALLS wecencecens &~20
6.4.1 REWIND. Arg vveeeeen. Ceeeenessesnaneenon 620
6.6.2 WRTFM Arg ...cee.... tececescccccanoacnan 6-20
6.4.3 FMARK ArQ suecceeecenencnecanes secanens H—21
6.4.4 FMARKR Arg ..ecceeeeeee. teadacesnaeeenes 6-21
G.4.5 TAPST Argl,Arg? cueeeeceeeccnencncanaes £-21
TERMINAL SERVICE SYSTEM
7.1 TERMIMOLOGY ot aereurececcnecnencasncnsasansnanss 7-1
7.2 THE TERMIMAL LINE TABLE “MNeemssssnas cena =2
7.2.1 The Terminal Status WOrd eceeececeececcas 7=2
7.3 THE TERMINAL SERWICE CALLS csensssesass e (=2
7.3.17 KBD {label} -~ Fetch a Line of Data 7-2
7.3.2 TTY = Qutput One Character .cuiweceeceees 7~3
7.3.3 TIN - Get an Input Character e...c.ec-... 73
7.3.4 TOUT - Output One Character ceee =3
7.3.5 TAB — Output One Tab ... eeeeeecnceccens 7-3
7.3.6 CRLF - Qutput a Carriage-Return /
Line-Feed ..u... eheccernenasacas 74
7.3.7 TTYY -~ Qutput a String of Characters .. 74
7.3.8 TTYL ~ Qutput a String of Characters
Indexed coeeeesesesnans resessena 7—4
7.3.9 PTYIN - Place Character in Input
Buffer feccsmscsscscacnas 74
7.3.10 PTYOUT - Fetch Character from Output
Buffer .soccecacaan eansnensaas 7-5
7.3.11 TTYIN - Fetch Another Job's Input 7-5
7.3.12 TTYQUT - Place a Character in Another
Job's Output B
7.3.13 TRMICP - Process Input Character
Within Interface Driver 7=5
7.3.14 TRMOCP -~ Process Qutput Character
Within Interface Driver 7-5
7.5.15 TRMBFQ - Process Qutput Characters
Within Terminal briver 7-6
7.3.16 TBUF — Qutput Large Amounts of Data ... 7-6
7.2.17 TCRT - call Special Terminal Rriver
Routines cecacacace cees (—H
7.3.17.7 Standard Functionseec.... -7
7.%3.17.1.1 Cursor Addressing 7-7
7.2.17.1.2 Other Functions . 7-7
7.3.18 Message Calls toeeeeeenncnnes cesseas waw (=8
CONVERSTION MONITOR CALLS
&.1 MNUMERTC CONVERSION CALLS seeeevecrececcacnaene a-1
2.1.1 <calling Forrat Mesasmrsncanss aea 8-1
8.1.1.7 Size Byte ..o eceecnnn cmrena 0=1
B.1.1.2 Flags seveeenanes shas-sassesna &-2

viiil

AMOS MONITOR CALLS MANUAL

CHAPTER 9

CHAPTER 10

APPENDIX A

APPENDIX B

8.2 RAD50 CONVERSION MONITOR CALLS .vc-viceeacucnns 8-2
8.2.1 RAD5D Packing ALAOrithm «eveeeceeeenn.. 8-3
8.2.2 Packing and Unpacking Calls ..ouvevou... 8-3

8.2.2.1 PACK - Pack Three ASCII
Characters into RADSD . 3-3
8.2.2.2 UNPACK =~ Unpack Three RADS0
Characters into ASCII 8-4

8.3 PRINTING CONVERSION CALLS wvvuovovcveencnrnncen. 84
8.3.1 PFILE - Output a Filespec From a DDB .. 8-4
8.3.2 PRNAM - Qutput a Filename ..oeo..o... waa B4
8-.3.3 PRPPN = OUtPUt 8 PPN uececroeensnnnns. g4

8.4 ALPHABETIC CONVERSION=-LCS AND UCS ..iviocncan. B-4

INPUT LINE PROCESSING CALLS

9.1 ALF - TEST A CHARACTER FOR ALPHABETIC %1
9.2 NUM - TEST A CHARACTER FOR NUMERIC nvevevovon. G2
9.3 TRM - TEST A CHARACTER FOR TERMINATOR 9-2
9.4 LIN - TEST A CHARACTER FOR LINE TERMINATOR ... 9-2
9.5 BYP -~ BYPASS BLANKS temesmmmaanescsaannun 9-2
9.6 GTDEC = .INPUT A DECIMAL NUMBER .uuscuueuweno.-. van 9-2
9.7 GTOCT = INPUT AN OCTAL NUMBER v ocuvccucinsnnnn ¢-2
9.8 GTPPN - INPUT A PROJECT-PROGRAMMER NUMBER 9-~3
9.9 FILNAM — INPUT A FILEMAME Wuuuscceecnnonecccenn. 9-3

MISCELLANEOUS MONITOR CALLS

10.1 EXIT - RETURN TO AMOS COMMAND LEVEL 10-1
10.2 CTRLC - BRANCH ON CONTROL=C suueeccecceeecnan 10-1
10.3 JLOCK, JUNLOK - PREVENT CONTEXT SWITCHING wan 10=2
10.4 RQST - REQUEST CONTROL OF A SEMAPHORE 10-2
10.5 RLSE = RELEASE CONTROL OF A SEMAPHORE 10~2
10.6 PCALL ~ INVOKE PRCGRAM AS SUBROUTINE 10-3

10.7 AMOS - EXECUTE AMOS COMMAND AS SUBROUTINE ... 10-3

DISK STRUCTURE FORMAT

A.1 PHYSICAL RECORD FORMAT vowvouwccenn.a. Ctacausnnn A=1
A.2 DISK RECORD TYPES .vunvo.n. sacasemamasanaan eean A2
A.2.1T The Disk ID RECOrd oveucecveacenancncn. A-2
A.2.2 The Bitmap eceecccoon. . e baieaaanaan A-2
A.2.3 The Master File Directory eeeecececen.. A=3
A.2.4 The User File DIirectory seececeececnes. A=-3
A.2.5 Sequential File Data Records eeeeoeeeas.. A-3
A.2.6 Contiguous File Pata Records ..oeeevono.. A-32
A3 FILE STRUCTURE wuucumecmencccececenecenneanens A-3
Ald MFD ITEM FORMAT it ciecesceneacecsceannnns A~5
A.5 UFD ITEM FORMAT e ssaramemnasssanaenm. A-5
SYSTEM COEMUNICATION AREA
B.1 SYSTEM =~ SYSTEM ATTRIGUTES WORD ruevceccnconean B-1
B.2 DEVTBL - ADDRESS OF THE DEVICE TABLE .oveeae.. B-1

(Changed 1 July 1981)

AMOS MONITOR CALLS MANUAL

B.3 DDBCHN - ACTIVE DDB CHAINouuucucnucacns B-1
B.4 MEMBAS & MEMEND - USER MEMORY POINTERS B~2
B.5 SYSBAS - BASE OF SYSTEM MEMORY .cvvevuecnencan B-2
B.6 JOBTBL - ADDRESS OF THE JOB TABLE .v.vuaccccnan B-2
B.7 JOBCUR - JCB ADDRESS OF THE CURRENT JOB B-2
8.8 JOBESZ ~ JOB TABLE ENTRY SIZE «cvcvencncaaanns B8-2
B.9 TIME = THE TIME OF DAY suienucoacranmucnnscana B8-3
B.10 DATE = THE SYSTEM DATE +.uccuicmccacananca weuas B3
B.11 HLOTIM = THE HEAD LOAD TIMER .uciemucacacacaas B-3
B.12 CLKFR@ = LINE CLOCK FREQUENCY .ciuueacencacens B~3
B.13 SPXSAV =~ STACK PCINTER SAVE LOCATION caa B-4
B.14 SPXINT = INTERNAL STACK cuveceecusucmccancanas 0-4
B-15 LPTQUE -~ LINE PRINTER SPOOLER QUEUE Fe-4
B.16 TRMDFC - BASE OF THE TERMINAL DEFINITION

TABLE 4sucuuccccccuncacccasnansmscamans 8-4
B.17 TRMIDC ~ ADDRESS OF FIRST INTERFACE DRIVER ... B-4
B.18 TRMTDC - ADDRESS OF FIRST TERMINAL PRIVER B-4
B.19 TRMSCN - THE NON-INTERRUPT TERMINAL QUEUE B-4
B.20 CLKQUE = THE CLOCK QUEUE ..cuvececaranananaaas B-5
B.21 SCNQUE = THE IDLE SCAN QUEUE ...cciucuucncssas B3-5
B.22 RUNQUE ~ THE JOB SCHEDULING QUEUE cccvuuaenens B-5
B.23 DRVTRK = THE DRIVE/TRACK TABLE .cuucieivcaceane B-5
B.24 MEMDEF & MEMBNK ~ MEMORY MANAGEMENT CONTROL .. B-5
B.25 ZSYDSK -~ ADDRESS OF SYSTEM DISK DRIVER samsena B-5
B.26 SYSMEM = SYSTEM MEMORY LINK s.iuecivciucuncanna B-6
B.27 MSGQUE ~ SYSTEM LINK COMMUNICATIONccauens B-6
B.28 MSGDAT - MESSAGE SYSTEM DATA AREA .ccuvicceaa-n B-6
B.26 QFREE = QUEUE SYSTEM CONTROL acucveemuancscnscas B-é

APPENDIX C ALPHABETIC LISTING OF AMOS MONITOR CALLS

INGEX

(Changed 1 July 1981)

CHAPTER 1

COMMUNICATING WITH THE AM~100 MONITOR

The AM=-10C monitor contains over 70 routines available for use by assembly
language programs running in user or monitor memory. These routines are
called by the supervisor calls SVCA and SVCB, which have been coded into
macro form to make them easy to incorporate into user programs. The macros
are included as a part of the system Llibrary file SYS.MAC in account [7,71
of the system disk. These calls have been grouped according to the function
they perform and are described in this chapter and the following chapters.

1.1 MONITOR CALL CALLING FORMAT
The general format for all monitor calls is:
{label:} opcode {arguments} {;comments)

As the format shows, the only required item in all calls 4+s the opcode
itself, which 1is the name of the monitor call. A Label may be used if
desired, in which case it is assigned the address of the SVCA or SVCB
instructions which start all monitor call sequences. The total number of
words generated by any monitor call depends upen the call dJtself. Some
calls generate up to four words of code to perform the function. Those
calls which incorporate an ASCII message (such as the TYPE call) generate a
string of bytes varying in Llength depending cn the message involved. As in
machine instructions, you may also place comments at the end of the Line;
each Line of comments is identified by a preceding semi-colon.

1.1.1 Arguments

Some calls require one or more arguments to specify parameters for the
executicn of the mcnitor call function. These arguments most normally are
source and/cor destination address items for the data being manipulated by
the monitor call. Some calls allow you to specify the location of deata
parameters, while other calls operate with predefined registers that you
must set up beforehand. The following sections define each call and detail

COMMUNICATING WITH THE AM~100 MONITOR Page 1-2

the required arguments. Normally you define the arguments as expression
values, standard addresses, or ASCII strimgs. An expression value may be
any valid source expression which, after full evaluation, results in a value
within the range of the argument definition. ASCII strings are just that; a
string of characters typically used as a message to be displayed. Standard
addresses are so important and complex that we devote the next entire
section (1.1.2) to explaining them.

1.1.2 Standard Address Arguments
NOTE

The following section is one of the most
important, and most frecuently misunder-
stood, sections of this manual. The concept
of standard arguments s fundamental to
understanding the monitor call calling
seqguences.

Standard addresses form the heart of many of the more complex monitor calls;
you should therefore thoroughly understand them in order to cain maximum
flexibility from the system. A standard address argument is coded exactly
the same as a standard source or destination operand for a3 machine
instruction such as ADD or MOV. Some restrictions should be noted, however,
due to the method wused 1in precessing the standard address. Standard
addresses are only used with those monitor calls that are coded as SVCB
instructions. The SVCB pushes all user registers onto the stack, and it is
from these stored values on the stack that the monitor call processor gains
access to the address calculations wusing those registers. Standard
addresses may take the form of any of the valid WD16 addressing modes;
however, all autoincrement and autodecrement processing is dohe on a word
basis, even though the monitor call may be requesting only one byte of data.
In addition, the wvalue used for SP register references is a dummy value
which is not reloaded into SP when +the monitar call exits, so the
autoincrementing and autodecrementing modes will be ignored if used with the
stack pointer register.

The monitor call processing software within the monitor actually duplicates
the hardware, calculating the target address from the stored register wvalue
on the stack and the data from the extra word, if the address mode uses one.
This target address then becomes the address of the dats to be manipulated
by the specific monitor call routine itself. This data may be only one
byte, or it may be several words or more. The target address calculated by
the processing of the standard address argument always points to the first
byte of the data if more than one byte is required by the monitor call. A
special case occurs when the standard address argument specifies the direct
register address mode. In the WD16 hardware instructions, there is never
more than one full word of data dnvolved for the standard source and
destination address modes, so direct register works on either the low byte
or the full word in the target register. 1In the processing of monitor call
standard addresses, however, this 1is not always the case since, as we

COMMUNICATING WITH THE AM-100 MONITOR Page 1-3

pointed out, some calls require several words of data to be manipul ated.
When direct register mode is used, the taraet address is actually the
address of the stored register on the stack, which was a direct result of
the SVCB hardware instruction orocessing. TIf more than one word is used by
the call, it merely sequences right on throuah the stored words on the
stack. In simple terms this means that if a monitor call wants three words
of data for an argument and you specify the register R? as the standard
address argument, the three words that are used are actually those in R2, R3

and R4, in sequence. This is often very useful when writing re-entrant
code.

CAUTION: If you specify a register for a call that wants more words than you
have registers (most I/0 calls want a 20-word DDB argument), the monitor
call will walk right on through your stack and most Likely crash the entire
system.

One of the more common errors is forgetting that a standard argument needs a
pound=sign (#) in front of a literal argument. Ffor example, if you want the
program to sleep for 20 clock ticks, the code reads:

SLEEP #20.

Note that without the pound-sign, the prodaram would sleep for the number of
ticks contained in program-relative location 20.

It is very important that you understand the concepts outlined above. Think
of the standard address arguments as source or destination addresses, as 1in
the machine instructions. When you wuse them incorrectly, vyou will
definitely find out about it quickly, since the usual result is a system
crash.

CHAPTER 2

JOB SCHEDULING AND CONTROL SYSTEM

The AMOS timesharing monitor allocates jobs and schedules CPU time and
resources for their operation. In order to properly write assembly language
programs which make use of some of the more complex features of the system,
you must have a basic understanding of how jobs are scheduled and
controlled. The theory behind job=handling is too encompassing to cover in
one section of this manual, but we can explain the fundamentals of job
control by user programs.

Each job running in the system has two dedicated components which are not
shared by any other job in the system: a monitor job control block and a
user memory partition. In the monitor memory area itself, a jaob control
table contains one area for each job that has been allocated to the system.
One job is allocated for each JOBS command in the system initialization
command file, which gives the job name and the terminal to which it is
connected. The area allocated for each job 1in the job control table
contains specific information about that job« This area is called the job
control block and will be referred to from now on as the JCB.

Z.1 THE JOB CONTROL BLOCK (JCB)

The format of the JCB is defined as a series of equate statements in the
system Llipbrary file SYS.MAC on DSKO:L7,7]. Each equate statement has the
name JOBxxx, where xxx is a 3-character code for the specific item of the
JCB being defined. The value of this symbol is actually the offset in bytes
from the base of the JCB to the jtem itself. You may, during the course of
your program, wish to read the current data in your own JCB or in some
instances modify it. References to the JCB items should be made in one of
two ways:

1. Use the system monitor calls JOBGET, JOBSET, and JCOBIDX; which s
the preferred method.

2. Locate the JCB for your job by moving 3#JOBCUR into a register and
then referencing all JCB items via JOBxxx (Rx).

{Changed 1 July 1981)

JOB SCHEDUL.ING AND CONTROL SYSTEM Page 2-2

Three words in the system communication area define the entire job control
system during time-sharing operation. These three words are not part of the
JCB areas but rather are non-sharable parameters set up during system
initialization and not part of any one job. We point this out because the
names of these three words are JOBTBL, JOBCUR and JOBESZ; which appear to be
part of a user JCB but really are not. JOBTBL contains the base of the JCB
table where all JCB's are stacked sequentially. This address is set up at
system initialization time and is never changed. JOBCUR always contains the
address of the JCB which has control of the CPU and is updated to point to
the new JCB each time the job scheduler switches to a different job.
Therefore, &#JOBCUR always points to your JCB if you reference it, because
the reference is only executed while you have control of the CPU. JOBESZ
contains the size of the JCB in bytes and is used by the system and by user
programs for scanning through the JCB table. Since the size of the JCB may
expand as new features are added to the system, JCB table scans must be made
by setting an index to the base of the table (MOV a#JOBCUR,Rx) and then
adding the size to the index to get to the next entry (ADD R#JOBESZ,Rx). 1In
a JCB table scan, the first word of each JCB is guaranteed to be non-zero
and the table is terminated by a null (zero) word. Again, these three words
are a part of the master system communication area and not in the job table
itself.

2.1.1 Example - Scanning The Job Control Area

The following is a brief example of how to scan the JCB table and process
each JCB entry (such as for a system status report):

MOV a#JOBTBL,RO ;set JCB table index RO to table base
;sLoop here to process each job table entry (JCB)
LOOP: S “an sprocess JCB entry which is indexed by RO
“as .aa sreferences to JCB items are via JOBxxx(R0)
ADD a#JOBESZ, RO ;advance RO to next JCB entry
TST &R0 ;is this end of JCB table? (null word)
BNE LOOP s nope - go process valid JCB entry

;At this point we have finished the job table scan

2.2 ACCESSING YQOUR JCB

You wuse three monitor calls to gain access to your own JCB when necessary.
Two of the calls are used to transfer a single word of data to and from a
specific word in the JCB; the other sets an index to a specific spot in the
JCB area so that multiple words may be transferred, or so that faster access
may be obtained when needed. These calls are as follows:

(Changed 1 July 1981)

JOB SCHEDULING ANR CONTROL SYSTEM Page ¢2-3

JOBGET tag,item ;Transfers one word from JCB item to tag
JOBSET taq,item ;Transfers one word from tag to JCB_item
JOBIDX tag,item ;Sets absolute address of JCB item into tag

Since the locations may change, always use these calls as shown abovea.

2.2.1 Calling Sequence

ALl calls share the same basic format, where tag is a standard argument used
for the transfer of one word of data in the JOBGET and JOBSET calls or to
receive the index address in the JOBIDX call. The item argument 1is one of
the JCB item tags (JOBSTS, JOBNAM, etc.), which identifies the item to be
used in the transfer or to have the index set to. These items are equated
to their relative offset value in SYS.MAC. Section 2.4 below explains how
to use these items and points out their importance to the user.

2.% j08 SCHEDULING CALLS

Three calls. are wused by various routines within the system monitor for
controlling the job scheduling processes. These calls are JWAIT, JUARITC,
and JRUN. JWAIT sets any job into the wait state. JWAITC sets your job
into the wait state. JRUN then reactivates a job to the run state. If the
J.NXT flag 1is specified, the job 1is placed at the beginning of the run
queue; when JJ.NXT is not specified along with other JRUN flags, the job s
placed at the end of the run queue. JWAIT and JRUN require that the job
being controlled be indexed by RO (which must point to the base of the JCB
for that job), and that the argument specify one of the status control bits

(in JOBSTS) to be used as the control flag. JWAITC assumes the current
user.

The syntax for JWAIT, JWAITC and JRUN is as follows:

JWAIT flags
JWAITC flags
JRUN flags

2.3.1T SLEEP = PUT JOB TO SLEEP

SLEEP is a simple call that puts the user job to sleep for the number of
Line clock ticks you specify in the argument. After the specified amount of
time has elapsed, the job is automatically awakened and execution continues
with the instruction following the SLEEP call. The Z-flag is set if the job
slept for the specified number of clock ticks. The Z-flag is reset if the
job woke wp prematurely because asnother job used the WAKE call.

CAUTION: A sleep calt with an argument of zero clock ticks puts the job to
sleep for about 18 minutes (65536 clock ticks).

(Changed 1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2-4

The normal AM-100 system runs with a clock frequency of 60 Hz; each clock

tick, therefore, has a value of 16.7 milliseconds. Also, the first clock
tick may occur any time within the first 16.7 milliseconds (not necessarily
a full clock tick).

Remember that SLEEP takes a standard argument; therefore, to cause the job
to sleep for one minute, you would execute:

SLEEP #3600

not
SLEEP 3600

Leaving off the pound sign (#) is a frequent coding error.

2.3.2 WAKE - WAKE UP JOB

This call wakes a specified job. RO must point to the base of the JCB of
the job you want to wake out of the sleep state. The Z-flag is set if the

call 1is successful. If the specified job was already awake, the I-flag 1is
reset.

2.4 JOB CONTROL BLOCK FORMAT

The following is a list of the entries contained in your JCB. Each of these
entries may be accessed via JOBGET, JOBSET, or JOBIDX by using the tag
defined in each entry.

2.4.1 JOBSTS = The Job Status Word

The first word 1in each JCB is the job status flag word. Each bit in this
word indicates a particular state in which the job may reside. Some Llegal
states are defined by more than one bit being on at a time. The system and
some of the system programs set and reset these bits as the current state of
the job changes, but you should not alter this word without extreme caution.
Following is a brief Llist of the bits and the mneumonics assigned to them,
along with a basic description of the function of the bit when it is set.

J.ALC=1 ;Job entry is allocated (guarantees JOBSTS non-zero)
J.TIW=2 ;Job is in Terminal Input Wait state

J.TOW=4 ;Job is in Terminal Output Wait state

J.S5LP=10 ;Job is in Sleep state

J.I0w=20 ;Job is in 1/0 Wait state

J . EXW=40 ;Job is in External Event Wait state

J.SMW=100 ;Job is waiting on a semaphore

J.CCC=200 ;A control~C abort is waiting to be processed

(Changed 1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2~5

J .RUN=400 :Jdeb dis running

J .MON=1000 ;Job is in monitor command mode (no program active)
J.L0b=4000 ;Program is being loaded for execution

J.5UsS=10000 ;Job is in Suspend state

J .LOK=20000 ;Job has CPU Locked (by user program command)

J.NXT=100000 ;Is always 0 in JOBSTS

If any of the following flags are on, the job will not be scheduled for CPU

run time until the flag has been cleared: J.TIW, J.TOW, J.SLP, J.I0W, J.EXW,
or J,SUS.

2.4.2 JOBSPR - The Stack Pointer Reset Address

One word, JOBSTR, is used to store the stack pointer reset address which 1is
calculated when the system 4s initialized. This address is then used to
reset the stack pointer each time the job exits back to monitor command
mode. The user may allocate a larger stack area within his own partition by
reloading this address if desired. The JOBSTK field is no lenger used; see
explanation of JOBSTK Llater in this chapter. ‘ '

2.4.2 JOBNAM = The Job Name

Two words, JOENAM, contain the é~character job name packed RADS0. This name
is set up by the JOBS command in the system initialization file. If a user
program alters this word, it effectively alters the name of the job.

2.4,4 JOBBAS - The Memory Base Address

JOB2AS, one word, contains the base address of the user memory partition if
one has been allocated for this job. This address is altered only by the
MEMORY program which allocates and deallocates user memory partitions., We
advise against altering this address unless you thoroughly understand the
memory allocation process.

2.4.5 JOBSIZ - The Memory Partition Size

One word, JOBSIZ, contains the size of the user memory partition in bytes if
one has been allocated for this job. This size word together with the above
JOBBAS address word define the current user memory partition. JOBSIZ is
altered only by the MEMORY progrem and the monitor command processor.

(Changed 1 July 19831)

JOB SCHEDULING AND CONTROL SYSTEM Page 2-6

2.4.6 JOBUSR - The Current PPN

JOBUSR, one word, contains the current user PPN {(account number) if the user
is logged in. 2Zero indicates that no user is currently Llogged into this
job. JOBUSR s modified by the LOG and LOGOFF programs and is tested by
various protection schemes in the system to allow user access to files, etc.

2.4.7 JOBPRV - The Privilege Word

JOBPRV, one word, is used to store the privileges associated with the job.
This word is not currently used but is allocated for future implementations
of the security system. Further documentation will be provided when the
system is completed.

2.4.8 JOBPRG - The Current Program Name

Two words, JOBPRG, contain .the 6-character program name which is currently
running or was the last job run if in monitor command mode. JOBPRG s
loaded with the program name (packed RADSO) by the command processor when
the program is Llocaded or located for execution. Currently, the only
significance of this program name is in the displays created by the SYSTAT

program (user terminal status display) and the DYSTAT program (video
monitor).

2.4.9 JQBCMZ = The Command File Size

JOBCMZ 1is one word containing the size of the current command file area in
the user memory partition if a command file is being processed. If this
word s zero, no command file is currently in effect. This word is set to
the initial size of a command file when that file is loaded into the top of
the wuser partition and is decreased as each Line is extracted from the area
and sent to the monitor command processor. lihen it gets to zero, the
command file is finished and the system returns to normal command mode input
from the user terminal. The user should not alter this word.

2.4.10 JOBCMS - The Command File Status

JOBCMS is one word containing flags used by the command file processor when
a command file is being processed. These flags should never be altered by

the wuser, so they are not detailed here. JOBCMS works in conjunction with
JOBCMZ to affect the command file processing scheme.

(Chianged 1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2-7

2.4.11 JOBERC - The Error Control Address

One word, JOBERC, controls the processing of WD16 hardware bus errors as
described in the WD16é Programmer's Reference Manual. If JOBERC is zero a
bus error causes a message to be printed on the user terminal, and the job
is aborted. If JOBERC is non-zero a jump is made to the address specified
in JOBERC, which should contain a valid routine for shutting down the
program. Note that the bus error is fatal for this user only and does not
normally kill the whole time-sharing system.

2.4.12 JOBTYP - The Job Type

JOBTYP, one word, specifies the type of job which is assigned to this
jobstream. The following flags are currently imp lemented:

J .USR=1 ;Job is a user partition

J .NUL=2 ;Job is currently running the null subroutine

J . NEW=4 ;Job is processing a new memory allocation

JoLPT=10 ;dob is running the Line-printer spooler (LPTSPL)
JHEX=20 ;Binary inputs and outputs are in hex {not octal)
J.DER=40 ;Print disk error retry messages

J .VER=100 sActivate auto-verify mode for disk writes

J .GRD=400 ;Terminal js guarded against SEND and FORCE commands

2.4.13 JOBBPT - The Breakpoint Address

JOBBPT 1is one word specifying the address to jump to if a breakpoint is
encountered during the execution of a user program. JOBBPT is used by the

bOT debug program for breakpoint handling and not normally used by user
programs. _

2.4.14 JOB3NK - The Memory Bank Pointer

JOBBNK is one word used by the memory management system to define the bank
in which the job's current memory partition resides. It is actually a
pointer to the control item within the memory mapping table which is used
for turning the bank on and off when the job is allocated CPU time. This
word must not be modified by the user.

2.4.15 JOBDEV - The Default Device

JOBDEV, one word, contains the RADS0 device code for the default device to
be used if the file specification being processed by the FSPEC call does not
explicitly specify a device. Normally this default device is DSK.

{Changed 1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2-8

2.4.16 JOBDRV - The Default Drive

One word, JOBDRV, contains the drive number in binary for the default drive
number to be used if the file specification being processed by the FSPEC
call does not explicitly specify a drive number. Only used if the device
code matches the code in JOBDEV or if the device code is Lleft to default
also. JOBDEV and JOBDRV normally contain the device and drive number set by
the LOG program when a user logs in. They specify the disk device and drive
which you usually wuse for processing.

2.4.17 JOBTRM = The Terminal Block Pointer

JOBTRM is one word containing a pointer to the terminal definition block for
the terminal which s currently attached to this job. If no terminal is
currently attached, this word contains a zero. The first word 1in the
terminal definition block is the terminal status word, which is available to
you for modification to set wvarious terminal parameters such as echo
control, image mode and Lower—-case processing. The old monitor call TIDX
would deliver the address of this status word back to you in register RO.
The TIDX call is no longer supported -and must be replaced by the more
general call:

JOBGET RD,JOBTRM ;Get status word index

As with all of the JOBxxx calls, the destination may be any valid address
and not just RO as in the example above. The above example will replace the
TIDX call exactly in performance, since TIDX used RO as its destination.

For further information on the format of the terminal definition block and
its use, refer to the source Llisting of the terminal service routine
(TRMSER) which is made available to users on a special source diskette, as
well as on the standard system disk pack. The terminal definition block is
defined at the beginning of this routine.

2.4.18 JOBRBK = The Run Control Block

JOBRBK, a 14~word areaz, is the run control block for the jobstream. it is
used for the Loading of programs and overlays during job execution and is
set up by the user program with the parameters needed to fetch the next
program or overlay segment prior to the execution of a FETCH call. Refer to

the description of the FETCH monitor call in section 4.1 for more details on
the use of this item.

(Changed 1 July 1981)

JOB SCHEDULING AND CONTROL SYSTEM Page 2-9

2.4.19 JOBFPE - The Floating-Point Trap Address

JOBFPE, one word, contains the address to jump to if a floating point error,
such as a divide by =zero, 1is executed. A user program which executes
floating point instructions should enter its error trap address into JOBFPE

and not into the vector at memory location 76, since this would destroy the
sharable resource of that vector.

2.4.20 JOBRN@ - The Scheduling Area

JOBRNQ, a 7-word area, maintains the parameters for job scheduling and
context switching of this job. The first four words are dynamically
changing links used during the job scheduling process to place the job dnto
the active run queue for future processing. Any altering of these four Llirk
words should be done with caution.

The fifth and sixth words are used to determine the job's run priority. The
fifth word (at JOBRNQ+1() is the time counter which is decremented once for
each clock interrupt whenever the job is running. When this count goes to
zero, the job is put into the wait state and another job is activated. The
sixth word (at JOBRNG+12) is the actual priority of the job (set up by the
JOBPRI command) and is used to initialize the above time counter each time
the job is given control of the CPU for running. '

The seventh word is used for storage of the current stack pointer value when
the job is not in the active run state. The scheduler restores the stack
pointer from this word each time the job is reactivated.

2.4.21 JOBDYS - The DYSTAT Address

JOBDYS, one word, contains the address of the byte in the VDM screen memory
area for the job execution arrow. It is set by the DYSTAT program and

referenced by the monitor job scheduler. The user should not alter this
eddress.

2.4.22 JOBWAT - Semaphore Wait Chain Link

RAST and RLSE use this field to maintain a chain of JCBs waiting on a

particular semaphore. This field contains the JCB address of the next job
in this wait chain.

(Changed 1 July 1681)

JOB SCHEDULING AND CONTROL SYSTEM Page 2-10

2.4.23 JOBEXT - Job Exit=Trap Stack Pointer

This field contains the value of the stack pointer the Llast -time you
executed an AMOS or PCALL monitor call. It is reset to the previous value
each time you go through the exit-trap system.

2.4.24 JOBMSG ~ Job Message System Area Pointer

This field contains the address of the Link system message area for this
job.

2.4.25 JOBIAL - Job Impure Area Link

Reserved for future use. Do not use.

2.4.26 JOBSTK - The Job's Stack Area

JOBSTK is a 100-word area that acts as the stack for this job. SP is set to
the top of this area when a new program is initiated. You may reset your
ownh stack pointer by moving the address of a larger area within your own
partition, if the program needs more stack area. Be sure to allow at Least
20 extra words or so for possible real~time interrupt handling which needs 3
valid stack area for register saves. The job scheduler also saves all user

registers and processor status on the wuser stack during job context
switching.

The Label "JOBSTK" is not defined explicitly in SYS.MAC, but the area exists
as the last 100 words in the JCB. The area has not been labeled because the
JCB may be increased in size as the need arises, and the JOBSTK area should
not be referenced by a Label which will change value in future releases.

(Changed 1 July 1981)

CHAPTER 3

MEMORY CONTROL SYSTEM CALLS

The AM-100 system contains a fairly sophisticated memory control system,
even though there is no memory protection or mapping hardware associated
with it. In order to make maximum use of the memory resources available anc
minimize system crashes due to memory violations, the assembly Language
programmer should understand how the monitor allocates memory and the rules
under which memory should be accessed. This section describes the memory
allocation scheme and the monitor calls that assist you in using memory 1in
the proper way.

At present, memory may be handled in three different ways. Your AM-100 or
AM~100/T system may have only one 64~kilobyte memory board; you can add
memory boards to your configuration, jumpering them in such a way as to
allow bank-switching; or you can use the AM~700 Memory Partition Controller
(MPC) board to expand memory without requiring bank-switching. (For detailg
on MPC, refer to Memory Management With The Memory Partition Contrcller in
the "System Operator®s Information™ section of the AMOS Software Update
Documentation Packet.)

On the 64~kilobyte system, the top 256-byte portion is unavailable because
it is mapped to the 1/0 ports. On a bank-switching system, 256 bytes at
each jumpering junction are unavailable. On the MPC system, all memory may
be allocated for either the monitor or user partitions,

In all three memory systems, the AMOS monitor resides in low memory
beginning at location zero and extending upward as far as the monitor
requires (typically around 14k bytes). The remaining memory above the
monitor up to the end of the total amount of memory in your system is
available for assignment as user memory partitions for each of the jobs.
User partitions can be of varying sizes; none, however, may exceed 64K bytes
minus the monitor size. The amount of memory a user program has available
is therefore defined as the single contiguous memory partition which has

been assigned to his jcb by the appropriate operator command (MEMORY,
JOBMEM, or JOBSIZ).

This memory partition block is then allocated into smaller defined blocks
called '"modules," which are used by the system and the user to contain
programs and data areas. Monitor calls exist which allow the user program
to lecate the absolute boundaries of its oWNn mamory partition and also to
allocate, change, and delete memory segments in the form of defined modules.

(Changed 1 July 1931

MEMORY CONTROL SYSTEM CALLS Page 3~-2

These modules can be named just Llike files (filename.extension), so they may

be located by that name. Any program Lloaded for execution will be 4in the
form of a module. buring execution, some programs create other modules for
device buffers, data tables, etc.

3.1 MEMORY PARTITION FORMAT

The memory partition assigned to a job may be Llocated anywhere in memory
depending on the memory that was available when the job assigned it using
the appropriate allocation command. The user program may not count on any
specific Llocation for this partition. Within the partition, memory modules
are allocated upward beginning at the base of the defined partition and
building modules on top of each other as long as space permits. Modules may
not be built that will extend past the top boundary of the user partition.
As modules are deleted from memory, all modules above them are automatically
shifted downward to fill up the space that the deleted module left. Also,
when any module 4is changed in size, the modules above it are shifted in
position accordingly. This method insures that all available memory 4ds
always at the top of your partition in one contiguous block. This method of
grabbing the first portion of free memory to load a program into is the main
reason that all programs must be written in totally relocatable code.

Figure 3-1 shows a typical memory layout for three users operating in a 64K
system. The free memory at the 56K boundary could be used by a fourth job
or by a current job that needs to expand. :

Three monitor calls return information about your memory partition as it
happens to be allocated. These three calls all take a single standard
argument into which is delivered the absolute address of the base, end, or
free base of the user memory partition. The three calls and the addresses
that they return are Listed below:

USRBAS arg - absolute base of user memory partition (last word)
USREND arg =- absolute end of user memory partition (lLast word)
USRFRE arg = current base of remaining free memory {last module+2)

Since modules must always occupy an even number of bytes, the above calls
always return an even address. If no modules are allocated in the current
partition, the USRFRE address equals the USRBAS address. Otherwise, the
USRFRE address is the word following the Llast currently allocated module 1in
the memory partition. The remaining free user memory may be calculated by
subtracting the USRFRE address from the USREND address.

Figure 3-2 shows a typical user job partition during the execution of a
program which was loaded automatically by the operating system. The program
itself was the first module to be allocated in the user partition and then
was executed after being loaded. It remains in memory until it completes
its task and exits to the monitor, at which time it is deleted by the
operating system monitor. puring execution, the program allocates a 1K data
table module which may be used for storage of symbols or some similar
function. Two I/0 files are then opened on disk which causes the operating
system file service routine to allocate the two disk buffer modules. The
remaining memory in the partition has not yet been allocated in our example.

(Changed 1 July 1981)

MEMORY CONTROL SYSTEM CALLS Page 3-3

Note: Memory sizes
are typical

84K
Free Memory >BK
56K
User 3 > 8K
48K
User 2 >1EK
3az2K
User 1 >16K
18K
Resident Programs > K
Total resident monitor
size is 18K, leaving 4BK
for user partitions
Resident Monitor 12K
7}

Memory Map for a Typical 64K System (3 users]
Fig 3-1

MEMORY COWTROL SYSTEM CALLS

Top:

Bottom:

Page 3-4

Command File (if used)

“-——USREND

Free Memory Araa

(Available to this joh only)

- USRAFRE
Disk Buffer 512 hytes

Disk Buffer 5S12 bhytes

These modules aliocated by
GETMEM calls during the
execution of the program

Data Tahle 2K bytes

User Program (Running) User program maodule loaded

by operating system when the
program name was entered

8K bytes as an operator command

-——LUSRBAS

Memory Map for a Typical User .Job Partition

Fig 3-2

MEMORY CONTROL SYSTEM CALLS Page 3-5

Note that the USREND call does not actually return the absolute end of the
partition hut rather the end of the available free memory a2t the time of the
call. If a command file is in progress, it occupies the upper part of the
partition which we do not w3sh to alter during the execution of a program.
In fact, the program should not have to take into consideration whether or
not it was called by direct command or from a command file. Use of the
USREND call insures that the user program may use all of free memory without
having to compensate for the remaining part of any command file module.

Although the standard use of memory by the operating system is through the
use of the memory management system calls (to be described next), you may
find it easier to use free memory without regard to module boundaries,
especially for use in variasble length tables or hashing techniques. Far
this reason, the free memory space is always defined as the area between the
addresses returned by the USRFRE and USREND calls. Note that the
initialization of files normally results 3$n the allocation of a bhuffer
module; the operating system allocates this buffer at the current setting of
the USRFRE address, then updates that USRFRE address. Therefore, you must
be sure that all I/0 buffers and any work modules are allocated pefore
freely using the memory above the USRFRE address. The INIT and FETCH calls
both cause the indirect allocation of a memory module in addition to the
direct allocation or alteration of modules by the GETMEM, CHGMEM and DELMEM
calls.

3.2 MEMORY MODULE FORMAT

Memary modules are the hasic unit of formal data structure Wwithin the user
memory opartition. They are always allocated on word boundaries and must
contain an even number of bytes to maintain this format. The monitor calls
automatically pad an odd~sized module with a null byte to even it up. ALL
modules contain five housekeeping words followed by any number of data words
from zero to the maximum size Left in the user memory partition. The five
housekeeping words are always allocated, so a single-word module real ly
tekes up six words of memory.

The module format is as follows:

Word 1 total size of module in bytes including the housekeeping words
Word 2 - module flag word

Word 3 - module filename pac ked RADSO

Word 4 - module filename packed RADSO

Word 5 - module extension packed RADSO

Words 6 thru n - module data area

Figure 3-3 gives a pictorial view of the above standard module format. The
data area s usually the only area with which the user js concerned and so
all references are made from the base of this area. The SRCH and FETCH
calls (described in section 4.1) return this absolute address when Locating
or loading the requested module, instead of the address of the base of the
housekeeping words. References to the housekeeping words should therefore
be made via negative offsets relative to the data base address.

MEMORY COMTROL SYSTEM CALLS Page 3-6

When scanning for a specific module or locating the end of the current
module string, you may set your index using the USRBAS call, which returns
the address of the size word of the first al Located modutle. You can then
merely check the housekeeping words for the correct module name or ather
determining parameters and, if the module is to be bypassed, add the size
word to the index. This bumps the index to the next module allocated. The
Last module always has a zero word following it, and you must be careful not
to destroy this zero word if vyou are manipulating free memory directly
without allocating it using the memory calls.

The module filename and extension follow the same format as the filenames on

disk if the module in memory is named. The name is optional and need be
used only if the module is to be located by name at a later time.

Modules may be either temporary or permanent depending on the method used to
load them into memory. A module is made permanent by setting the file bit
on in the housekeeping flag word when the module is allocated. Temporary
modules are automatically deleted by the monitor when the ‘program finishes
and executes the EXIT call. Permanent modules are not automatically deleted
but may be deleted by either the operator BELETE command or the monitor
DELMEM call. Forcing a zero into the size word of the module is another way
of deleting it, but this is not the recommended way since it alse deletes
all modules above it (the zero is the module area termination word).

3.3 MANIPULATING MEMORY MODULES

Three monitor calls are wused to create, alter and delete these memory
modules. ALL three calls take a single standard argument which must be the
address of a 2-word block called a memory control block (MCB). The first
word of this M(B contains the absolute memory address of the data area in
the allocated module (past the housekeeping words). The second word
contains the size of the data area in bytes (ten bytes less than the total
module size since the housekeeping words are not included). The MCR
therefore is the user's block, which defines a contiguous area in memory by
its base address and size 1in bytes. You need not be concerned with the
housekeeping words unless you need to access them directly; such a necessity
should be rare.

The following three calls are used to manipulate memory modules:

GETMEM M(CB - allocates a new memory module at current USRFRE
CHGMEM MCB =~ changes the size of the module defined by MCB
BELMEM MCB = deletes the memory module defined by MCB

The Z-flag is reset if GETMEM and/or CHGMEM fail {i.e., there is insufficient
memory) .

MEMORY COWTROL SYSTEM CALLS Page 3-7

+nNn
5 — -
User Program or Data Actual data area size as
specified in GETMEM call_
+6
f— -1
+
+2
Bass:
SRCH, FETCH & GETMEM calls
- return this address
= Module Extension (RADSO)
-4 Module Name\Word 2 (RADSO)
-6 Module Name Word 1 (RADS0O) 5 housekeeping words
-10 Meodule Flag Word
-12 Module Size Word™®

¥Module size equals data
area size plus 10 bytes
(5 words}

Standard Memory Maodule Format

Fig 3-3

MEMORY CONTROL SYSTEM CALLS

Page 3-8
3.3.1 Allocating a Memory Module
The following example shows the allocation of a 100-byte module
MoV #100. MCB+2 ;set module size as 100 (decimal) bytes
GETMEM McB sallocate module (MCB gets its address)

BNE NDMEM sNo memory available

mMea: WORD
WORD

;sreceives address of module data area
;size of module data area in bytes

[Rt]

NOMEM: EXIT

3.3.2 Changing a Memory Module

You may increase the size of the same module by:

ADD #20. ,MCB+2 ;increase size word by 20 bytes
CHGMEM McCB ;jchange its size
BNE NOMEM snot enough memory available

The above code causes the monitor to adjust the module housekeeping size
word 1o reflect the new size. The address of the module does not change.
However, note that the USRFRE address advances by 20 bytes and that any
modules allocated after the one at MCB are shifted up in memory; but their
corresponding addresses in their MCB are not adjusted by the monitor. 1/0
buffers allocated after the MCB module will therefore be erroneously
addressed after the change, so the CHGMEM call must be used with care.

3.3.3 Deleting a Memory Module
To delete the above module we use the code,

DELMEM MCR ;delete the module

3.2.4 Permanent and Temporary Modules

Recall that all temporary modules are automatically deleted by the monitor
when the program exits. You may force the module to be permanently left in
memory by giving it a name and setting the file bit (defined in SYS.MAC as
YFIL™) din the flag word. The following example illustrates fthe allocation
of a 200-word module which is made permanent with the name "TABRLE1.DAT!:

MEMORY CONTROL SYSTEM CALLS Page 3-9

MOV #200.,TBL1+2 ;set size as 200 bytes

GETMEM TBL1 ;allocate the module

BNE NOMEM ;N0 memory available

MOV TRL1,RO sset RO to index the data area hase

MOV #IDATI,~(RM) ;set the module name and extension (RADS50)
MOV HOLE1],-(RDD ; into the housekeeping words

Mov H#ILTABI,-(ROD) ; in reverse order for efficient use of RO
RIS #FIL ,~ (R ;set permanent file bit on in flag word

- n .
-

TBL1: WORD 0 sreceives address of module
WORD 0 ;size of module in bytes

Permanent memory modules may be saved onto disk using the operator SAVE
command, or they may be deleted from memory when done by the operator DEL
command. Refer to the AMOS User's Guide (DWM-00100-35) for details on
these commands.

3.4 MEMORY MAPPING SYSTEM

The AMOS system is capable of supporting memory in excess of 64K by a simple
bank switching technique which turns selected memory boards on and off under
control of the operating system. This section defines some of the technical
aspects of that system. It is assumed that you are already familiar with
the operaticnal aspects of the memory management system from the standpoint
of setting up the SYSTEM.INI file commands and operating procedures.

You must define for your own application the normal 64K memory as two
general areas called sharable and switchable memory. Sharable memory always
starts at location zero and extends upward far enough to totally contain the
resident operating system and any system programs or sharable memory area
needed for the application. Switchable memory then may occupy the remainder
of the memory area up to the 64K address (octal 177376 inclusive),

There s only one sharable memory area that 1is always active. The
switchable area, however, may be occupied by multiple memory boards referred
to as "banks." Banks are defined to the operating system during system
startup with the MEMDEF statements. Each MEMDEF statement defines the
memory board (or boards) which are to be activated when that bank is
selected by the operating system. Selection of the bhank for activation is
done when one of the user jobs which resides within that bank is granted CPU
time by the AMOS job scheduling system. This action 4s automatic and
transparent to the user. Only one bank may be active at a time, since all
banks effectively respond to the same memory addresses (the area defined as
switchable memory).

MEMORY CONTROL SYSTEM CALLS Page 3-10

3.4.1 Internal Table Format

The memory bank switching system is controlled by a table which is built by
the MEMDEF statements during system startup time. The table is basically a
Linked list of multi-word entries that resides within the monitor area. One
entry defines the sharable memory area, and there is one entry for each bank
defined by a MEMDEF statement. Two words that reside in the monitor system
communication area are used to control the memory management system. These
words are labled "MEMDEF" and "MEMBNK"; MEMDEF stores the base address of
the table just defined, and MEMBNK stores the memory bank which is currently
active. If memory management is not in use (no MEMDEF statements appeared
in the SYSTEM.INI file) both of these words contain a zero value.

A system configured with an AM-700 or Memory Partition Controller (MPC) has
a different controlling data structure than one wusing traditional bank
swapping. (For information on the MPC, refer to the "System Operator's
Information" section of the AMOS Software Update Documentation Packet.) The
data structure is a linked Llist of queue elements, each containing four
words. One element is allocated for the sharable memory area, one for each
job on the system, one for each piece of switchable system memory, and one
to indicate the end of physical memory. These elements are created by JOBS,
BITMAP, and SYSTEM during the system initialization procedure. The queue is
pointed to by the word Labeled '"MEMDEF" residing 1in the system
communications area.

3.4.1.1 The MEMDEF Word - The MEMDEF word in the system communication area
contains the address of the first entry in the table, which is always the

entry defining the sharable memory boundaries. The format for this entry
is:

Word 1 = Link to next entry
Word 2 = base address of sharable memory ()
Word 3 - top address of sharable memory plus 1

The remaining entries define the switchable memory banks in use and have the
format:

Word 1 = Link to next entry (0 if this is last entry)

Word 2 - base address of this switchable bank

Word 3 - top address of this switchable bank plus 1

Words 4 through n - hardware control codes for bank switching

The hardware control codes are one or more entries used to turn the memory
boards on and off during hank switching. There is one control code for each
physical board which has been defined as part of this bank. Each control
code is two words in length, with the first word containing the address of
the hardware port for the memory board and the second word containing the
switch-on and switch-off bytes (low and high bytes, respectively) that are
sent to that port. Note that in the MEMDEF statements you can specify more
than one board per bank (even different types of boards) by separating the

MEMORY CONTROL SYSTEM CALLS Page 3-11

board definitions with slashes. The final hardware code is followed by a
single word of zero to indicate the end of the codes for this hank.

On a Memory Partition Controller (MPC) system (see reference in section
3.4.7 above), the word MEMDEF points to the data structure used by the

operating system to control memory partitions. Each entry has the following
format:

Word 1 - Link to the next entry
Word 2 -~ JCB pointer

Word 3 - Rase address of partition
Word 4 - Limit address of partition

The element describing the sharable memory area has a 0 in word 2. An
element describing a switchable system memory module has a =2 in word 2.
The Llast element has a 0 in word 1. The base and Limit addresses contained
in words 2 and 4 are magnitucde 256; that is, the real memory address shifts
right eight bits. The sharable memory element has a 0 in word 3, and word 4
contains the end of the system area. The first job on the system has 0 in
word 3, as the base address is an offset from the end of the sharable ares.
The element for the sharable memory area is first in the queue, the elements
for jobs are next, occurring in the sequence that the JOBS statement lists
them. Next are the elements for switchable system memory, occurring in
reverse order of the BITMAP statements that generated them. The Last
element indicates the end of physical memory. For more details on exactly
what base and Limit addresses are and how they work, refer to the hardware
documentation for the AM~700.

3.4.1.2 The JOBBNK Word ~ The JOBBNK word in each job's JCB contains the
address of the word 4 in the above definition for the bank in which the job
currently resides. This address is the base of the controel codes for the
hardware switching operation. The MEMSBNK word in the system communication
area always contains the same address as the JOBBNK word for the job that is
currently running. This is used by the scheduling and switching system to
turn off the current job and turn on the next iob for running.

For a Memory Partition Controller (MPC) system (see reference in section
3.4.1 above), the JOBBNK word in a job's JCB points to word 3 in the
corresponding MEMDEF queue element. The MEMBNK word din the system
communications area always points to word 3 of the element corresponding to
the memory partition currently mapped in by the AM=700.

MEMORY CONTROL SYSTEM CALLS Page 3-12

3.4.2 The Bank Switching Process

Memory bank switching is performed by the job scheduler by a simple sequence
of steps:

1. Use the MEMBNK word to locate the currently active bank entry.
2. Send the switch-off byte to the port address for each control code.

3. Use the JOBBNK word for the next job to be run to locate the bank
entry for that job.

4. Send the switch-on byte to the port address for each control code.

5. Store the new job's JOBBNK data into the MEMBNK word for next time.

3.4.3 The BNKSWP Monitor Call

Under normal operation of the AMOS system each user is confined to an area
that resides totally within any one defined memory bank. The BNKSWP call
may be used by a more sophisticated assembly Language routine to allow one
user to access more than one bank of memory. The BNKSWP monitor call
expects register R1 to contain the address of word 4 of the bank which is to
be activated (similar to the automatic operation which uses the address
within the JOBBNK word). The currently active memory bank is switched off
and the new bank (per R1 address) 3s switched on. The MEMBNK word s
updated properly to reflect the newly activated memory bank. Register R1 is
also changed to contain the index to the previously operating bank, thereby
allowing 2 convenient return to reactivate the previous bank if R1 1is not
altered.

Note that since the current bank is switched off, the BNKSWP call must be
executed from somewhere in sharable memory to prevent the return from
executing instructions in the new bank. This can be accomplished in one of
several different ways, including pushing the routine onto your stack
(within the JCB) or executing a special subroutine which has been loaded
into system memory,

On a Memory Partition Controller (MPC) system (see reference in section
3.4.1 above), the BNKSWP call functions the same as it does on a bank
swapped system, except that R1 is expected to point to word 3 of the MEMDEF
queue element describing the memory partition the caller wants to map in.
The same restrictions that existed before still apply. The user must check
bit 15 1in the SYSTEM word residing in the system communications area. If

it's on, he must realize that the MEMDEF gueue 1s structured differently
than it would be on a bank swapped system.

MEMORY CONTROL SYSTEM cALLS Page 3-13Z

3.4.4 The DMADDR Manitor Cafl (For Memory Partition Controller)

The AM~700 or Memory Partition Controller tranzlates memory addresses for
DMA devices as well 25 for the AM=10Q/T processor. This feature allows DMA
activity to oceour 9n one joh's partition concurrently with ancther joh
running in another partition. On bank swappina systems, only the Jjob that
is doing pMA activity can be running. ALl other iobs are locked cut for the
duration of the DMA operation. Device drivers for DMA I/C devices (m,qg.,
the magnetic tape) must include a DMADDR menitor call when executing on an
MPC system. The one argument passed to the DMADDR is the DMA level of the
device. When called, DMADDR sets up the appropriate bhase address and Limit
address registers on the MPC. If DMADPR s called on a system configured
without the MPC, nothing ts done at all.

I order to utilize the advantages of the MPC, the driver should test the
word SYSTEM in the system connumications area; if hit 15 g set, other jobs
should be allowed to rum while DMA activity is ongoing. 1If bit 15 4¢ not

set, the normal bank-swappino code should be executed. The calling sequence
for DMADDR appears as follows:

ODMADDR DMALEY ; Set up MPC hardware for this DMA activity.

DMALEV s the DMA level of the device, which is constant for any particular

device but changes from one device to another. There are no return
arguments from DMADDR.

(For a more complete explanation of the Memory Partition Controller, refer
to the "System Operator's Information” section of the AMOS Software Update
Pocumentation Packet.)

CHAPTER 4

LOADING AND LOCATING MEMORY MODULES

Memary modules may contain an optional filename and extension, which may be
used to locate modules, both in memory and on the disk. This chapter deals
with locating and loading modules via these optional filenames and
extensions. Normally, when you enter a command from the terminal, AMOS
first searches for the requested program 4in the resident system memory area,
then in your own memory partition. If the program is resident in either of
these places, it need not be loaded in from disk, and execution begins
immediately using the resident program in system or user memory.

4.1 THE SRCH AND FETCH CALLS

The user may make use of two monitor calls (FETCH and SRCHY for locating and
loading modules in memory by name. In actuality, the SRCH call s a
specialized version of the FETCH call and is included only for convenience
and compatibility with older programs that are still 1in the system.
Basically, the SRCH call only Locates a module if it is in memory, while the
FETCH call asutomatically loads a module into memory from the disk if Jt is
not found to be in memory already.

Both calls have the same hasic format:

SRCH nameblock,index ,control-flags
FETCH nameblock,index,control-flags

4.1.1 Specifying the Module Name

Nameblock is a standard argument uysed in the SRCH and FETCH calls to specify
the name of the module to be located or loaded. The format of the actual
nameblock referenced is different in each cAse, however. In the case of the
SRCH call, nameblock refers to a 3-word bhlock of memory (or 3 contiguous
registers) containing the filename and extension of the desired module in
RAD50 packed form. For the FETCH call, nameblock refers to a full file
Dataset Driver Block (DDB) which zllows the user to specify a full disk file

LOADING AND LOCATING MEMORY MODULES Page &4=-2

specification to Lload the module from in case it is not located in memory.
The DDB has not yet been introduced and is defined and explained in section
6.1.1. In brief, the DDB is a 24 (octal) word area in memory which contains
all the 1information and work areas to define and manipulate a specific disk
file in any area on any defined disk device. The DDB is normally set up by
processing an ASCII file specification with the FSPEC call {more on this
Later). ‘

4.1.2 The Module Address

The second argument 1is the index which is to receive the absolute memory
address of the located {(or loaded) memory module data area. Refer to figure
3-3 in the preceding chapter for the layout of the memory module and the
place that this index is set to. The index argument 1is also a standard
argument, although the normal mode is to receive the module address in a
general register (RO-R5). If the index argument is not specified in the
call, the default wused 1is register RO which is compatible with older
versions of this system.

4.1.3 Flags

The third argument is the optional control flags which may be wused to
control the operation of the SRCH and FETCH calls. This argument is any
valid expression which evaluates down to a value in the range of 0-17
(octal). Only the low order four bits are significant and they have been
aiven the following mnemonic definitions in the system library SYS.MAC:

F.FCH=1 ;Fetch module from disk if not in memory

F.USR=2 ;Search user memory only

F.ABS=4 ;Load absolute segment from disk

F.FIL=10 ;Set module permanent file flag after load from disk

4.1.3.1 F.FCH - Fetch Module From Disk — F.FCH is the flag that actually
differentiates the SRCH call from the FETCH call, since they both
technically are the same SVCB supervisor call. The SRCH call forces this
bit off while the FETCH call forces this bit on. When set, the F.FCH bit
causes the nameblock to be interpreted as a full file DDB and the module to
be Lloaded from disk if not located in memory first. Since the use of this
bit is controlled by specifying either SRCH or FETCH as the calling opcode,
you should not include this bit in the control-flags argument of your call.

LOADING AND LOCATING MEMORY MODULES Page 4-3

4.7.3.2 F.USR - Bypass System Memory Search - F.USR is the flaa used to
specify bypassing the searching of the resident system memory area for the
module and proceed directly to searching the user area only. This allows
specific versions of modules to be loaded and used even though they may he

duplicated in the System memory area. This flag is not normally ysed by
programs other than system software.

4.1.3.3 F.ARS - Bypass Memory Search - When set, F.ABS forces a direct
search to the disk for the requested module, bypassing all memory searches
that would normally occur. The module is then loaded into memory at the
absolute address specified by the index argument in the calling seouence.
Mo housekeeping words are allocated, and the first word of the module gets
Lloaded into the first word specified by the index argument. MNote that this
form is the only time the index argument 1is used to pass an address to the
FETCH processor instead of beina used to receive the address of the located
module. The F.ABS form of the FETCH call is used to Load program segment
overlays,

4.1.3.4 FLFIL ~ Mark Module as Permanent - F.FIL is used to force the
permanent file flag bit on in the module flag word after the module has been
loaded from disk. The FETCH call always places the filename and extension
inte the housekeeping words 2-5 sn even if the module is only temporary, it
may still be located by name as Llong as the proaram which losded it is still
active. This is uyseful for dynamic Lloading of subproarams and/or data
modules. Setting the F.FIL flag on in the control-flags argument means that
the module will not be deleted from memory by the operating system when the
calling program finally exits. The operator LOAD command uses this method
to load a program into memory and leave it there to be called by name.

4.7.4 Completion Codes

When the SRCH or FETCH call returns, the user must test the status of the
Z-bit to see if the module was located or loaded successfully. If the 7-bit
is set (tested by BEQ), the operation was successfyl. If the 7-bit 4is not
set (tested by BNE), the module was either pot located or would not fit into
the remaining free memory within the user's partition.

CHAPTER 5

MONITOR QUEUE SYSTEM CALLS

The monitor queue is a List of blocks in system memory which are linked to
each other in a forward chain. The base of this chain, and the count of the
blocks in the chain, are contained in the QFREE monitor communications words
(see Appendix B). Each queue block in the chain Llinks to the next one by
storing its address in the first word of the queue block. The Last queue
block in the chain contains a zero Link word to flag it as the end. Each
queue block is currently 8 words (16 bytes) in size, although this value Mmay
increase with the next release of the file system. The monitor initially
contains 20 blocks in the available gueue List. '

During normal monitor operation various functions use these queue blocks to
perform certain tasks. When a routine needs a queue block, it issues a QGET
monitor call, which delivers the first available queue block by returning
its base address in register R3. The routine then uses this area to
temporarily store information during processing. When the routine no Longer
requires the block, it issues a QRET monitor call, which returns the gueue
block to the available Llist for later re-use.

The monitor queue system is necessary to provide storage for interrupt
driven hardware (AM-300 board) and for storage during memory management
operations. The gueue blocks always reside in sharable system memory and
therefore may be used by interrupt routines without regard to memory
Management context switching. The monitor queue system will be used more
and more as the monitor is improved but is also available to the user if
desired. The XLOCK subroutine (for multi-user Locks in AlphaBasic) uses the
monitor queue system to store the Llock parameters.

5.1 INCREASING THE AVAILABLE QUEUE LIST SIZE

It is apparent that the number of queue blocks in use at any cone time varies
with system loading, number of users, and tasks being performed. Some
applications may demand a targer available list of queue blocks to insure
safe system operation. A check is performed to see if the available queue
is exhausted. However, you can increase the size of the available queue
list during system startup time.

The monitor is initially generated with 20 free blocks in the availabte
Queue. At any time in the SYSTEM.INI file prior to the final SYSTEM commend

(Changed 1 July 1981)

MONITOR QUEUE SYSTEM CALLS Page 5-2

you may execute the QUEUE nnn command which allocates "nnn" more queue
blocks for general use. A typical increase for a large system with several

users running extensive applications might be 100 more blocks for a total of
120.

Once the system is up and running no more queue blocks may be added to the
list, so you must give your best guess at your total requirements. The
QUEUE command takes on a new Life once the system is running. If you type

‘the QUEUE command, the system responds by typing back the current number of

free queue blocks in the available queue Llist. It is by this method that
you may keep a close eye on the relationship between the system operation
and queue block usage.

5.2 QUEUE BLOCK USAGE BY THE SYSTEM

This section lists the areas of the monitor which currently make use of the
queue system, to give you a better idea on how to estimate your particular
needs. Remember that this list will probably expand in future releases of
the monitor. Also, add to this any applications that you may write which
include the QGET and QRET calls (described in section 5.3).

The terminal service system makes frequent use of the queue system during
output operations. A typical terminal driver may have up to four or five
gueue blocks in use at any one time, for linking buffers and storing
immediate data values.

The monitor SLEEP call uses one queue block during the time the job is
asleep.

The Persci disk driver uses one queue block while the head is loaded.

The XLOCK AlphaBasic subroutine uses one queue block for each separate
system lock that is currently active by any job. This block is not returned

to the available list until the lock is released by the 3job that has it
Locked.

The FLOCK AlphaBasic subroutine uses a number of queue blocks that varies
with the number of jobs accessing files, the number of files open at one
time, and the number of records open for each file. Currently, at any given

moment during the use of FLOCK, the number of queue blocks being used
equals:

twice the number of different files open using FLOCK, plus

the number of different records open using FLOCK, plus

the number of jobs with files open using FLOCK, plus

the total number of FLOCK opens (i.e., # of Action 0's)
that haven't been closed, plus

the total number of record uses (i.e., # of Action 3's)
that haven't been released

I¥ FLOCK changes in the future, the above formula may also require
modification.

(Chianged 1 July 1981)

MONITOR QUEUE SYSTEM CALLS Page 5-3

The last two factors of the ahove equation anticipate circumstances where
the same file and/or the same record is being accessed by more than one ioh

at a time. If two jobs are reading the same file, that is two opPeNs or two
Action Q's.

The Lline printer spooler, as of version 4.1, uses the queue system to store
the printer queue asg well as a [ist of printers connected to the system.

5.3 QUEUE SYSTEM MONITOR CALLS

You can utilize the monitor queue system by using one of the four monitor
queue management calls (QGET, QRET, QADD, QINS). These calls are fast for
use in interrupt level routines. ALl calls work through register R3 and no
other registers are disturbed. Since most queue blocks will be used in some
form of sharable resource chain or interrupt level routine, the processor
must be Llocked- before executing any of the queue management calls.
Violating this rule could destroy the available gueue list or result in
inter~job errors. None of the calls reguire any arguments to be passed
except for the address in R3.

5.3.17 QGET -~ Obtain 2 Free Queus Block

This call obtains the first free queue block from the available list and
returns its base address in R3. The Z-flag is set if the queue block was
available, and is reset if no queue hlocks were available. The aueue hlock
is first removed from the available List, and then all words in the block
are cleared to zeros. :

5.3.2 QRET - Return a Queue Block

This call returns a queue hlock to the available queue |ist in the monitor.
The address which was in the first word of the block (usvally a link to the
next block in your chain) is returned in R3 after the block has been [inked
back into the available aueue List. ALl queue blocks that have heen
al located by 0GET, QADD or QINS should eventually he returned to the monitor
by the QRET call when they are no longer needed.

5.3.3 @ADD, QINS - Manipulating Queue Blocks

Similar to the QGET call, these two calls obtain the first free qgueue block
from the avsilable List. The Z-flag is set 1if the queue block was
available, and is reset if no Queue blocks were available. If available,
the queue block is linked into your own specific list whose address s ip
R3. This is because most system calls use queue hlocks as elements of some
specific list, depending on the application. The XLOCK subroutine, for

MONITOR QUEUE SYSTEM CALLS Page 5-4

instance, maintains a list of all active system locks and adds or deletes
queue blocks from this {ist as locks are set and reset.

The standard format of these individual Liste follows the format of the free
List. Each block Links to its successor by storing its address in the first
word of the block. ALL other words in the queue block are available for the
storage of specific data. The last block in the {ist contains a =zero in
word 1 to mark the end of the Llist. The QRADD call scans down the chain
marked by the address in R2 and then inserts the new aqueue block at the end
of the existing List. The QINS call inserts the new queus block in the
chein at the point indexed by R3Z and Links the remaining List elements (if
any) to the newly inserted block. Both calls then return the address of the
second word of the new queue block in R3. This is the base of the data area
of the queue block where you may store the data.

Remember that the current size of each queue block is eight words in length.
The QADD and QINS calls place a link in the first word, leaving seven words
of data storage for your application. The QRET call alwavys requires the
address of the first word when returning the queue block to the available
List, regardless of the call used to obtain the block.

SEE ALK O
.29 GFKREE

CHAPTER &

THE FILE SERVICE SYSTEM

The AMOS monitor has a simple yet powerful device-independent file service
system which relieves the programmer of the task of I/0 coding for each
device with which he wishes his program to interface. 1In addition to this
device independence, the monitor contains all routines to manage the disk
file system on a logical-call basis. The programmer need not be concerned
with the exact physical placement of files on the disk except in rare
instances where the system software {s being developed or tested. The
monitor also contains an efficient means for developing new device drivers
to be incorporated into the system when unsupported devices must be
interfaced. This section gives a general overview of the file service
system and describes the Dataset briver Block (abbreviated as DDR) which is
the descriptor Link for all I/0 and file calls to the monitor.

6.1 THE DATASET DRIVER BLOCK

ALL I/0 operations and file operations are accomplished by monitor calls
with reference to a DDB, which defines the device or file being operated
upon. Whether the operation is to a unit-record device such as a printer,
or to a specific file within a file-structured device such as a disk,
depends upon the parameters passed to the monitor through the referenced
DDB. There is no Limit to the number of devices or files that may bhe active
at any given time, but there must be one separate BDB for each device or
file 1in use concurrently. There are no internal channel numbers or device
numbers to Llimit the number of concurrently active devices or files. The
general sequence of events for the complete processing of a device or file
operation can be summed up as follows:

1. The DDB is set up with the defining parameters such as device name,
drive number, filename and extension, project-programmer number,
etc. This data normally comes from the processing of an ASCII file
specification such as DSKT1:FILTST.MACC101,11 by an FSPEC call.

2. The 1/0 buffers are allocated either directly by the user program
or by an INIT call referencing the DDB in use.

THE FILE SERVICE SYSTEM Page 6-2

3. The logical opening processes for the device or file are per formed,
normally by an OPEN call referencing the DDRB.

4. Data transfers to or from the device are performed by either READ

and WRITE calls for physical transfers or INPUT and QUTPUT calls
for legical transfers.

5. The logical closing processes for the device or file are performed,
normally by a CLOSE call referencing the DDB.

The monitor contains complete error processing routines which allow the
programmer to specify (by flags in word 1 of the ODDB) whether any
uncorrectable errors are to result in an automatic error message to the
operator on his terminal, an aborting of the program and return to monitor,
or both. You may also elect to process the errors yourself by checking the
error code returned in word 1 of the DDR.

6.1.1 DDB Format

Figure 6-1 shows the format of the DPB which must be allocated within the
user program area and set up by the user hefore any I/0 operations can take
place. The DDB is 24 (octal) words in size and is usually allocated by a
BLKW 24 statement. The DDB can be assigned any tag which will then hecome
the reference tag for all subseauent operations to that dataset. Some of
the items in the DDB you must set up before certain operations may be called
for, while other items are set up and used by the monitor file service
routines. The following descriptions explsin the use of each item.

6.1.1.1 Error Ccode - This byte is set to a non-zero code at the completion
of an 1/0 operation that was unsuccessful for wvarious reasons. A zero
indicates the operation was successful. You need to test this byte only if
the error control flag in the flags byte (DDB+1) specifies returning to the
user on an error condition or if the operation allowed a non-fatal error
condition to occur. The error codes are listed at the end of thig section.

THE

DDB:

+=

+a

+6

+10

+ 12

+14

+ 16

+20

+223

+ 24

+ 26

+ 30

+ 32

+34

+40

+42

+ 4

+46

FILE SERVICE SYSTEM

Flags Error Code

Buffer Acdress

Record Size

Buffer Inclex

Record Number

Driver Acdcdress

JCEB Aciciress

Jab Priority

Device Code

Call Level . Dirive

Page 6~3

DSK1:FILNAM.EXT(101,4)

Filename
— —
Extensian /
PPN ::>
Dpen Caode
- Diriver Work Area —
| _ €5 waords) -—

Dataset Driver Block

Fig 6-1

(Changed 1 July 1981)

THE FILE SERVICE SYSTEM Page 6-4

6.1.1.2 Flags - This byte is used to control the flow of the 1/0 operation

and the handling of error codes by the file service routines. The following
functions are controlled by the eight flag bits:

1 = set by user to force a return on error condition (abort if clear)
2 - set by user to bypass printing of error messages on error conditions
4 = real-time transfer flag (currently not implemented)
10 - spare
20 - transfer initiated (for internal file service use only)
40 = read if 0 or write if 1 (for internal file service use only)
100 device INITed - set by INIT call or user if explicit buffer in use
200 dataset busy (transfer initiated or queued)

6.1.1.3 Buffer Address - This is the 16-bit absolute address of the base of
the buffer to be used for all dataset transfers (read and write). It is set
by the INIT call which allocates a buffer, or by the user program if it is
allocating its own buffer and not using the INIT call. This address is used
in conjunction with the flag bit 6 above, which indicates that a buffer has
been allocated either by the INIT call or by the user. No transfers can
take place without a buffer.

6.1.1.4 Record Size - This is the size in bytes for the physical transfer
to use. The READ call transfers this number of bytes from the device to the
user buffer beginning with the address in DDB+2. The WRITE call transfers
this number of bytes from the user buffer to the user device. The INIT call
sets this size to the standard buffer size, or you can set the size if you
are doing your own buffering. You may modify the size for transferring
records of wvariable sizes as long as it does not exceed the buffer size of
the capacity of the device or driver in use. Various logical file service
routines set this size word during processing, such as the OPEN call for the

disk which must perform directory operations on a 512-byte buffer at all
times. '

6.1.1.5 Buffer Index - This is a byte counter which is used by Llogical
routines (INPUT and OUTPUT calls) for keeping track of bytes transferred
into and out of the user buffer. Various calls reset this value, and vyou
then use it and increment it as bytes are transferred into and out of the
buffer. Details are given in later sections where the calls themselves are
described. This buffer index word is normally not a true buffer pointer but

rather an offset from the buffer base (per DDB+2) to the current byte being
manipulated.

(Changed 1 July 1981)

THE FILE SERVICE SYSTEM Page 6-5

6.1.1.6 Record Number - You set the record number to read or write a
specific random record from a random access device such as disk. The first
record on the device is considered record zero, and the record numbers
increment sequentially from there. This record number is actually used only
by the physical driver routines for READ and WRITE calls, but other Llogical
calls set this word to perform transfers to specific disk areas such as
directory operations on disk. Most non—disk devices are not random access,
in which case this record number is ignored by the respective drivers.

6.1.1.7 Queue Chain Link - This word is for internal use only, It is the
Link wsed by the 1/0 queueing routines far interrupt driven transfers. You
should not alter this word.

6.1.1.8 JCR Address - File service routines store the address of the
controlling job's JCB so that interrupt driven drivers can locate the
corresponding job for activation on transfer complete status. This word is
alsc for internal use only.

6.1.1.9 Job Priority -~ The current software job priority s set here by
file service routines to specify the priority of the tranmsfer in queued
operations. This byte is for internal use only. The top byte of this word
(DDB+17) is currently not used.

6.1.1.10 Dpevice Code - The 3-character device code (packed RAD5D) must be

set here by an FSPEC call or directly by the user before any 1/0 operations
may be performed.

6.1.1.11 brive - Used only by drivers for devices with multiple drives,
this byte must be set to specify the drive to be used for the transfer. A
~1 byte <(octal 377) may be used to indicate the current default drive
number. If the device is DSK, the default drive used 1is the drive onto
which you are currently Logaed. Other devices may have different defaults.

6.1.1.12 call Level - For internal use only, this byte is used to keep
track of the level of nesting of the file service calls for proper error
recovery handling. This byte must be zero before the first file call is

executed.

THE FILE SERVICE SYSTEM Page 6-6

6.1.1.13 Filename and Extension - These are three words which contain the
RAD50 packed filename and extensiorn for file-structured devices. These
words are ignored by drivers for devices which are not file-structured, but
they may cause inaccurate error messages if they are not set to zero values.

6.1.1.14 PPN - This is the octal project-programmer bytes for the area to
be used to locate the file. It is wused only on file-structured devices
which are multi~user based such as disk. A zero causes the default value to
be the current PPN which the job is logaed in under. To prevent inaccurate
error messages, this word should be zero, if not used.

6.1.1.15 Open Code - This byte is set by the OPEN call to indicate the mode
of the open statement for future processing operations. It dis normally
ignored by drivers for devices which are not file-structured. It is for
internal use only and should not be modified by the user. The corresponding
top byte of the word (DDB+35) is currently not wused. The following open
codes are in use:

0 - file is not open

1 ~ file is open for sequential input (QPENI call)

2 ~ file is open for sequentiul output (OPENO call)
10 -~ file is open for appendina (QPENA call)

4 = file is open for random input/output (OPENR call)

6.1.1.16 Driver Work Area - The remaining five words are for internal use
by the device drivers for Links, record counts, etc., and should not be
modified by the user during processing. Not all drivers make use of the
work area, but it must be there if device independence is to be preserved.

6.1.2 bevice Transfer Buffers

Each dataset must have an associated transfer buffer to handle input and
output operations. This buffer must be allocated either directly or through
use of the IMIT call which allocates the buffer as a memory module by using
a GETMEM call. The INIT call allocates a standard size huffer for the
device being wused (the size of the buffer is defined within the driver
itself). If you do not wish to use the INIT call, you may allocate any size
buffer you wish (must be Larae enough for any logical calls to be performed)
and then set its address in DDB+2. Refer to the section detailing the I1/0
calls themselves for more details on the use of these buffers.

THE FILE SERVICE SYSTEM Page 6-7

6.1.3 Error Handling

When an error ocecurs during any file service call, the file service routines
normally perform typical error correction procedures. If the error is fatal
(uncorrectable), two operations may or may not take place depending on the
setting of bits 0 and 1 in the flags byte at DDR+1. First, bit 1 is tested
and if it is not set, the monitor outputs a standard error message to the
user terminal, giving the type of call that failed, the file specification
for the device that the error occurred on, and the reason for the error.
The appropriate error code is also placed in the error byte at DDOB+0 for
Later testing by the user. Second, bit 0 of the flags byte is tested and if
it is not set, the user program is aborted by the file service system and
you are returned to monitor mode. You normally set these bits on before any
1/0 calls are made, if you wish to process the errors within the user
program qitsel f.

6.1.3.1 Error (odes ~ The following List gives the error code (in octal)
returned in the DDB error byte by the file service system, along with the
reason for the error: :

01 - file specification errar (FSPEC)

02 - insufficient free memcry for huffer allecation (INIT)
03 ~ file not found (OPENI, OPENR, OPENA, DELETE, RENAME)
04 - file already exists (QPENO)

05 - device not ready (all calls)

06 - device full (QUTPUT)

(07 - device error (all calls)

10 - device 1in use (ASSIGN)

11 - illegal user code (all file calls)

12 - protection violation (DPENO, OPENR, DELETE, RENAME)
13 - write protected (all output calls)

14 ~ file type mismatch

15 = device does not exist (all calls)

16 - illegal block number (READ, WRITE)

17 = buffer not initiated (all calls except INIT)

20 - file rot open (READ, WRITE, INPUT, OUTPUT, CLOSE)

21 = file already open Call OPEN calls)

22 - bitmap kaput (all disk bitmap calls)

23 - device not mounted (all calls)

24 - invalid filename (OPENC, FSPEC, DSKCTG)

At the conclusion of every file service monitor call, the error byte at the
base of the DDB is tested for the convenience of the user program. This
allows you to test for an error status directly after the call with a BNE
instruction without having to first explicitly test the byte with a TSTB
instruction. This, of course, only appliss if you have the error trapping
bit set in the DDB status word to prevent the job from being aborted on a
file error.

THE FILE SERVICE SYSTEM Page 6-8

6.2 FILE SERVICE MONITOR CALLS

This section describes the file service calls which are available to the
user program for both logical and physical I/0 operations. ALl calle have
the same general format, which uses a single argument representing the
dataset driver block (DDB) to be used for the operation. See the preceding
chapter for a complete description of the DDB format. In brief, the calls
described in this section are:

FSPEC process a device specification

INIT initialize a dataset driver block buffer
LOOKUP Lookup a file to see if it exists
OPENI open a file for sequential input
OPENO open a file for sequential output
OPENA open a file for appending

OPENR open a file for random input/output
CLOSE close a file to further processing
READ read a physical record

WRITE write a physical record

INPUT read a logical record

OUTPUT write a logical record

DELETE delete a file

RENAME rename a file

ASSIGN assign a device to a job

DEASGN deassign a device from a job

6.2.1 FSPEC - Process an ASCII Filespec

The FSPEC call is used to process an ASCIT file specification from 2 command
line {(or any other ASCII buffer) and set up the parameters 1in the DDR
according to the results of the processing. The ASCII file specificatian
must he dndexed by RZ2 and must bhe in the standard format of
dev:filnam.extlp,pnl with a valid termination character, if a short default
specification 1s used.

The FSPEC call is slightly different from the rest of the I/0 calls in that
it allows you to use a second argument if you wish. This argument must be
the default extension for the filename parameter to be wused 1in the event
that the file specification does not contain an explicit extension
(identified by a period after the filename). If the second argument does
not exist, the FSPEC processor does not process the input file specification
past the colon which terminates the device/drive parameters.

The device code (3 characters) is packed RAD50 and stored in DDB+20 if it
exists as marked by the terminating colon. The drive number is stored in
the byte at DDB+22 1if it exists. If the device code does not exist, the
current default device (stored in the job's JCR item JOBDEV) is stored in
DDE+20. If the drive number is not in the input specification an octal 377
is stored in DDB+22 to flag the default drive number to the device driver.

THE FILE SERVICE SYSTEM Page 6-9

The filename and extensicn are then processed unless no second srgument was
used in the call, in which case the FSPEC processor returns to the user at
this point. The filename and extension are packed RADS(Q and stored in the
three words at ODODB+24 through DDR+30. If no filename is entered in the
input specification, the word at DDB+24 is cleared to zero to fteg the
absence of the filename parameter. If a filename s entered but no
extension is entered, then the default extension specified in the second
argument of the FSPEC call is stored as the extemsion in DDB+30.

If a project~programmer number is in the file specification (marked by a
left square bracket "["), it is processecd and stored in DDB+32. If no p.PN
is entered, DDB+32 is cleared to zaro to flag its ahsence.

At the conclusion of the processing of the input file specification, the
index R2 is pointing to the termination character {(the first character
following the file specification string). If an error in the input string
is detected, the FILE SPECIFICATION ERROR message is printed <(unless
suppressed by bit 1 in DDB+1) and the program is aborted (unless suppressed
by bit 0 in DDB+1). The error code 01 is set in DOR+(} error code hyte.

No other modifications take place to the DDB area except that the error byte
at DDB+0 is cleared at the start of the FSPEC processing. If you do not use
the FSPEC call to set up your DDB, you must use some other form of explicit
code to insure that the DDB is set up procperly to define the device and file
for any subsequent I/0 operations.

6.2.2 INIT - Initialize the DDB

The INIT call is the normal means for allocating the dataset buffer and
initializing the DDB for processing. The INIT call tocates the device
driver (searching [1,6] on DSKQ: if not 1n memory), then allocates 3
standard size buffer based on the size specified in the driver. Bit 6 of
the flag byte at DDB+1 is set to indicate the initialization. The address
of the buffer is set into DDB+2, and the size in bytes 1s set into DDB+4.

No calls deallocate the buffer once it has heen allocated by the INIT call.
Multiple OPEN-CLOSE processes may he performed on the DDB once the INIT has
been done. The huffer is temporary and is deal located automatically when
the program exits to monitor, or it can be explicitly deallocated by using
the DELMEM call with the address stored in DDB+2. Recall that the buffer qs
allocated as a standard memory module with a GETMEM call.

NOTE

ALL file service calls with the exception of
the FSPEC <call require the use of a disk
buffer, and therefore must be preceded by
the INIT call for processing.

THE FILE SERVICE SYSTEM Page 6-10

6.2.3 LOOKUP - Find the File

This 1is a form of the OPEN call which does nothing except search for the
file and return an error code if it is not found. The file is not actual ly
opened for processing, and an OPENI call must be used if the file is to be
subsequently read from. The LOOKUP call is useful for determining if a file
that is about to be opened for output already exists, so that it can first
be deleted by the DELETE call. The LOOKUP call is ignored for devices which
are not file-structured.

The LOOKUP call is also useful for some system programming techniques since
it returns parameters abhout the file in the DDB work area. The work area is
located in the last five words of the DDB. The first three words of this
work area are loaded with the three words of the directory item if the file
is found. These three words are the numher of records in the file, the
number of active data bytes in the last record, and the record number of the
first data record 1in the file. Refer to Appendix A, "Disk Structure
Format," for complete details on the directory format.

6.2.4 OPENI - Open a File for Input

The OPENI call Llocates a file in a file-structured device and sets up the
DBB parameters (work aread for subsequent INPUT processing. An error
results if the file is not found. The code 01 is set into DDB+34 to flag

the OPENI operation. The OPENI call is normally followed by a series of
INPUT calls which deliver sequential records from the file to the user
buffer. The OPENI call is dignored for devices which are not

file-structured.

6.2.5 OPENQO ~ Open a File for Qutput

The OPENO call first searches the specified device in the specified user
area and returns an error if the file already exists. If it does not, the
DDB is set up for OUTPUT processing. The code 02 is set into DDB+34 to flag
the OPENO operation. The OPENO call is normally followed by a series of
OUTPUT calls which transfer data from the user huffer to seqguential records

in the file. The OPENO call is dgnored for devices which are not
file-structured,

6.2.6 OPENA - Open and Append to Existing File

The OPENA call is similar to OPENQ, except that it allowus you to append data
to an existing file. The code 10 is set into DDB+34 to flag the OPENA
operation. The OPENA call 1is nmormally followed by a series of OQUTPUT calls
which transfer data from the user buffer to the end of the file. This call
is 1gnored for devices which are not fite—-structured.

THE FILE SERVICE SYSTEM Page 6-11

6.2.7 OPENR = Open a File for Random Processing

The OPENR executes basically the same as the OPENI call, but the code stored
in DDB+34 is 04 to flag random processing. The file located for random
processing must be a contiguous file. The OPENR call is normally followed
by a series of INPUT and OUTPUT calls which transfer data between specific
records in the file and the user buffer in both directions. The OPENR call
is also ignored for devices which are not file~structured.

6.2.8 CLOSE - Close a File

The CLOSE call finishes up Llogical processing of a file and clears the open
code in DDB+34. No further INPUT or OUTPUT operation may occur once a file
has been closed. No action is normally done on a file which is open for
input. For files open for output, the final record is written out and the
file 1is added to the directory system on the specific device. The CLOSE
call is ignored for devices which are not file-structured.

6.2.9 READ - Perform a Physical Transfer

This is the physical transfer call for reading input data from a device. Mo
check is made for file open status since the READ call is not a Logical file
call.

6.2.9.1 Sequential Devices - For sequential access devices such as a paper
tape reader, the READ call delivers one record from the device to the user
buffer. The size of this record is normally the number of bytes specified
in DDB+4, but this may not necessarily be true if the driver does not
transfer under the rules of the system. 1If the device 1is not capable of
generating the requested number of bytes per DDB+4 (such as a tape reader
which runs out of tape), a Lesser number may be transferred 1in which case

the count in DDB+4 s adjusted to reflect the true rumber actual ly
transferred to the user buffer.

6.2.9.2 Random Devices = For random access devices such as disk, you must
specify the record number to be located and read, by placing that number
into BDB+10 before executing the READ call. Most random =2ccess devices
always transfer the requested number of bytes per DDB+4 into the user
buffer. (If the buffer s Larger than the physical block, the system reads
multiple contiguous blocks to fill up the buffer.) An error results if the
record number is not within the range of the specific device. For example,
the standard AMOS floppy disk is structured as 500 (decimal) records of 512
bytes each. The legal record numbers therefore range from 0 through 499,
decimal. Similar range restrictions apply for each random device.

{Changed 1 July 1981)

THE FILE SERVICE SYSTEM Page 6-12

6.2.9.3 Interrupt Structure - The system allows interrupt driven devices to
be queued and processed in a priority fashion. Normally, the execution of a
READ call suspends the running of the user program until the transfer has
been completed, at which time the user job is reactivated. You must then
either test the dataset busy bit (bit 7) of the flag byte or use the WAIT
call to stall until the transfer has been completed. The dataset busy flag
is reset when the transfer has been completed. You must then check for
errors. The realtime bit is ignored for devices which are not interrupt
driven or whose drivers do not run under the I/0 queue system.

6.2.10 WRITE -~ Perform a Physical Write

This 4is the physical transfer call for writing data to 2 device. No check
is made for file open status, since the WRITE call is not a Legical file
call.

6.2.10.1 Sequential Devices.- For sequential access devices such as a
printer, the WRITE call delivers one record to the device from the user
buffer. The size of this record is the number of bytes specified in DDB+4.
The driver is responsible for the correct transfer count, and you may alter
the number 4in pDB+4 for each new WRITE call to the same device for the
writing of variable length records.

€.2.10.2 Random Devices - For random access devices such as disk, you must
specify the record number to be located and read, by placing that number
into DDB+10 hefore executing the WRITE call. Most random access devices
always transfer the requested number of bytes per DDB+4 into the user
buffer. An error results if the record number is not within the range of
the specific device. The standard AMOS floppy disk is structured as 500
(decimal) records of 512 bytes each. The legal record numbers, therefore,
range from 0 through 499, decimal.

6.2.10.3 Interrupt Structure - The system allows interrupt driven devices
to be queued and processed in a priority fashion. Normally, the execution
of a WRITE call suspends the running of the user program until the transfer
has been completed, at which time the user job is reactivated. You must
then either test the dataset busy bit (bit 7) of the flag byte or use the
WAIT call tc stall until the transfer has been completed. The dataset busy
flag is reset when the transfer has been completed. You must then check for
errors. The realtime bit is ignored for devices which are not interrupt
driven or whose drivers do not run under the I1/0 queue system.

(Changed 1 July 1981)

THE FILE SERVICE SYSTEM Page 6-13

6.2.11 INPUT - Perform a togical Read

The INPUT call is the Llogical equivalent of the READ call for legical
processing of datasets. The INPUT casll reads a logical record within a file
or device dataset under the control of the spacific driver in use. A
dataset must be opened for input (OPENI) or random access (OPENR) before
INPUT calls are performed. The INPUT call first sets the standard buffer
size intoc DDB+4, so you may not uyse this call to transfer non-standard
record sizes. The number of bytes actually read may be less than the
standard record size due to the driver processing or due to an end-of-file
condition., The actual number of bytes transferred is set into DDB+4 by the
driver routine.

6.2.11.1 Sequential File Processing -~ The INPUT call s mainly used in
logical sequential fijle processing; it sets up the buffer index value in
DDB+6 to direct the processing of the data by the user routines. This index
value is actually the offset to the first byte of valid data within the user
buffer, whose base address is at DDR+2. For unit record devices, the value
is zero since all data within the buffer is user data. For sequential disk
files, however, the first word in each record within the file is a link word
to the next record; therefore, the value set into DDB+6 by the disk driver
is 2, so that processing starts with the third byte in the user buffer.

6.2.11.1.1 Example - The following subroutine is normally used to get each
byte of data from a seguential file:

;Subroutine to get next byte from file defined as INDDR and leave it in R1

INBYTE: CMP INDDB+6,INDDB+4 ;is the buffer empty?
BLO INBG ; no = get next byte
INPUT INDDB . ;sread next logical record into buffer
CMP INDDB+6,INDDB+4 ;check for end of file (no data transferred)
BEQ INEOF ; 90 to end of file routine

INBG: PUSH INDDR+2 ;stack the buffer bhase address
ADD INDDB+6 ,aSP ; and add the index offset to get position
MOVB a{sPY+ ,R1 ;pick up the next byte from user buffer
AND #377,R1 ;insure upper hyte is cleared in R1
INC INDDB+6 ;increment the buffer index for next time
RTN ssubroutine return

6.2.11.2 Random File Processing ~ A special situation arises for files
opened for random access by the OPENR call. Instead of the next sequential
record being read, the specific relative record whose number 1is in DDRE+10 is
read into the user buffer. You first set this number up and then execute
the INPUT call. The record number is actually relative to the base of the
file and has no direct relationship to the physical record on the device as
would be returned by a READ call.

THE FILE SERVICE SYSTEM Page 6-14

6.2.11.3 Special Devices - For devices that do not implement special
processing of logical calls, the INPUT call performs a READ call instead.

6.2.12 OQUTPUT ~ Perform a Logical Write

The OUTPUT call is the logical equivalent of the WRITE call for logical
processing of datasets. The OUTPUT call writes a lagical record to a file
or device dataset under the control of the specific driver in use. A
dataset must be opened for output (OPENO) or random access (OPENR) before
OUTPUT calls are performed. The OUTPUT call transfers the number of bytes
in DDB+4, but it normally does it as a standard record {depends on the
driver in use). We discourage attempts to wuse the OUTPUT call for
transferring non—-standard record sizes.

6.2.12.1 sequential File Processing - The main use of the OUTPUT call is in
logical sequential file processing. The OUTPUT call sets up the buffer
index value in DDB+6 to direct the processing of the data by the wuser
routines. This 1index wvalue 1is actually the offset to the first byte
position for valid data within the user buffer whose base address is at
DDB+2. For unit record devices this value is zero, since all data within
the buffer is user data. For sequential disk files, however, the first word
in each record within the file 1is a Link word to the next record;
therefore, the wvalue the disk driver sets 1into DDB+6 1is 2, so that
processing starts with the third byte in the user buffer.

6.2.12.1.1 Example - The following subroutine is normally used to put each
byte of data to a sequential file:

;Subroutine to put next byte from R1 into file defined as OTDDB

r
OUTBYT: CMP OTDDB+6,0TDDB+4 ;is the buffer full now?
BLO ouBYT ;no = add this byte
OUTPUT OTDDB ;syes — write it
MOUBYT: PUSH OTDDB+2 ;stack the buffer base address
ADD OTDDB+6,9SP ; and add index offset to get position
move R1,a3(SP)+ ;move data byte to user buffer
INC OTDDB+6 ;increment the buffer index offset value

RTN ;subroutine return

THE FILE SERVICE SYSTEM Page 6-15

6.2.12.2 Random Ffile Processing - A special situation arises for files
opened for random access by the OPENR call. tnstead of the next sequential
record beina written, the specific relative record whose number is in DDB+10
is written out from the user buffer. You first set this number up and then
execute the OUPUT call. The record number is actually relative to the base

of the file and has no direct relationship to the ohysical record on the
device as would be written by a WRITE call.

6.2.12.3 Special Devices — For devices that do not implement special
processing of logical calls, the QOUTPUT call performs a WRITE call instead.

6.2.13 DELETE - pelete a File

The DELETE call deletes a specific file from a file-structured device. The
filename, extension and p,pn (if used) must be set in the DDB hefore
executing the call. An error results if the file is not found. The DELETE
call is ignored for devices which are not file-structured.

6.2.14 RENAME - Rename a File

The RENAME call renames 3 specific file on a file-structured device. The
filename, extension and p,en (if used) must be set in the DDB before
executing the call. The new filename and extension must be packed RADSO
into the three \words immediately following the DDB in memory. The RENAME
call merely locates the directory item for the file and replaces the three
words which store the filename and extension. The RENAME call is ignored
for devices which are not file~structured.

6.2.15 ASSIGN - Assign a Device

The ASSIGN call is used to assign a non-sharable device (such as a printer)
to the current user's job by setting a flag in the device's entry in the
device table in monitor memory. Once a device has been assigned by this
call, any attempt to assignh it by another job results in an error. The
device stays assigned to this job until deassigned by the DEASGN call. The

ASSIGN call performs no action if the specified device is sharable, such as
a disk.

THE FILE SERVICE SYSTEM Page 6-16

6.2.16 DEASGN - Deassign a Device

The DEASGN call is used to deassign a device which has been assigned to the
user's job by the ASSIGN call. Once deassigned, the device becomes
avaitlable for assignment by other jobs. The DEASGN call performs no action
if the specified device is sharable or if it 4is not currently assigned to
the user's job. ALl devices are deassigned when the program exits to the
monitor.

6.3 DISK SERVICE MONITOR CALLS

In the previous section we covered the file-oriented monitor calls. Those
calls allow you to access data files without regard to the actual structure
of the data on the device. Internally, of course, AMOS does have to deal
with the structure of the data. This section deals with the monitor calls
used to manipulate that structure. A description of the data structures
used to maintain files on a device can be found in Appendix A, "Disk
Structure Format."

The disk presents special problems which reaquire the use of special monitor
calls to control the accessing of the directory and bitmap records. These
records have a non~sharable attribute associated with them, even though the
disk in general is a sharable device. For instance, two user programs may
not both be updating the same directory records at the same time. The same
holds true for the bitmap records. The following monitor calls are used to
control the access to these non-sharable records:

DSKCTG - allocates a contiguous file for random processing
DSKALC - allocates the next available record on disk

DSKDEA —~ deallocates a specific record on disk

DSKBMR - reads disk bitmap and sets re-entrant lock flag
DSKBMW - rewrites disk bitmap after user modification

DSKDRL - sets re-~entrant directory lock for a specific user
DSKDRU - clears re-entrant directory lock for a specific user

The access to these records is normally done by the monitor routines as a
direct result of normal 1I/0 processina by file service calls. It s a
somewhat tricky process and the disk calls should not be used except with
extreme caution, since misuse could violate the integrity of the file
structure on the disk. The following descriptions are directed at those
system programmers who are familiar with shared file techniaues.

6.3.1 Calling Sequence

ALL calls use a standard argument which is the address of the associated DDB
to be used for the c¢all. In addition to the first argument which 4s the
DDB, some calls use an optional second argument for processing. The second
argument is detailed in the description of the call.

THE FILE SERVICE SYSTEM Page 6-17

6.3.2 The Bitmap Area

The bitmap area 1is an area in monitor memory which is allocated by the
BITMAP program run at system startup time by the BITMAP command in the
system initialization command file. This area consists of a status word, a
DDB for bitmap reads and writes, and a buffer for the actual bitmap

including the hash total words. The format of the bitmap area is as
follows:

BLKW 0 ;Bitmap status word

BLKW 12 ;Partial DDB for bitmap 1/0

BLKW Bitmap-size ;Bitmap buffer (size depends on device)

BLKW 2 ;Hash total words

The device table entry for each drive has the address of the cerresponding
bitmap areca to be used for that drive. More than one drive may share the
same bitmap area, forcing a rewrite each time a different drive 1is
referenced. This is not efficient with regard to time but can save some
memory for larger devices where the bitmap buffer may be several hundred
words or more.

6.35.2.1 The Status Word = The status word (first word in bitmap arca)
contains two flags which are used to control bitmap access. Bit 0 dis the
pitmap lock flag and is set to flag that the bitmap is locked and being read
or modified by some user job. The DSKBMR call sets this flag on, and it is
up to you to clear it after you have finished the bitmap access and
modification, Bit 1 is the bitmap rewrite flag which is set to indicate
that one or more modifications have been made to the bitmap in memory, and
that it must be rewritten to disk before being discarded. If the user
program modifies the bitmap in memory, it must set the rewrite flag to
insure that the bitmap is rewritten.

6.3.2.2 The Bitmap DDB - The bitmap DDB is a partial DDB because no files
are ever referenced, and the rest of the DDB is not needed. The bitmep s
normally allocated as record 2 of each disk, and it extends across
successive records for those devices which overflow one record.

$.2.2.3 The Bitmap Buffer - The bitmap buffer area 1is the exasct size
required to contain the entire bitmap from the disk. Two extra words are
allocated to contain the hash total which is used to insure the integrity of
the bitmap in memory and on disk. Each time the bitmap is read, or bpefore
the bitmap is rewritten, this hash total is checked and an error results if
it is bad. The hash total is merely the double~word binary sum of the
entire bitmap buffer. You must update this hash total each time you modify

the bitmap, or else an error results when it is time to rewrite the bitmap
to disk.

(Changed 1 July 1981)

THE FILE SERVICE SYSTEM Page 6-18

6.3.2.4 The Bitmap - The bitmap itself contains one bit for each Llogical
record on the disk structure. This bit is off if the record is free, and on
if the record is in use by anyone, including the system structure records
themselves. Each word in the bitmap can define up to 16 records. The first
word in the bitmap defines records 0 through 17 (octal) with bit D defining
record O and proceeding upward throughout the word. The second word defines
records 20 through 37, and so on. To define the 500 decimal records in a
standard 1BM-compatible AMOS floppy disk, we need 32 words (32 times 16 =
512) with the last word not being totally used. The bitmap itself therefore
takes up 34 words, including the two hash total words.

6.3,2.5 Altering the Bitmap - Altering the bitmap 1is tricky but the
sequence recommended is:

Read the bitmap using the DSKBMR call :
Alter the bitmap as necessary (recompute the hash total)
Set the rewrite flag (status word bit 1)

Clear the bitmap Llock (status word bit 0)

. Rewrite the bitmap using the DSKBMW call

VI P~ g =
»

6.3.3 DSKCTG - Allocate a Contiguous Area

The DSKCTG call 4§s wused to allocate a contigous file on a random access
device. A standard argument is used as the second argument which represents
the number of records to be allocated in the file. A search is made to find
the first available area on the disk which can fully contain the reguested
number of records. These records are marked as in~use on the disk bitmap,
and a file descriptor item is added to the user directory. The word which
gives the number of bytes in the last record is set negative to flag this
file as contiguous, distinguishing it from the normal sequential files. A
device-full error results if no area can be found on the disk which is Large
enough to contain the file.

6.3.4 DSKALC - Allocate a Record

The DSKALC call dis used to allocate one record for use by this user as a
directory record or as a file record. A standard argument is used as the
second argument, which represents the word that is to receive the record
number of the allocated record. An error results if there are no free
records Lleft on the specified disk. A DSKBMR call is first perfoermed to
insure that the current job has access to the bitmap, and then the first
free record is located and marked in use. The bitmap record is flagged as
modified, causing it to be rewritten at the next DSKBMW call or if it must

be swapped out to make room for another bitmap sharing the same area in
memory .

(Changed 1 July 1981)

THE FILE SERVICE SYSTEM Page 6-19

6.3.5 DSKDEA - Deallocate a Record

The DSKDEA call is used to deallocate a specific record on a disk and make
it immediately available for use by another user (or the same user). A
standard argument is used as the second argument, which represents the
address of the word containing the record number of the record to be
deal located. No check is made to insure that this record is allocatad to
either the current user or any other user. A DSKBMR call is first per formed
to insure that the current job has access to the bitmap, then the specified
record’s bit is set to zero to indicate that the record is free. The bitmap
record is flagged as modified to force a rewrite.

6.3.6 DSKBMR - Read the Bitmap

The DSKBMR call locates the bitmap area $n monitor memory for the specified
disk and insures that it is not Llocked by another job. If it is (ocked, a
stall is made until it is released. It is then locked for this job and a
return is made to the user. The address of the bitmap area is set into the
word specified by the second argument in the calling sequence. The second
argument 1s a standard argument in format. Refer to the description of the
bitmap area above and note that the second argument receives the address of
this area and not the address of the bitmap Jtself. You may Llocate the
bitmap itself because its address is in the second word of the bitmap area
(second word of the bitmap DDB).

6.3.7 DSKBMW - Write the Bitmap

The DSKBMW call locates the bitmap area in monitor memory for the specified
disk and insures that it is not locked by another job. If it is tocked, a
stall is made until it is released. It is then locked for this job and
rewritten to disk from memory unless the hash total is bad. After the
rewrite is complete both the rewrite and lock flags are cleared and a return
1s made to the user.

6.3.8 DSKDRL - _ock the Directory

The DSKDRL call Llocks the directory for the specified drive for modification
by the user program. It is used by such file service routines as CLOSE for
output files, DELETE and RENAME calls., If the directory is already locked
by another job, a stall is made until it is released. The user program or
routine must unlock the directory wvia the DSKBRU call after the
modifications have been made. -

THE FILE SERVICE SYSTEM Page 6-20

6.3.9 DSKDRU - Unlock the Directory

The DSKDRU call unlocks the directory for the specified drive after it has
been Llocked by the DSKDRL call for modification. MNo action is performed if
the directory is not locked by the current job.

6.4 MAGNETIC TAPE DRIVER MONITOR CALLS

Some monitor calls allow your assembly language programs to access the
maghetic tape wunit driver, MTU.DVR. Ffor information on using the magnetic
tape utility programs, refer to Using the Magnetic Tape Unit in the
"User's Information' section of the AMOS Software Update Documentation

Packet. That document also defines some of the terms we use in the
following discussion.

Before you begin use of MTU.DVR, make sure your magnetic tape units are
defined in your system device table, and that the program MTSTAT.SYS has
been included in the monitor (via the SYSTEM command 1in the system
initialization command file).

In addition to the magnetic tape drive monitor calls detailed below, you can
use the READ and WRITE calls to imput and output data to and from the
magnetic tape unit, in the same way you would use them to perform disk I1/0.

6.4.7 REWIND Arg

This call issues a rewind command to the specified tape unit. REWIND
accepts a standard argument that represents a DDB on which you have already
performed an FSPEC, an INIT, and an OPEN monitor call.

The DDB selects the device to which you want to issue a REWIND command. If
an error results from this call, you see the standard system file operation
error messages (e.g., ?Cannot INIT Devn: — device does not exist).

6.4.2 WRTFM Arg

This call issues a write-file-mark command to the specified tape unit.
WRTFM accepts a standard argument that represents a DDB on which you have
already performed an FSPEC, an INIT, and an OPEN monitor call.

The DDB selects the device to which you want to write a file mark. If this

call results in an error, you see the standard system file operation error
messanes.

THE FILE SERVICE SYSTEM Page 6-21

6.4.2 FMARK Arg

This call 1issues a find-file-mark command to the specified tape unit. EMARK
accepts a standard argument that represents a DDPB on which you have
previously performed an FSPEC, an INIT, and an OPEN monitor call. The DDR
selects the device to which You want to issue a find~file~mark command. The
FMARK call causes the MTU driver to read forward on the specified tape until
it finds a file mark. Any errors resulting from this call are indicated by
standard file operation error messages.

b.4.4 FMARKR Arg

FMARKR causes the MTU driver to read 1n reverse on the tape until it finds a
file mark. The call accepts a standard argument that represents a DDB on
which vyou have previously performed an FSPEC, an INIT, and an OPEM monitor
call. The DDB selects the device to which you want to idissue the FMARKR
command . Any resulting error is indicated by standard file operation error
messages.

6.4.5 TAPST Argil,Arg2

This call issues a read~tape-status command to the specified tape unit.
TAPST accepts two standard arguments. The first, Argl, represents a DDR on
which you have previously performed an FSPEC, an INIT, and an OPEN monitor
call. The DDB selects the device whose status you want to return. The

returned status code appears in Arg2. The staus bits TAPST returns are as
follows:

BIT FUNCTION COMMENTS
0 7-track Indicates that unit is in 7-track mode.
1 NRZI mode Indicates that unit s in NRZI recording mode.
2 End~of-tape Indicates that end-of~tape was detected during

the previous command.

CHAPTER 7

TERMINAL SERVICE SYSTEM

The AMOS monitor has several calls which deliver data to and from both the
user terminal and other terminals connected to the system. A terminal s
defined as an ASCII character-oriented device which is capable of both
output and input. This is the formal definition and does not preclude the
use of output~only devices on terminal designated ports. Also, the system
includes software terminals known as "pseudo terminals," which can be used
to control jobs that are not actually associated with a hardware interface
on a designated port address. The calls Listed here normally input from or
output to the terminal which is controlling the job that is executing the
call. Some calls (as specified) will input from or output to another

terminal not connected to the current job or to a pseudo terminal
controlling another job.

Programs which make use of the standard terminal service calls that
communicate with the user terminal can be run without modification in a job
controlled by a pseudo terminal. Keyboard input calls and terminal output
calls always go to the controlling terminal, regardless of which job they
are running in. Therefore, you need not be concerned with the physical port
address or attributes of the terminal which is controlling the job. The
monitor routines handle all this automatically.

7.1 TERMINOLOGY

Due to a holdover from older system terminology, most terminal output calls
reference the device name of "TTY," which used to define the teletype device
on systems that normally used teletypes as terminals. The input device of
the teletype was then called the keyboard, and the calls reference the
device name of "KBD." These are strictly mnemonics and do not necessarily
reflect the physical attributes of the terminals, which now are more
commonly the higher speed video display terminals.

(Changed 1 July 1981)

TERMINAL SERVICE SYSTEM Page 7-2

7.2 - THE TERMINAL LINE TABLE

Each terminal has associated with it a terminal Line table which is a work
area in monitor memory set up to contain the parameters and work areas
associated with the control of the terminal device. Most of the items in
this terminal Lline table are for internal use only, and you need not be
concerned with them. The JOBGET Rx,JOBTRM call may be used to set an index

to the associated terminal Lline table, so that you can inspect or modify the
items within,

7.2.1 The Terminal Status Word

Normally, you need to be concerned only with the terminal status word, which
is the first word in the terminal line table. This word has certain flags
in it that you may modify to alter the operation of your terminal calls.
The terminal status word has the following flag positions defined:

1 = user sets to force image mode input (see KBD call)

2 ~ user sets to suppress echoing of input characters

4 - user sets to allow escapes to be processed (as in EDIT)

10 - engages data mode to allow complete data transparency on input

("C, nulls, bit 8 characters).

20 - user sets to allow lower-case input (disables conversion)
200 - dnternal flag used to indicate output is in progress
1000 flag used to indicate 'hog" mode for terminal (set by TRMDEF)
2000 user sets to indicate terminal runs in local mode (no echo)

The terminal status word is cleared each time the user program exits back to
monitor mode wupon program completion, thereby restoring normal terminal
operation regardless of program operation.

7.3 THE TERMINAL SERVICE CALLS

AMOS includes 17 monitor calls to perform 1input and output between the
system and any of its connected terminals.

7.3.1 KBD {label} - Fetch a Line of Data

The KBD call accepts one full Lline of input from the user terminal into a
monitor Lline buffer, then sets index R2 to the base of that buffer for the
user reference. oDuring the inputting of the Lline, the user job is set into
the terminal input wait state, thereby consuming no CPU time until the Line
is finished. ALL normal Lline editing features are active (rubout,
control-U, tab, etc.) and a control-c input aborts the job unless the user
has set up control-c trapping via the JOBICP item in the JCB for the job.
If you specify a label with the KBD call, the program automatically branches
to that label. The Lline is terminated when a carriage~return or a Line-feed
is entered. The monitor automatically appends a Lline-feed to the
carriage-return, and a null byte is set after the Lline-feed character.

(Changed 1 July 1%81)

TERMINAL SERVICE SYSTEM Page 7-3

If the echo-suppress flag is set in the terminal status word, normal echoing
of the idnput characters is suppressed, such as when the password is being
entered for the L0G command. 1If the image-mode input flag is set, the KBD
command has a different effect., pNo editing is performed and instead of one
Line being accepted, only one character is accepted and it is delivered back
to you in register R1 instead of register R2 being set to the monitor Line
buffer. Image-mode input echoing s still under control of the
echo-suppress flag as in normal Line mode.

7.3.2 TTY - Output One Character

The TTY call outputs one character from register R1 to the controlling
terminal and then returns. Tabs are echoed as spaces up to the next
modulo-8 carriage position, unless the image-mode output flag is set in the
terminal status word. If the job is running under the control of a command
file, the character will only be output to the terminal if the output
Suppress command is in the normal state (:R revives it, :8 silences jt).

7.3.3 TIN - Get an Input Character

TIN gets the next input character from either the terminal input buffer or
from the command string if the job is controlled by a command file. The
character 1is delivered 1in R1. This call is normally only used within the
operating system itself and not by user programs.

7.3.4 TOUT - Qutput One Character

TOUT outputs one character to the controlling terminal of the job or to the
job which has this job attached (by the address in the JOBATT item). This
call differs from the aeneral TTY call in that the command file status is
not checked by the TOUT call. The TOUT call, Like the TIN call, is normally
only used within the operating system itself.

7.2.5 TAB - OQutput One Tab

This convenience call outputs a single tab character to the user terminal.
In effect, it is the same as the code sequence:

MOVI 11,R1
TTY

TERMINAL SERVICE SYSTEM Page 7-4

7.3.6 CRLF - Output a Carriage-Return / Line-Feed

This convenience call outputs a carriage-return and Line-feed pair to the
user terminal. In effect, it is the same as the code seauence:

MOVI 15,R1
TTY
MOVI 12,R1
TTY

7.3.7 TTYI - Qutput a String of Characters

The TTYI call outputs a string of characters which follows the call itself
up to but not including 2 null byte. The call could be used as follows to
output two Lines of data to the user terminal:

TTYI
ASCII /LINE 1 DATA/
BYTE 15

ASCII /LINE 2 DATA/
BYTE 15,0
EVEN

The TTYI call also automatically appends a line=feed to all carriage-returns
included in the string.

7.3.8 TTYL ~ Qutput a String of Characters Indexed

The TTYL call is similar to the TTYI call in that it outputs a string of
ASCII characters up to a null byte. The string of characters for the TTYL
call may be anywhere in memory and not in Line with the call itself in the
program flow. TTYL takes one standard argument-—-the address of the message
to be output. It dis therefore wuseful for outputting from a table of
messages by setting an index to the specific message within the table (per
some numeric director code), and then using that register as the argument to
the TTYL call. The TTYL call also appends a Line-feed to each
carriage-return in the string.

7.3.9 PTYIN - Place Character in Input Buffer

The PTYIN call allows one job to force a character into the input buffer of
another job which 1is probably controlled by a pseudo terminal. This call
takes two standard arauments. The first is the data byte to be sent to the
other job and the second argument is the address of the JCB of the job into
which the character is to be forced. PTYIN is the call through which the
FORCE operator command functions.

TERMINAL SERVICE SYSTEM Page 7-5

7.3.10 PTYOUT - Fetch Character from Qutput Buffer

The PTYOUT call allows one job to get a character from the terminal output
buffer of another job which is controlled by a pseudo terminal. If no
output is available from the specified joh, the calling job is put to sleep
until a character 4is available. The PTYOUT call takes two standard
arguments. The first argument is the address of the byte which will receive
the data character, and the second argument is the address of the JCR from
which the character is to be taken.

7.3.11 TTYIN - Fetch Another Job's Input

The TTYIN call allows one job to get waiting input data from the terminal
input buffer of another job. This call has not yet been fully inplemented.

?7.3.12 TTYOUT - Place a Character in Another Job's Qutput

The TTYOUT call allows one job to put data into another job's terminal
output buffer. This call, Like the TTYIN call, is not vyet fully
implemented.

7.3.13 TRMICP - Process Input Character Within Interface Driver

The TRMICP call is executed from within a terminal interface driver to
process one character which has just been received from the terminal by the
hardware dinterface. R1 must contain the input character to be processed,
and R5 must index the terminal definition table entry for the specific
terminal beina serviced. TRMSER then takes the character and passes it to
the terminal driver input routine for pre-processing if desired. When the
terminal driver passes it back to TRMSER, it is then edited for control
codes and other special characters and then added to the terminal dnput
buffer. ALL the pertinent flags are set automatically to indiciate actions
to be taken by the application program when it requests the input data. If
the 1Jnput character is a break character (Line-feed), or if image mode is
active, the associated job is awakened to process the available data.

7.3.14 TRMOCP - Process Qutput Character Within Interface Driver

The TRMOCP call is executed from within a terminal interface driver to get
from TRMSER the next output character to be sent to the terminal. This is
usually in response to an interrupt from the interface hoard, indicating
that the prior character has been fully output and the hoard is ready to
transmit the next character. RS5 must index the terminal definition table
entry for the specific terminal being serviced, and R1 gets the next
available character upon return from TRMSER processing of the call. 1f

TERMINAL SERVICE SYSTEM Page 7-6

there is no more output available in the output buffer, R1 is set to -1 as a
flag, and the associated job it awakened to fill the output buffer again.

7.3.15 TRMBF® - Process Output Characters Within Terminal Driver

The TRMBFQ call is a physical output call usually executed from within a
terminal driver or a monitor routine. There are, however, times when it can
be used by an assembly Language application program. The TRMBFQ call
effectively adds a buffer full of data characters to the output buffering
system for a specific terminal. It does this by linking the buffer into the
dynamic output queue List used by TRMSER for this terminal. When this call
is used, R2 must index the buffer to he queued, R3 must contain the number
of characters in the buffer, and R5 must index the terminal definition table
entry for the specific terminal. The TRMBF@ call performs the output
“imitiation function if the output system for the terminal is currently idle.

JF Sarsiie el @0 S ; e

7.3.16 TBUF = Qutput Large Amounts of Data

The TBUF call is the normal call for user programs to use for queueing up
lLarge amounts of data into the terminal output system of a terminal where
the single character calls are considered inefficient. It is a buffered
call in that it works through the two output buffers for the terminal, as
opposed to going directly into the output queue system. If you try to
output more data via the TBUF call than there is currently rocom for in the
ogutput buffers, the wuser job 1is suspended while the output buffers are
unloaded to the terminal. Each time one of the output buffers is emptied,
the job 1is awakened and the TBUF call proceeds to fill that huffer. This
continues until the original amount of data is exhausted, at which time the
call returns to the user program. When the call is executed, R2 must index
the buffer to be output and R3 must contain the number of characters to be
output (similar to the TRMBFQ call). R5 need not index the terminal
definition table entry since this is a user level call.

7.3.17 TCRT - Call Special Terminal Driver Routines

The TCRT call is the linkage into the special processing routine portion of
a terminal driver. R1 usually contains a 2~byte code which is interpreted
by the terminal driver routine as a special function, such as cursor
positioning or special editing action. The only action actually performed
by the TCRT call within TRMSER is to locate the terminal driver for the
attached terminal and call the driver control routine within it. You must
refer to the actuval driver Llisting to determine the action performed
relative to the code passed to it in R1.

TERMINAL SERVICE SYSTEM Page 7-7

7.3.17.1 Standard Functions - The TCRT call 1is most commonly used for
controlling such special CRT functions as cursor addressing and screen
clearing. To maintain compatibility between terminal drivers, Alpha Micro
has defined the following functions within the terminal drivers it supports.

7.3.17.1.1 Cursor Addressing - To perform cursor addressing, R1 is loaded
with a 2-byte argument defining the screen row and column to which the
cursor is to be moved. The high-order byte is loaded with the row, and the
low-order byte 1is loaded with the column. The uppermost—Lleftmost (Home)
position is column 1, row 1.

7.3.17.1.2 Other Functions - To perform other special CRT functions, the
high-order byte of R1 should be loaded with 377 (octal). The Llow-order byte
is then loaded with one of the special function codes Listed below.

n Clear Screen and set normal intensity

1 Cursor Home (move to 1,1)

2 Cursor Return (move to column 1 without Lipe-feed)
3 Cursor Up one row

4 Cursor Down one row

5 Cursor Left one column

6 Cursor Right one column

7 Lock Keyboard

8 Unlock Keyboard

g Erase to End of Line

10 Erase to End of Screen

11 Enter Background Display Mode (reduced intensity)
12 Enter Foreground Display Mode (normal intensity)
13 Enable Protected Fields

14 Disable Protected Fields

15 Delete Line

16 Insert Line

17 Delete Character

18 Insert Character

19 Read Cursor Address

20 Read Charscter at Current Cursor Address

21 Start Blinking Field

22 End Blinking Field

23 Start Line Drawing Mode (enable alternate character set)
24 End Line Drawing Mode (disable alternate character set)
25 Set Horizontal Position

26 Set Vertical Position

27 Set Terminal Attributes

Not 2ll terminal drivers have all of the above functions, simply because all
terminals do not have all of the functions. If your terminal has additional
features, Alpha Micro recommends starting at 100 (octal) when assigning
function codes.

TERMIMNAL SERVICE SYSTEM Page 7-8

7.3.18 Message Calls

Three calls have been defined in SYS.MAC as macros using the TTYI call.
These calls are for the convenience of the programmer and to make the
program more readily understandable. They all take a single argument which
is an ASCII message string to be output to the user terminal. Due to the
way that macro arguments are processed, if the message has leading or
trailing spaces, or if it has imbedded commas, it must be enclosed in angle
brackets or part of it will be lost. The three calls are:

TYPE msg ;Types the message on the user termiral as is
TYPESP msg :Types the message and appends one space to it
TYPECR msg ;Types the message and appends a CRLF pair to it

The macros are defined in SYS.MAC 25 follows:

DEFINE TYPE MSG

TTYI
ASCII /MSG/
BYTE 0
EVEN
ENDM

DEFINE TYPESP MSG
TTYI
ASCII /MSG' /
BYTE a
EVEN
ENDM

DEFINE TYPECR MSG
TTYI
ASCIT /MSG/
BYTE 15,0
EVEN
ENDM

It should be noted that the message may not contain any slashes, since these
are used as delimiters for the ASCII statement in the macros.

CHAPTER 8

CONVERSION MONITOR CALLS

8.1 NUMERIC CONVERSION CALLS

The AMOS monitor contains two calls which perform conversions from a single
binary word value to an ASCII formatted decimal or octal string. Options
for the conversion allow the string to be sent to the user terminal, to an

output file or to a buffer in memory. Options also allow control of the
result format.

8.1.1 Calling Format

Both calls have the same general format and take two arguments, each of
which must be an expression that evaluates down to a byte value within the
specified range. The two calls are:

vy size,flags ;sConvert binary number in R1 to decimal
QCvT size,flags sConvert binary number in R1 to octal
; (hexadecimal if J.HEX is set for this job)

8.1.1.1 size Byte - The size byte determines the number of digits in the
output result. A zero size specifies a floating format in which the number
of digits used is just enough to fully contain the result. A non-zero size
specifies a fixed number of digits for the result with leading =zeros being
replaced by blanks. In either form, if the R1 value is zero, at least one
zero digit will be output as the result.

(Changed 1 July 1981)

CONVERSION MONITOR CALLS Page &-2

8.1.1.2 Flags - The flags byte contains six flags which control the
destination of the result string and also some other formatting options.
The following List gives the flag bit positions and the actign taken when
the i :
flag is set L kbR 3uHKW&‘

1 = disables Lleading zero blanking

2 = outputs the result to the user terminal

4 - outputs the result to the file whose DDB is indexed by R2

10 - puts result in memory at buffer indexed by R2 and updates R?
20 - adds one leading space to the result

40 - adds one trailing space to the result

Note that the maximum value which can be displayed using these calls is the
maximum value of a 16~bit word. ALl numbers are considered unsigne¢ so the
largest decimal number is 65535, the Largest octal number is 177777, ana the
Largest hex number is FFEF.

If the size byte is non~zero, the sense of the Lleading zero blanking flao
described below is reversed. In other words, when the size byte is zero,
the conversion calls default to leading zero blanking, with bit 0 turning
. that blanking off. When the size byte is non-zero, the calls default to
leading zerces, with bit O specifying that leading zeroes are to bz blanked.

The following examples may clarify things a bit. ALL examples assume the
value in R1 is 964 (decimal), and the Letter "b" in the result field
indicates a blank.

bCvT 0,2 prints 964

DCVT 0,22 prints b964

DCVT 0,42 prints 964b

pCvT 5,2 prints 00964

DCVT 5,3 prints bb964

DCVT 5,43 prints bb964b

DCVvT 5,62 prints bD0964b

DCVT 2,2 prints 64 (the 9 is lost)

8.2 RAD50 CONVERSION MONITOR CALLS

Radix-50 packing 1is used throughout the system where the packing of
filenames and other data entities lends itself. Radix~50 (RAD50) packing is
a system by which three ASCII characters may be packed into a2 single 16-bit
word wusing a special algorithm based on the value of octal 50. The
character set that may be packed RADS0 is Limited 4in scope to the
alphanumeric characters, the period, the dollar sign, and the blank. The

following Llist gives the legal characters that may be packed RAD50 and their
equivalent octal codes:

(Changed 1 July 1981)

CONVERSION MONITOR CALLS Page 8-3

Character RADSD code
blLank 0
A-7 1-32
a-z 1-32
$ 332
. 34
0-9 36-47

There 1is no character for the RAD50 code 35,

8.2.1 RAD50 Packing Algorithm
The packing algorithm for a 3-character input to a 16~bit RADSD result is:
1. The first character code is multiplied by 3100 octal (50x50).

2. The second character code is multiplied by 50 and added to the
first.

3. The third character code is added to the above to form the result.

The unpacking algorithm merely reverses the above seguence to get the
triplet.

i

B.2.2 Packing and Unpacking Calls

There are two monitor calls which perform the above packing and unpacking
algorithms. Both calls use registers R1 and R?2 as indexes to the components
and require no calling arguments,

8.2.2.1 PACK - Pack Three ASCII Characters into RADS0 - The triplet (2
ASCII characters) indexed by R2 is packed into RAD50 form and the result 1s
left in the word indexed by R1. R1 is incremented by 2 to receive the next
result word for multiple packing. R2 is left indexing the first character,
which was not included in the packing of this triplet. The PACK call
terminates packing and forces blank fill for any input which does not
contain three valid RAD50 characters. For the PACK call, a blank is
considered an illegal input character and terminates packing.

(Changed 1 July 1981

CONVERSION MONITOR CALLS Page 8-4

8.2.2.2 UNPACK =~ Unpack Three RADSO Characters into ASCII - The word in the
address indexed by R1 is unpacked, and the triplet is Left in the three
bytes beginning with the byte currently jndexed by R2. R1 is incremented by
2 for the next word, and R2 is incremented by 3 for the next triplet result.

Blanks are legal in unpacking and are placed into the result if they are
decoded from the input word.

8.3 PRINTING CONVERSION CALLS

There are three calls in the monitor which accept a system unit input and
convert the unit to standard printable form and then output it to the user
terminal. These calls are used to print out file specifications, filenames,
and project-programmer numbers. Each call takes one standard argument which
addresses the system unit to be converted and printed.

8.3.1 PFILE - Qutput a Filespec From a DDB

The argument addresses a file DDB, and the PFILE call extracts the
parameters in the file specification words. It then prints them on the user
terminal in the standard format of dev:filnam.extCp,pn).

5.3.2 PRNAM - Qutput a Filename

The argument addresses a 3~word filename.extension block (packed RAD50), and
the PRNAM call prints the converted result on the user terminal in the
standard format of filnam.ext.

B8.%.2 PRPPN - Qutput a PPN

The argument addresses a 1-word project-programmer code, and the PRPPN call
prints the converted result on the user terminal in the standard format of
proj,prog. The p,pn is output in octal, regardless of the setting of J.HEX.

B.4 ALPHABETIC CONVERSION--LCS AND UCS

The AMOS monitor inlcudes two calls that switch between wupper- and

lower-case alphabetic characters. LCS converts one character in R1 to Lower
case. UCS converts one character in R1 to upper case. The ZI-flag is set if
the call is successful.

(Changed 1 July 1981)

CHAPTER 9

INPUT LINE PROCESSING CALLS

When a program is executed by an operator command, register R2 is left
pointing to the first non-blank character on the command line which follows
the command name itself. The remainder of the Line is normally dinterpreted
by the particular program and used to determine the files to be acted on,
the record number to be dumped, the devices to be accessed, etg. For
example, the MACRQ call requires the name of the program and any switch
options to follow the MACRO command name on the same Line. The macro
assembly program then processes the program name and the switch options by
way of the R2 index which was Lleft indexing the rest of the command Line.
This command (ine is actually the user's termimpal input buffer.

In addition to the command input Line, the KBD monitor call also leaves RZ
set to the input Line buffer which contains the user input data. Also,
various translators and file processing programs may read in a line of data
and then set index R2 to the base of that Line for scanning. For this
reason, there exists a number of monitor calls which perform scanning and
conversion functions based on an input Lline which is indexed by R2. Some of
the calls merely test the character indexed by R2 for a specific condition
and return with flags set, based on the result of the test. In these
instances R2 is not modified. 1In calls which perform scan conversions, R2
1s updated to point to the character which terminated the conversion. MWith
the exception of the FILNAM call, none of these calls require any arguments.,
Conversion results are always delivered back to the user in register R1.

9.1 ALF -~ TEST A CHARACTER FOR ALPHABETIC

The character indexed by R2 is tested for alphabetic (A-Z; a-2); the Z-flag
is set if it is, and cleared if it is not. R2 is not changed.

INPUT LINE PROCESSING CALLS Page 9-2

9.2 NUM - TEST A CHARACTER FOR NUMERIC

The character indexed by R2 is tested for numeric (0-9); the Z-flag is set
if it is, and cleared if it is not. R2 is not changed.

9.3 TRM - TEST A CHARACTER FOR TERMINATOR

The character indexed by R2 is tested for a legal terminator defined as a
blank, tab, comma, semicolon, carriage-return, Line-feed, or null. The

Z-flag is set if the character is a terminator, and cleared if it dis not.
R2 is not changed.

9.4 LIN - TEST A CHARACTER FOR LINE TERMINATOR

The character indexed by R2 is tested for a legal end-of-Line defined as a
semicolon, carriage-return, Line—feed, or null. The Z-flag is set if the
character 1is an end-of-line character, and cleared if it is not. RZ is not
changed.

9.5 BYP - BYPASS BLANKS

Index RZ is advanced past all characters which are blanks or tabs and Lleft
indexing the first non-blank, non-tab character it finds.

9.6 GTDEC - INPUT A DECIMAL NUMBER

Index R2 is wused to process a decimal number whose value may be from O to
65535 in the input Lline (leading =zercs are legal), and to deliver the
resultant binary wvalue back in R1. The N-flag is set if there is an error
(i.e., result is greater than 6&5535). RZ s wupdated to point to the
character following the decimal input number. 1In the case of an error, R2
is left indexing the digit that would have caused the overflow past 65535
for double-word processing techniques.

9.7 GTOCT - INPUT AN OCTAL NUMBER

Index R? 1is wused to process an octal number whose value may be from O to
177777 in the input Lline (leading zeros are Llegal), and to deliver the
resultant binary value back in R1. The N~flag is set if there is an error
(i.e., result is greater than 177777). RZ2 1is wupdated to point to the
character followina the octal input number. If J.HEX is set for this job
(via the SET HEX command), this cell processes input in hexadecimal dinstead
of octal.

INPUT LINE PROCESSING CALLS Page 9-3

9.8 GTPPN - INPUT A PROJECT-PROGRAMMER NUMBER

Index RZ s used to process a project-progarammer number in the standard
format of proj,prog, and to deliver the resultant binary code back in R1.
The format dictates that project numbers be octal numbers with a value
between 1 and 377, and programmer numbers be octal numbers with a value
between 0 and 377. The N-flag is set if the PPN was not in valid format.
R2 is updated to point to the character following the PPN.

9.9 FILNAM - INPUT A FILENAME

Index R2 is used to process a filename.extension jnput string, Lleaving the
RAD50 packed 3-word result in the three words starting with the address
specified as the first argument of the call. In format, this argument is a
standard monitor call argument. The second argument is a 1- to 3-character
extension to be used in case no explicit extension is entered in the input
string. R2 is updated to index the terminating character. The Z-bit is set
if there was no filename to process (i.e., the first character was not a
Legal RADS50 character).

CHAPTER 10

MISCELLANEQGUS MONITOR CALLS

This section deals with the monitor calls which do naot fit into any of the
categories treated thus far.

10.1 EXIT - RETURN TO AMOS COMMAND LEVEL

This is the ncrmal means that a program uses to terminate processing and
return to monitor command mode. The EXIT call takes no arguments. The
monitor, upon executing the EXIT call, deletes all temporary memory modules
in the user partition and resets any parameters that are program dependent
such as JOBICP, JOBBPT, etc. AllL assigned devices are also released at this

time. The user terminal is then placed in the monitor command mode, ready
to process ancther operator command.

10.2 CTRLC ~ BRANCH ON CONTROL-C

Whenever 2 control-C is entered on a terminal keyboard (usually to abort a
program), no action takes place immediately, but rather a flag is set in the
JCB status word which must be tested later by the program. The CTRLC call
is used within an application program to check the status of the control-C
flag (in the JCB status word) and branch to a specific address if the flag
is set. This call is a convenience since the user could perform the same
task with a few dnstructions by locating his own JCB status word and
checking the J.CCC flag within it. The format of this call is:

CTRLC routine-address

where routine-address is the address to branch to within the program if the
control-C flag is set.

The CTRLC call does not reset the J.CCC flag but merely indicates that it is
set (this allows nested routines to unWwind themselves correctly). The user
program must then reset the flag explicitly by clearing it in the JCB status

MISCELLANEQUS MONITOR CALLS Page 10-2

word or implicitly by performing the EXIT call, which kills the program and
returns to monitor mode, clearing J.CCC.

10.3 JLOCK, JUNLOK - PREVENT CONTEXT SWITCHING

The JLOCK call prevents context switches from occurring and allows the
current user to run. JUNLOK reverses the effect of JILLOCK.

10.4 RQST - REQUEST CONTROL OF A SEMAPHORE

R(} points to a 2~word semaphore which may conventionally be associated with
any type of resource (disk, buffer, queue block, etc.). When a job requires
access to a resource, it should RAST the semaphore associated with that
resource. RAQST decrements the semaphore count (representing the number of
available resources) by 1. If the resulting count is greater than or equal
to 0, the RQST returns, allowing access to that resource. If the difference

is less than {}, the job is placed in a wait chain wuntil the resource is
available.

To illustrate, suppose a job needs to access one of 20 available queue
blocks. A semaphore with an initial value of 20 (to represent the available
aqueue blocks) could be set up and accessed prior to any attempts to allocate
a queue block. A RQAST call decrements the count from 20 to 19, confirms
that 19 is greater than or equal to 0, then returns control of the job so it
can get a queue block. If none of the 20 queue blocks were available (i.e.,
the semaphore count <), the job would be placed in 3 wait state until a
queue block was identified as freed via a RLSE call <(see section 10.5
below).

10.5 RLSE - RELEASE CONTROL OF A SEMAPHORE

If, upon execution of the RQST call (see section 10.4 for explanation), the
semaphore count is less than or equal to 0 (i.e., none of the resources
requested is available), the requesting job is put to sleep in a wait chain.
When one job is finished with one of those resources, a RLSE call on the
semaphore associated with that resource increments the count by 1 and
determines if the result is less than or egual to 0. If it is, the next jab
in the wait chain is awakened and allowed to finish the RQST.

For example, if none of 20 queue blocks is currently available, the count is
less than or equal to 0--let's say it's 0. Before a job tries to get a
queue block, a RAST on the semaphore decrements the count from O to -1 and
places the job in a wait chain. After a job frees a queue block, it uses
the RLSE call on the semaphore associated with "queue blocks." This call
increments the semaphore count by 1, resulting in 0, and wakes the first iob
in the wait chain, which allows it to continue on and allocate a queue
block. The following diagram illustrates the semaphore:

MISCELLANEOUS MONITOR CALLS Page 10-3

SEMAPHORE

RO >

" i s s

wait chain

10.6 PCALL ~ INVOKE PROGRAM AS SUBROUTINE

PCALL is similar to the standard machine instruction call (JSR), except
return is not done via the RTN instruction but is accomplished via the EXIT
supervisor call. The format ig:

PCALL subroutine-address
where the subroutine address is the address of the program you wish to call.
If you wish to use the PCALL monitor call to execute a program that locates

its stack area in the user partition (e.g., VUE), you must first place vyour
own stack area in your user partition.

10.7 AMOS - EXECUTE AMOS COMMAND AS SUBROUTINE

When AMOS s used as a monitor call, the character string pointed to by R2
is treated as a monitor command Line, and the AMOS command in this command
Line is executed without Lleaving the current program.

If you wish to use the PCALL monitor call to execute a program that locates

its stack area in the user partition (e.g., VUE), you must first place your
own stack area in your user partition.

(Changed 1 July 1981)

APPENDIX A

DISK STRUCTURE FORMAT

The AMOS monitor supports a flexible disk file system which relieves you of
the task of keeping track of files, Links and record counts. The structure
of the standard disk format used in the AMOS system is described here for

those programmers who wish to do some disk file manipulation or system
software programming.

A.1 PHYSICAL RECORD FORMAT

The logical record size for all disks used within the AMOS file structure,
regardless of type, is 512 bytes. For efficiency, the hard-disk structures
(such as the AM-500 or Trident subsystems) , and the AMS floppy format all
define the physical record size to be this 512-byte logical record size. To
maintain compatibility with other systems, the standard IBM-compatible

floppy disk format is somewhat different and will be expained in more detail
here.

The standard IBM-compatible floppy disk has 2002 128-byte physical records
on 77 tracks, each track having 26 sectors numbered 1 through 26. The AMOS
system uses a logical record size of 512 bytes (256 words) for each record,
so the actual record is made up of four standard size 128-byte records on
the floppy disk dtself. The disk driver routine is responsible for
translating the AMOS record number (0-499) +to the proper four physical
records on the disk. There are only 500 records of 512 bytes each, as far
as the programmer 1is concerned, and the last two 128-byte records on the
floppy disk are lost to his use.

The driver translates the AMOS record number into a starting record number,
which is four times as great. 1In addition, a physical sector interleave
factor is used so that a 512-byte record requires only one rotation of the
disk instead of four, which would be the case if an attempt was made to
access four physically contiguous sectors on the floppy disk. The

interleave factor s 5, meaning that there are four sectors between each
logically contiguous pair of sectors.

DISK STRUCTURE FORMAT Page A-2

A.2 DISK RECORD TYPES

There are six different record types in use in the AMOS system, categorized
by their use in the logical processing of files. Each record is 512 bytes
long, but their internal structure differs due to different usage 1in the
system. The six record types are:

. Disk ID record

. Bitmap records

. Master File Directory record (MFD)
. User directory records

. Sequential file data recdrds

. Contiguous file data records

[» 0 I R WA L C]

The following three record types take care of records 0-2, which are the
same on all disks. 1Initializing the disk by using the "I'" command in the
SYSACT program wWrites out record 1 (empty MFD of all zeros) and record 2
(bitmap with records 0-2 allocated), logically clearing the disk of all
users and files and making all remaining records (3-499) available. These
records are then allocated as either user directory records or file data
records.

A.2.1 The Disk ID Record - S T s

The ©bisk Ip record is always record 0 and i$ not currently used by the AMOS
system. It has been reserved for use by user routines which may want to
store disk identification information in it. It is permanently allocated,
so 1t will not accidently be used as a data record by any system routine.
Since this record is reserved for the disk ID, you should not attempt to use
it for other purposes.

A.2.2 The Bitmap

The bitmap 1is one or more records which always begin with record 2 and

extend intc as many sequential records as necessary to represent the entire
disk. Each word in the bitmap is capable of representing the state of 16
logical records with one bit being used for each record. The bit is set if
the record is in use and cleared if it is free. The last two words of every
bitmap are a double-word hash total used to maintain bitmap integrity during
processing. Any remaining words in the Last bitmap record are unused. The
bitmap itself is permanently allocated but contains no links to other system
disk records. If you destroy the bitmap, you can run the DSKANA program to
recover it.

DISK STRUCTURE FORMAT Page A-3

A.2.3 The Master File Pirectory

The master file directory record is always record T and forms the root of
the file structure tree. It contains one entry of four words for each user
PPN which is allocated to this disk by the SYSACT program. A maximum of 63

users may he allocated on any one disk, since only one MFD record is
available.

A.2.4 The User File Directory

User directory records contain up to 42 entries of six words each to
describe user files in the corresponding PPN. The first word of each
directory record 1is a link word to the next directory record in the event
that more than 42 files are allocated in the current user area. The final
directory record has a zero Link word indicating that no more directory
records follow.

A.2.5 Seqguential File Data Records

Sequential file data records have a link word and 255 data words. The Link
word is the record number of the next record in the file. A zero Link word
indicates this is the last record in the file. The Last record in the file
may have anywhere from 0 to 509 active data bytes in its data area. The
directory record item contains this number. Sequential files are normally
processed as one long string of hytes from start to finish.

A.2.6 Contiguous File Data Records

Contiguous file data records have 256 data words and no Links. Contiguous
files must be allocated as a block of records with no intervening records
belonging to other files, They must be allocated before their use while
sequential files are allocated one record at a time as they are reauired.
Contiguous files allow random access processing, since any record may be
located as a direct offset relative to the base record.

A.3 FILE STRUCTURE

The file structure is depicted in figure A-1 and resembles 2 tree with the
MFD record as its root. The MFD record has one item for each allocated user
on this disk. Each MFD item then contains the record number of the first
user directory record for that PPN number. The user directory record has
one item for each data file in this user's area. Each directory item then
contains the record number of the first data record in he file. Sequential

I
ETC.

DISK STRUCTURE FORMAT

MFODO 1.2
RECORO 1 !
1, 4
20, 20
ETC.

QIRECTORY

RECORD
FOR {1, 2]

LINK

{ND FILES)

MAP. PRG

BASIC. PRG

FIRST OIRECTORY
RECORO FOR (1, 4]

— — —TO MAP. PAG

FILE

— TO BASIC.PRG

FILE

— — TO RUN. PRG

LINKS TO
...>BIRECTORY RECOROS

Page A-4

(-}

SNO. BAS

REC.BAS

TN~
v

t

ETC.

TO SYSTEM. MON

FILE

N, REC. RN
Knlu\/:'s/ mE w
SECOND ETC. ETC.
OIRECTORY
RECORO FOR
[. 4] i
LINK INK LINK LINK
EQIT. PRG |- FIRST SECOND THIRD
RECORO OoF RECORD OF RECORO OF
DIR. PRG ECHT. PRG EOQIT. PRG ECIT, pRG
FILE FILE FILE
HSYSTEM . MION \/\/\ /\/—’\ /\/\/\

LINK LINK
SECOND THIRD
RECORDO OF RECORO OF
oR. PRG OIR. PRG
FILE FILE

T e

FILE DATA RECORDS

Disk File Structure

Fig A-1

CIRECTORY RECOROD
v FOR (R0, 20]

- - TO sNDO.
FILE

BAS

- —TO REC. BAS
FILE

- — TO REC, RUN
FILE

- - TO REST
OF EOIT, PRG

— — - TO REST

OF OIR. PAG

DISK STRUCTURE FORMAT Page A-5

files then chain through the data records by Link words as shown +in the
diagram. The two files that are partially depicted are EDIT.PRG and DIR.PRG

in user area [1,4] which happens to be the system program area. Contiguous
files have no Link words and must occupy physically adjacent records

beginning with the first record as addressed in the directory item.

Contiguous files are not depicted in the diagram since they are so
straightforward in organization.

A.4 MFD ITEM FQRMAT

Each MFD dtem 1is four words long and contains the PPN specification, user
directory lLink, and password. The format of the Jtem is:

Word 1 —- user PPN (proj and prog are each one byte)
Word 2 = record number of first user directory record
Words 3-4 - password packed RADS0 (up to 6 characters)

Word 2 is zero if no files have been allocated to this user yet, meaning no

directory records have vyet been allocated. Words 3-4 are zero if no
password is required to gain access to this user account when Logging on via
the 1.LOG command.

MFD items are added, deleted, and changed by the SYSACT program.

A.5 UFD ITEM FORMAT

Each user directory item is six words long and contains dinformation about
the data file which it defines. The format of the item is:

Words 1-3 - filename.extension of the file packed RADS0
Word 4 — number of data records in this file

Word 5 = number of active data bytes in last record
Word 6 = record number of first data record in file

Word 1 dis -1 (octal 177777) if this file has been erased and the directory
item is available for another file definition. Word 1 is zero, to mark the
logical end of the user directory. The byte count in word 5 is negative if
this is a contiguous file. It also represents the negative active byte
count of the file 1if +the contiguous file has been opened for output and
written into sequentially.

APPENDIX p

SYSTEM COMMUMICATION AREA

One area 1in monitor memory starting at locstion 100 (octal) is called the
system communication area. It is defined mnemonically in SYS.MAC and
contains specific parameters that deal directly with singular system
resources and root addresses. They are briefly defined here for those users
who wish to carefully reference them; but such action should be rare and
must be undertaken with great caution. ALL references to these parameters
should be made symbolically in the absolute addressing mode. For example,
the instruction MOV a#JOBTBL,R0 should be used to set the base of the user
job table into index register RO.

B.1 SYSTEM - SYSTEM ATTRIBUTES WORD

This word contains system attribute and status flags. Currently it js only
used to indicate that the system has been properly loaded when bit 0 is set
on.

B.2 DEVTBL - ADDRESS OF THE DEVICE TABLE

Set up by the DEVTBL program in the system initialization command file, this
word contains the absolute address of the device table in monitor MEmMory.

B.3 DDBCHN - ACTIVE DDB CHAIN

This is the base of the active DDB chain for interrupt driven routines. It
is set up and altered by the file service routines as new I/0 DDB's are
queued for transfer requests, and goes to =zero each time there are no
requests pending. It is not used for non-interrupt driven devices.

SYSTEM COMMUNICATION AREA Page B-2

B.4 MEMBAS & MEMEND - USER MEMORY POINTERS

These two words define the beginning and end of the complete user memory

area. MEMBAS 1is the address of the first word following the complete
resident monitor, including the system memory area for wuser resident
programs. MEMEND 1is the address of the lLast word in the total physically

contiguous RAM memary in the machine. It is set up by the INITIA program
when the monitor first starts up, by a memory scan technique which locates
the last available 1K bank. If memory management is active, MEMEND can only
reflect the end of switchable memory within bank 0, and its wuse 1in the
system diminishes.

B.5> SYSBAS - BASE OF SYSTEM MEMORY

This is the address of the system memory area which is used to contain any
user programs set up by the SYSTEM command in the system initizlization
command file. It is zero if no system memory area exists.

B.6 JOBTBL - ADDRESS OF THE JOB TABLE

This 8 the address of the user job table which contains one JCB entry for
each user allocated via the JOB command in the system initialization command
file. For a complete description of the job table and JCB entries, refer to
Chapter 2, '"JOB SCHEDULING AND CONTROL SYSTEM."

B.7 JOBCUR - JCB ADDRESS OF THE CURRENT JOB

This word always contains the address of the JCB for the job that s
currently running and has control of the CPU. For the user program, it
always points to your own JCB as long as you are running. Obviously if you
are referencing this word you must be running. JOBCUR is updated only by
the job scheduler in the time-sharing monitor. :

B.8 JOBESZ - JOR TABLE ENTRY SIZE

This word is set up when the monitor is huilt and contains the size in bytes
of the JCB entry in the job table. This way, when the JCB item expands, the
programs which scan the job table will not have to be reassembled since they
get the JCB size dynamically from JOBESZ. This includes routines within the
monitor itself.

SYSTEM COMMUNICATION AREA Page B~3

B.9 TIME - THE TIME OF DAY

THIS 2-word field is incremented each time the Line clock interrupts. It
represents the current time of day, stored as the number of ticks since
midnight. You can reference this parameter to keep track of the time it
takes to do something on the machine. Remember, TIME is used to count clock
ticks and not seconds or milliseconds. To calculate the actual time in
seconds, divide the elapsed time in ticks by the clock frequency which is
stored in the CLKFR@ constant described further on. This, of course,
assumes that the CLKFR® command has been used in the system initialization
command file to properly set up the constant for your particular frequency
(50 Hz overseas, remember?).

B.10 DATE - THE SYSTEM DATE

This 2-word field is used by various date routines to store the current date
in some specific format. TIts use depends upon the applications which are
defining the format. The DATE field is not accessed or altered by the
system monitor itself.

B.11 HLDTIM -~ THE HEAD LOAD TIMER

This 2-word area controls the head-load timing for the AM-200 floppy disk
system when used with the Persci Floppy Disk brive. The second word (at
HLDTIM+2) is set up by the HEDLOD program, 1in the system initialization
command file, to the number of clock ticks desired to wait before unloading
the disk heads during periods of inactivity. Each time the head s Loaded
or another disk transfer {s initiated, the count in the second word is
transferred to the first word. Each time the clock interrupts, the count in
the first word is decremented, and if it ever gets to zero the head s
unioaded.

B.12 CLKFR& - LINE CLOCK FREQUENCY

This word is set wup by the CLKFRR command in the system initialization
command file to contain the freguency at which the Line clock 4s running.
It is used by routines which compute elapsed time by counting the clock
ticks in the TIME constant. Tt is normally set to 60 for systems 4in North
American countries and to 50 for systems running overseas.

Remember that CLKFR@Q specifes only +the Llocal Line frequency. Changing
CLKFRQ has no effect on the execution speed of the computer,

SYSTEM COMMUNICATION AREA Page B-4

B.13 SPXSAV - STACK POINTER SAVE LOCATION

This word is used by the clock interrupt routine for saving the user stack
pointer just prior to switching to the internal stack.

B.14 SPXINT - INTERNAL STACK
This is the address of the internal work stack used for processing clock

interrupts. It is set up by the initial load routine and used by the clock
interrupt processor.

B.15 LPTQUE - LINE PRINTER SPOOLER QUEUE
This is the dynamic Link address to the base of the Line printer spooler

queuve. The format of the spooler queue is subject to frequent change, so it
is not detailed here.

B.16 TRMDFC - BASE OF THE TERMINAL DEFINITION TABLE
This is the link to the base of the terminal definition table. There is one

entry in this table for each terminal defined at system startup by a TRMDEF
statement 1in the SYSTEM.INI file.

B.17 TRMIDC - ADDRESS OF FIRST INTERFACE DRIVER

This ds the (ink to the first terminal interface driver defined in the
system. Each driver then links to the next one in the chain.

B.18 TRMTDC - ADDRESS OF FIRST TERMINAL DRIVER

This is the Link to the first terminal driver defined in the system. Each
driver then links to the next one in the chain.

B.19 TRMSCN - THE NON-INTERRUPT TERMINAL QUEUE

TRMTSC 9s the link to the chain of queue blocks for all terminals which are
defined as non-interrupt driven and which require terminal scan service each
clock tick.

SYSTEM COMMUNICATION AREA Page B-5

B.20 CLKQUE - THE CLOCK QUEUE

CLKQUE is the Llink to the clock queue which gets scanned every clock
nterrupt. This queue has some entries that remain constant and some that
are continuously added and deleted (such as SLEEP command queue blocks).

CLKQUE is actually the base entry in the queue chain and therefore is two
words in size.

B.21 SCNQUE - THE IDLE SCAN QUEUE

This is the (ink to that point within the clock queue chain which defines
the idle scan queue or that portion of the clock queue which will be
continuously scanned when the system is idle. SCNQUE is actually the base
entry in the queue chain and therefore is two words in size.

B.22 RUNQUE - THE JoB SCHEDULING QUEUE

This 5-word block forms the base and end entries for the job schéduting and
run queue, along with the necessary control information. Its format is
unimportant to the user, and you should never alter it.

B.23 DRVTRK - THE DRIVE/TRACK TABLE

DRVIRK is a 4-byte block that stores head track positioning information for
floppy disks wused in the system. It is used only by the head unload and
head positioning routines in various floppy disk drivers.

B.24 WMEMDEF & MEMBNK - MEMORY MANAGEMENT CONTROL

These two words are used by the memory management system (when active) to
store the base of the memory bank definition table and the currently active
bank index. They are explained in detail in ~Chapter 3, "MEMORY CONTROL
SYSTEM CALLS."

B.25 Z5YDSK -~ ADDRESS OF SYSTEM pISK DRIVER
This word contains the base address of the system disk driver within the

monitor. It is yused by MONGEN to overlay the disk driver with another one
when changing the resident disk type.

(Changed 1 July 1981)

SYSTEM COMMUNICATION AREA Page B-6

B.26 SYSMEM - SYSTEM MEMORY LINK

This word contains the address of the bank-switched system memory, typically
containing bitmaps.

B.27 MSGQUE - SYSTEM LINK COMMUNICATION

This word is the base address of the Link system interrupt gueue.

B.28 MSGDAT - MESSAGE SYSTEM DATA AREA

This word points to the system data communication area for the Link system.

B.29 QFREE - QUEUE SYSTEM CONTROL

QFREE consists of two words, the first containing the number of queue blocks
currently available, the second pointing to the first available gueue block.
Queue blocks are allocated and deal located by getting and returning them
from the front of the Llist controlled by this address, automatically
incrementing or decrementing the free count in the process. The operation
of the queue system is more fully explained in Chapter 5, "MONITOR QUEUE
SYSTEM CALLS."

(Changed 1 July 181>

APPENDIX ¢

ALPHABETIC LISTING OF AMOS MONITOR CALLS

The following is a quick reference to all AM-100 monitor calls:

ALF
AMOS
ASSIGN
BNKSWP
BYP
CHGMEM
CLOSE
CRLF
CTRLC
DCVT
DEASGN
DELETE
DELMEM
DSKALC

DSKBMR -

DSKBMW
DSKCTG
DSKDE A
DSKDRL
DSKDRU
EXIT
FETCH
FILNAM
FMARK
FMARKR
FSPEC
GETMEM
GTDEC
GTOCT
GTPPN
HTIM
INIT
INPUT
JLOCK
JORGET

tests the character indexed by R? for alphabetic

executes AMOS commend without exiting current program .

assigns a non-sharable device to a job

changes banks when running under memory management system

bypasses all spaces and tabs in the string indexed by RZ

changes the size of a user memory module

closes a logical dataset

prints a carriage-return Line~feed pair on the user terminal

checks for a controi-c pending

converts a binary value to decimal and prints it on the user terminal
deassigns a non-sharable device from a job

deletes a file from a file-structured device

deletes a user memory medule from hie partition

zllocates next available record on disk and returns block number
reads disk bitmap and sets re-entrant lock for user modification
rewrites disk bitmasp after yser modification

allocates a contiguous file for random processing

dezllocates a record on disk and makes it available for use again
sets re~entrant directory Lock for a specific user's directory

clears re-entrant directory lock for a specific user's directory
exits from user program and returns to monitor command mode

fetches a module from disk into user memcry unless already in memory
processes a filename specification jndexed by RZ into RADSC format
find file mark on specified magnetic tape unit

read in reverse to find file mark on specified magnetic tape unit
processes a complete file specification indexed by R2 and sets up DDB
allocates a user memory module in his partition

converts a decimal number indexed by R2 into binary and returns it in R1
converts an octzl number indexed by R2 into binary and returns it in R
converts a p,pn format indexed by RZ into binary and returns it in R1
sets up the diskette head unload timer function

initializes a dataset driver block (DDE) for 1/C processing

performs a logical record input I/0 function on an open dataset
prevents context switches and allows current user to run

retrieves a job control block item for the current job

ALPHABETIC LISTING OF AMOS MONITOR CALLS Page C-¢

JOBIDX
JOBSET
JRUN
JUNLOK
JWAIT
JWAITC
KBD
LCS
LIN
LOCK
LOOKUP
NUM
ocvT
OPEN
OPENA
GPENI
OPENC
OPENR
OUTPUT
PACK
PCALL
PFILE
PRNAM
PRPPN
PTYIN
PTYGUT
GADD
QGET
GINS
QRET
READ
RENAME
REWIND
RLSE
RQST
SCAN
SLEEP
SRCH
TAB
TAPST
TBUF
TCRT
TIN
TOUT
TRH
TRMBFQ
TRMICP
TRMOCP
TTY
TTYI
TTYIN
TTYL
TTYOUT

set an index to a job control block item far the current job

sets data into a job control block item for the current job

restores a waiting job to the run request state

enables context switches (reverses effect of JLOCK)

sets an active job into the wait state

sets your job into the wait state

accepts Input from user terminal keyboard (character or Line mode)
converts one character in R1 to lower case

tests the character indexed by R2 for valid end~of-Line character
Locks the processor against interrupts (performs IDS instruction)
Llooks for a specific file on disk and returns information about it
tests the character indexed by R2 for numeric

converts a binary value to octal and prints it on the user terminal
general form of the I/0 logical dataset open calls

opens a loaical dataset for appending

opens a logical dataset for input

opens a legical dataset for output

opens a logical dataset for random access

performs a logical record output I/0 function on an open dataset
packs an ASCII triplet into its RADSO code

invokes program as subroutine

prints & complete file specification on user terminal from a DDB
prints a filename specification on user terminal from its packed format
prints a p,pn specification on user terminal from its packed format
forces one character into another job's terminal input buffer
retrieves one character from another job's terminmal output buffer
adds a gueue block to the end of a queue List

gets a queue block from the free Llist and clears it for use

inserts a queue block into a queue Llist at a defined point

removes & aueue block from a queue Llist and returns it to the free List
performs a physical record read I/0 function on a dataset

renames a file on a file~structured device

rewind magnetic tape on specified magnetic tape unit

releases control of a semaphore and allows waiting job to access source
requests control of a semaphore to access source or to wait in wait chain
forces a single scan of the idle scanner queue (SCNQUE)

puts the user job to sleep for a specified number of line clock ticks
searches for a named memory module and returns its address

sends a tab character to the user terminal

read tape status of specified magnetic tape unit

queues up a variable length data buffer for output to a terminal
executes the special function CRT routine in the active terminal driver
reads one character from the user terminal input buffer

sends one character to the user terminal output huffer

tests the character indexed by R2 for a valid termination character
adds a data buffer to the active output queue of a terminal

processes one input character (used within terminal drivers)
processes one output character (used within terminal drivers)

outputs one character to the user terminal

outputs an in-line message to the yser terminal

retrieves one character from any job's terminal input buffer

outputs a message to the user terminal

forces one character into any job's output buffer

ALPHABETIC LISTING OF AMOS MONITOR CALLS Page C-3

TYPE
TYPECR
TYPESP
ucs
UNLOCK
UNPACK
USRBAS
USREND
USRFRE
WAKE
WRITE
WRTFM

types an ASCII message on
types an ASCII message on
types an ASCII message on
converts one character in
unlocks the processor for
unpacks a RAD50 code word
returns the address of the
returns the address of the
returns the address of the

the user terminal
the user terminal with appended CRLF pair
the user terminal with one appended space
R1 to upper case
interrupts (performs IEN instruction)
into fts equivalent ASCII triplet
current user's memory partition base
current user's memory partition end
current user's free memory area

wakes a job out of sleep state

performs a physical record
write a file mark to speci

write I/0 function on a dataset
fied magnetic tape unit

AMOS MONITOR CALLS MANUAL

ALF © o o o e
Alphabetic conversion . .
AM-1G0 & o . L L
AM-100/T . 0
AM-700 . o . L L
AMOS o . L. L L L. . ..
ASSIGN . . ¢ v v v o o .

Bitmap Format
Bitmaps
BNRNSWP o o 0 L o v w . .
o

CHGMEM
CLEFRQ a
CLivwUE W 0 0 L L . e . .
Clock Frequency
CLOSE & v o 4 4 o v W v .
Contiyuous Files
Control~C
Convenience Macros ., . .
L
CTRLC « - o o o o v o . .
Cursor Addressing

DATE

DOVT . . L L

3
Buffer Address
Buffer Index
Buffers .,
Call Level
Device Code
Drive «
Driver Wark Area . . .
Error Code, . .
Error Handling
Extension
Filepame
Flags o v 4w o v o o o .

(Changed 1 July 1981)

Index

L K

oc»o~?~o~m:m
11 1111
nmoehhhd ALl AL]

]

Lo SRe R e e N NNe S SN S
1 f
OO

Page Index-1

AMOS MONITOR CALLS MANUAL

JCB Address

Job Priority

Open Code

PPN .

Queue Chain Link

Record Number .
Record Size .

DDB Format

DDBCHN
DEASGN

Decimal Input .

Decimal Qutput

DELETE
DELMEM
DEVTHL
CEVTEL
Disk

program .
File Structure
Disk ID Record

Disk Record Types .
Disk Service Monitor Ca

Lisk Structure

DSKALC
DSKimR
DERE MW
LEKCTG
BSKLEA
DSKDLRL
DEKDKU

X117

FETCH

Flacs
File marks

Lls

File Service Monitor Calls
File Service System .

File Structure

Filenames
Filespecs .

FILMAM
FMARK .
FMARKR

FORCE command

FSFEC .

GETMEM
GTDEC .
GTOCT .
GTFPN .

-

Head Load

Time
HEDLOD program

Hexadecimal Input

(Changed 1 July 1981)

o OO O
1
i

s o N o N & s N
i
~

W@ WO 000 o
N
L

i
—_ = g NN =

6=21

84, 9-3

Page Index~—2

AMOS MONITOR CALLS MANUAL Page Index-3

Hexadecimal Output 8-1
HLDTIM L] - - - L] L] L]

INIT &
INPUT & & 0 4 . o . . o .. -
Input Line Processing calls . . .
Interface Drivers

=
Size & v 4 4w u L. ... B-2
JCB Entries
JOBBAS
JOBBNK . . L Lo L., ... 2-7, 3-11
JOSBPT « " s ow e . 2=7
JOBBRK 2-8
JOBCMS & L L L L L L . e ... 26
JOBCMZ L 4 L L h s e e e e . . 2B
JOBCUR w4 w s 4w h s h . .. 27
JOBDEV . . . L L L 2-7
JOBDRY L. L .. a « o 278
JOBDYS . L . L. L . s 2-9
B . 2=7
JOBEXT 4 4 4 4 4 2 o o -« 2=10
JORFPE L L d 2-0
JOSTAL . . o . & « « 2=10
JOBMSG . . L . L 2-10
JOBNAM © . . L o L .. 2=5
JORPRG ., v 0 2 o . . s = a2 w a 2=6
JOSFRY . L L L L L 2-6
N - s . 29
JOLSIZ o 0w L . L . . . « = = a 2=5
JOLUSPR & 4 4 v d v . e . .. 2=5
JOBSTK & 4 L . L e 2-9
JOBSTS o . 4 L 4 4 s 24
JOBTRM ., o« 2-8
JOBTYP L 4 b v i h t e e . - 2=7
JOBUSR w L L 4 0w s h . .. 2=6
JLOCK o 4 0 o L L s s 10-2
Job Control Bloek 2-1, B=2
STZ¢ 0 0 h i e e e e e e e B-2
Job Table o B2
JOBBAS & . L. L L. “ a 2=5
JOBBNK . L . L . . -
S s
JOBuRK o . L L L. L 2-8
JoBCMS L L . L « = a &« . 2=4
JOBCMZ . . . L. L. ... w a o 2-6
JOBCUR & . o 0 v s s e e e e 2-1, B-2
JOBDEV L ... L. L. 2
JOBORY L L. « = o & 2-
JOBDYS . . L L L L L L ... L. 2
JOBERC « 9 4 & % ® a2 4 a = o a o« 2
JOBESZ " s s = - B-

{Changed 1 July 1981)

AMOS MONITOR CALLS MANUAL

JOBEXT
JOBFPE
JOBGET ,
JOBIAL
JOBIDX
JOBMSG L L L.
JOBNAM . . . L L. L L. ..
JOBPRG L. L L.
JOBPRV
JOBRNG . . L L L L L L L.
JOBSET . o . 4w o . o . ..
JOBSTZ
JOBSPR . o . .. L. ...
JOBSTK o o o 0 0 o o . ..
JOBSTS . . . L L.
JoBTHL L oL . L. L. ..
N
JOBTYP . L . L.
JOBUSR & 0 0 0 0 o0 ...
JRUN o 0w a0 s .
L
L O
JUALTO 0 0w s w0 a w ..

KED o . 0 0 h h i h e e .

BIN o w u L e L e
Line Printer Spooler . . .
LOOKUP . L . o
LPTGUE & 4 4 4 4 4 a w w

Magnetic tape drivers . . .
Master File Directory . . .
TEMBAS . . L
MEMONK o 0 0 4 o 4 o w .
N
MEWDEF Program
MEMEND
Memory Management
Memory Mapping
Memory Modules
Memory Partition Controller
Memory Partitions
I -
Miscellaneous Monitor Calls
Monitor Calls
I
Alphabetic conversion . .
AMOS o . L
Arguments
ASSIGHN * 4 & & & =2 @ e =
BNKSWP
BYP e

(Changed 1 July 1981)

]

i

P
O~
n
I
[

N NN NN N
____I\\oa
N
!
N

i1t
s BN

N NN NN
1
= OO

!
~
ra
&

| i1 |
~N OO MNP O W

]

(R !
I N O
n

NN =NMNMNNGN RN oM
1 1
L LN

7-2, 9-1

G2
B-4
6-10
B4

6-20 to 6-21
A=3, A-5

B2

3-11, B~5
B-5

3-9

B-2

3-9, B-5

3-9

3-5, 4-1
3-10 to 3-13
3-2

A-3, A-S
10~1

g-1
8-4
10-3
1-1
6=15
3-12
9-2

Page Index-4

AMOS MONITOR CALLS MANUAL

Calling Format
CHGMEM . , .
CLOSE
CRLF
CTRLC
bCvt,
DEASGN . . ,
DELETE . , .

DELMEM . . .
Disk Service
DSKALC . . .
DSKBMR ., . .
DSKBMW . . .
DSKCTG . . .
DSKDEA . . .
DSKDRL . . .
DSKDRU ., . .

EXIT
FETCH
File Service
FMARK
FMARKR . . .
FSPEC
GETMEM . .
GTDEC . . .
GTOCT . . .
GTPPN . . .
INIT . . .
INPUT
Input Line Pro
JLOCK
JOBGET . . .
JOBIDX . . .
JOBSET . . .
JRUN L . . .
JUNLOK . . .
JWAIT | . . .
JWAITC ., . .
KBDb
LIN . & . . .
LoOoKUP . . .
Magnetic tape
Memory Control
Miscellaneous
NUM
Numeric Conver
ocvT
OPENA ., . . .
OPENI
OPENO
OPENR
ouTPRPUT . . .
PACK

a = = » @

(Changed 1 July

=ls® & » » & B

cessing

»
»

[] » » 1]
a

drivers

sion .

1981)

» ® & » @8 F 8 B B =B B

6=13
10-2

10-2

6-10

10-1
9-2
8-1
8-1
6-10
6-10
6-10
6-11
6-14
8-3

6-6

6-9

i‘\Ji}JN
NN W

9-1

to 6-21

Page Index-§

AMOS MONITOR CALLS MANUAL Fage Index=é6

PCALL 10-3
PFILE
Printing Conversion &4
PRNAM . o o o L L L. 8-4
PRPPN 8-4
PTYIN &«
PTYOUT - - -5
GADD e .. 53
QGET . . o . . s . . e .. - . 5-3
QINS - - 5
ARET & & & & v o o« v . . - . 573
RADS0 Conversion &=2
READ -1
RERAME & . o v v 4 0w o e . . 6-1
REWING o 0 L W o b ot e . .. b 2
Ki oo * s s e m s e mom e oe o 10=2
Retl o 0 . L a L 10-2
SLEEP v W 4 4 4 e i i e w . . 2-3

SEOH v e e e e e e e e e e 3-5, 4=-1
Standard Address Argument . . . 1-2
L
TAPST o 0 6 v e o e . . - . 6-21

L
R e
Torminal Service, 7=1
TioX {obsolete), . . . 2-8
S . 7-3
i i - - - s 4. -3
. . . s e . 92
b [- A s+ = a 7_6
7 7=5
THECUM 4 i h 4 i i i e i w e s T7-5
T Iy “ ® & 4 = a & A = & m = % o= ?"'3
TTVe v v e e e e e e e w -4, 7-8

L T « = . 7
Tt e e e e e e . 7
Thieol o L 0 0w o o .. 7
4 1
UNPACK o o . . . - g
USkbAs o 4 0 0 0 . . - . 3
USRENS L 0 0 L 0 s L s e .. 3=
USKFRE & . v v v v o W w . 3
WAKE o 0 L L L s h L e . e 2
WRITE o o o o o o . o . . . 6
WRTFM o L o o o v s v e . 6
MEC & o h e e e e e e . - 2
MSGLAT . o . o L B8
MSGQUE L. B-
MTULOVR o b=

f§ i L s
Numeric Conversion Monitor Callg &~1
Muneric Input o o 0 0 L a2

(Chianged 1 July 1$81)

AMOS MONITOR CALLS MANUAL

Octal Input
Octal Qutput -
OCvT
OPENA . . ., . . .
OPENI
OPENO
OPENR . .,
OuTPUT . v . & . 4 v o . . .

PACK & & 4 e et h e e w .. .
PCALL .« . & v & o 0 o o o ...
PFILE « v v & v o o . . - . oa e oa
Physical Disk Record Format . . .
PPNs . & 0 o L o . s u
Printing Conversion Monitor Calls
PRNAM . . o 0 o ot L e e . .
Project-Programmer Numbers . . .
PRPPN o
Pseudo Terminals
PTYIN © & . & & o o v o . . « &
PTYOUT . & . & v s e s o v o e s

QAR . L oL L L ... L. . s o
QFREE + & & v v 4 4 4 o e w . -
QGET . v o 4 v h e s e e e e L.
QINE * . & a
QRET & W & 4 4 h e L L. e ..
QUEUE command
Queue System - & . .

Manipulating Queue Blocks . . .

Obtaining a Free Queue Block .

Returning a Queue Block

RAD50 Conversion Monitor Calls .
Random File Processing . . « . .
Random Files
READ . & v 4 o 4 o o o w o .. .
RENAME a s
REWIND & . o -
RLSE . & & w4 v o o o . « & a @
RRST -
RUNGUE - s -

SCNQUE & . . . L. L.
Semaphores
Sequential Files
SLEEP . . ,
SPXINT
SPXSAV & L 4 0 W .. - a
SRCH . o L o 0L s L. ..

Flags . « & . o . 0 o o . ..
Standard Address Argument
SYSUMAC & v v 4 L - . .

(Changed 1 July 1981)

00 = o OO0 00 0O
! I
—

b
1

t

o w
]
W O N

LA R RV, RV NV, NV, I,
! |
A LN — g N

Page Index~ 7

AMOS MONITOR CALLS MANUAL

SYSBAS .,
SYSMEM
SYSTEM
System Communication
QFREE o . . o
System Communication Area . . .
CLKFRQ@
CLKQUE
DATE & & 4 4 4 v 4 4 s e
DDBCHN
DEVIBL
BRVTRK
HLDTIMo . & 0 .o . .
JOBCUR o v 4 0 0 0 ...,
JOBESZ 4 4 v i L e e
JOBTBL .o o 0 . L
LPTGUE
FEMOSAS 4 4w 4 4 i h s e e s
MEMBNK . o
MEMDEF & 4 o o o . .
MEMEND . & & . 4 v u v o . .
MSGDAT . . 4 i 4 h i s w . .
MSGAUE . & 4 v 4 v 4 v & W
QFREE & v v 4 4 4 i s e e . .
RUNQUE &
SCNGUE o 4 b 0 4 a e o a
SPXINT w4 i 4 a4 4 s o W
SPXEAV L L L e e s e e e ..
SYSBAS . . L 4 i e . e ...
SYSMEM
SYSTEM & o . & 4 v v u . . .
TIME & 4 4 i 4 e e i e« a
TRMEDFC . o b v W e a o e
TRMIDC . . 4 v s i h e s . .
TRMECN
TRMTDC . o . . & . . .
Z3YDSK & v 4 b i e e . e . .
System Date . . .,

TAE & & o s e e e e e e e e e .
TAPST o 4 4 i s a st e e e ..
TBUF & 4 s e e e e e e e ..
TCRT . o L 4 v e 4 o .. . s .
Terminal Definition Table . . .
Terminal Drivers
Terminal Input
Terminal Service Monitor Calls
Terminal Status Word
TIDX (obsolete)
TIME . . & & 4 o & o 4 s e u &
Time of Day v v v o o v o . o .
TIN & & 4 & v o v o s s . -
TOUT & & v s e e h s e e o a .

(Changed 1 July 1981)

3-10, B-5
3-10, B-5

o O Oh

D ODDDDDDTDORD
[R N L L L
BN =ON B

I~

QDD ODDODD
L rFr T
[, -

W

111
g

!
Comnd =) O PO O8N

TFPPER NN NNP NN
] L
W U
-
w
]
I~

¥

Page Index—8

AMOS MONITOR CALLS MANUAL

TRM . |
TRMBFQ
TRMDFC
TRMICP
TRMIDC
TRMOCP
TRMSCN
TRMTDC .
TTY . . .
TTYI . .
TTYIN . .

TTYL . ..

TTYOUT .
TYPE ., .
TYPECR .
TYPESP .

UFD . . .
UNPACK
User File
USRBAS .
USREND .
USRFRE .

WAKE . .
WRITE . .
WRTFM . .

Z8YDSK .

Directory

(Changed 1 July 1981)

7-6

74, 7-8

O'-?N
Il

Page Index-9

