
NEUSLETTER FOR AM—100 USER'S GROUP Produced by Lefford F. Lowthn
616 Long Pond Road

1 OCTOBER 1979 NuMber 2.4 Rochester, New York 14612

DISCUSSION OF AMOS (TM) MONITOR, PART 1 -

by Peter A. Jacobson

The Alpha Micro systeM Monitor (SYSTEM.MON[1,4)) is lo3ically divided

into seven Modules. These Modules (in the order in which they fall in MeMory)

are:
SYSMON — base Monitor

TRMSER — terninal service routines

FILSER — file service routines

FILERR — tile error Message routines

EXEC — executive prograM Module

DSKSER — disk driver routines for device DSKn:

INITIA — the systes initialization routine

SYSMON and EXEC are My own naMes for those Modules. The following

discussion of SYSMON reflects the Monitor as of the 4.2 release.

The thirty—one 16 bit words addressed froM 0 to 76 octal are reserved

locations as defined in the UB—16 PrograMMer's Reference Manual that coneS with

every AM—IQO (TM) board. A brief suMMary of these word locations and their
functions follow (the reader is advised to refer to the Manual for a full
description of the definitions):

HEX OCTAL FUNCTION

00—10 00—20 R0—R5, SP, PC, and PS are saved Dr fetched for halt or pouer up
(not ihpletiented on the AM—100)

I

The foilowin locations contain the value that is placed in PC when the
described event occurs:

12 22 buss error
14 24 nonvectored interrupt powerfail
16 26 power up/halt option power restore
1C 30 parity error
lÀ 32 reserved op code
IC 34 ille3al op code forMat
1E 36 XCT (execute single instruction) error -

20 40 XCT trap
22 42 . SVCA table (see note 1 below)
24 44 SVCB

26 46 SVCC

28 50 vectored interrupt table (see note 2 below)
2A 52 nonvectored interrupt
2C 54 EPT (breakpoint) trap
2E 56 I/O priority Mask

30—38 60—70 floating point operation stora•e
3h—3C 72—74 not used

3E 76 floating point error PC

Note I: content of octal 42 plus twice the value of the Eir9unent is placed in
PC. The content of the word thus addressed by PC is added to PC to get the
final destination address.

Note 2: content of octal 50 plus the device code is placed in PC. The content
of the word addressed by PC is added to PC to get the final destination address.

Once the Monitor is loaded, either by the disk controller board's PROM
routine, tIONTST.PRS, or a bootstrap loader (eg HUKLOO, UMBLOD, etc.), a "CLR PC"
is executed which sets the progran counter to neory location 0. Initially that
location contains the instruction "JMP #31572°, which in the 4.2 release of the
Monitor, is the address of the initialization routine, INITIA, which will be
discussed later.

In that there are no SVCC's currently iMplefiented on the systeM,
location 46 octal (the SVCC PC) contains zero. Therefore, if an SVCC ever gets

called, the program counter will be set to location 0. After the first clock
interrupt, location 0 no longer contains the JMP instruction. Part of the job
scheduler's task is to update the arrow display for the DYSTAT program. This is
done by moving octal 15 to the memory location contained in the JOBDIS word ot
each job's JCB. It' DYSTAT is not running on the system, the JOBDYS address is 0
and the original JMF instruction gets modified into an LEA R4,eRS. When an SVCC

is executed the Afl—100 starts executing garbage and the system crashes.

The next section of the Monitor, starting at octal 100 is the system
communication area as described in appendix B of the "AMOS MONITOR CALLS MANUAL".

In addition to that description, 'the following information is known about
selected words in that area:

SYSTEM — if bit B is set, the system is running from a cartridge disk.

DEVTBL - points to a contiguous area of menory. The table is built by JOBS

during system initialization. Each entry has four words;
Word 0 — device status (odd byte) and drive number (even byte)

status byte:
bit 0 is always set so that word 0 is never :ero
bit 1 set ==> sharable
bit 2 set) non—sharable device is assigned (set by ASSIGN)
bit 3 set ==> same as bit 2, but it is not known how it is set
bit 4 set ==> mounted

Word 1 — device name (packed RAD5O)
Word 2 — JCB address if device is assigned. If address is odd, device

is assigned to "COMPUTER B"
Word 3 — device bitmap address (if 0, device is not file structured)

address inserted here by BITMAP during system initiEilizE,tiofl
Last word of the table is zero

CLKQUE, SCUOUE, and RUNQLJE are discussed later with the job scheduler.

BRVTRK — the table initially contains —l's.

Following the system communication area is the vectored interrupt (I/O)
table and an Illegal interrupt trap routine. There are eight entries in the
table, which initially are offsets to the trap routine.

The internal stack is 100 octal words in size and is used as i work
stack by the job scheduler.

The SVGA and SVGB offset tables are the next area in the nonitor. The

execution of an SVGA is described in the WOl 6 Manual. There are no undocwented
SVGA's, however, there appears to be an error in those copies of' SYS.MAC that I
have seen. The BNKSWP call is defined as an SVCA 46, but its table entry in the
Monitor Makes it an SVCA 45.

SVCB's are processed with a routine which follows their offset table.
This routine decodes the PSI following the SVCB opcode and places the address
of the first ar9uMent in R4 and the address of the second argunent in £3. The
function code is placed in RO and the PC address is adjusted up to three words
past the SVCB. The offset table is entered with a TCALL R5, which contains
twice the value of the SVCB arunent. If the SVCB uses an extra argunent, as
SVCB 0, function code octal 14 (BSKALC through DSKCTG) does, It is the
responsibility of the final destination routine to adjust PC past this word.
There are no undocunented SVCB's. -

The Monitor error trap routines follow the SVCB processing Module. Tb.
first of these is the ubiquitous "BUSS ERROR — PC nnnn". The error control
intercept words of the JCB are first tested for user error recovery. If these
words are null (they are always reset to null by EXIT — SVGA 11), a systen errci'
Messa9e is '3enerated. A "BUSS ERROR'1 is reported for buss, breakpoint, and
floating point errors. There are no SVCA 0 or SVGA 1 calls defined, and they
are trapped out, however, they will be erroneously reported as "T?SVCA I CALLED"

or "??SVCA 2 CALLED".

The queue systett routines and the initial twenty queue blocks for the
next section of the Monitor. The queue call; are fully described in chapter
five of the "AflOS NQNITOR CALLS MANUAL". No test is Made by any queue call to
deterMine if there are any queue blocks available. If a particular systeti
installation Makes heavy use of the queue systeM, it is reconaended that QFREE
be tested before a queue call is executed.

The job scheduler follows the queue systeM. It is entered whenever a
nonvectored interrupt (Ii) is generated. This interrupt is the line clock. The
job scheduler first executes a SAVE (PS and PC were pushed on the stack when the
interrupt occured), switches over to the internal stack, and then increMents

TINE. CLKQUE entries are processed every clock tick by first pickin up theaddress of CLKQUE which links to the first queue entry to be processeti and thefirst word of the queue entry links to the next, etc. The second word of thequeue entry contains the address of the routine to be executed and the reainin9six words can be used for the routine's data (after the routine is called, R3will contain the address of the third ward of the queue entry). The routineMust exit with an RTN. If the "V't bit (overflow bit in the status information)is set (via an LCC 2 or other operation which sets this bit) on return froM theroutine, the entry is deleted from the CLKQUE by returning the queue block tothe QFREE list and relinking the rest of the queue. The next entry is processedby picking up its link from the previous entry. Examples of CLKQUE entries arethe SLEEP call (see below), FILOTIM, and DYSTAT (which is never descheduled).
CLKQUE entries are added with a GINS call and placing the address of the routinein the second word of the queue black.

When the end at the CLKQUE is reached, the initial entry will beprocessed. The last entry is two words long; the first contains the link toSCNQUE and the second contains the address of an RIM instruction (allouinqsimulation of an actual routine).

SCNQUE entries are processed by the same routine that handles CUCQUEentries and the format is identical. The job scheduler does not make adistinction between them at this point. When the end of the SCNDUE is reached,its link points to the RUNQUE.

The RUNQUE is five words in length; its initial entries are as follows:

RUNQLJE: WORD RUNQUE+6 ; link to current job's run address
WORD 1004 ; addres of a RTN instruction
WORD RUNDUE

; link to next job's run address
WORD 0

; last link
WORD 2476

; end of the job scheduler'

The RTN instruction (RIJNDUE+2) will always be executed when the RUNQUEIs entered (this provides for an initial simulation of a CLKQUE or SCNQUE entry).If any jobs are scheduled (see .JRUN for scheduling information) the first RUNQUEword will contain the address of the fourth word of the currently scheduledjob'sJOBRMQ. This address is the run address for the job when it gets
scheduled and will be either the entry point of the job conteKt switching

routine or the job priority titier routine. If the address is the first one, the
job's SP is restored fron JOBRNQ+14, the job's priority is copied into the tiner
ward and increttented (to insure the job doesn't get 65535 ticks of CPU tine),
JOBCUR is updated, the address of the priority titter routine is placed ia the
fourth word of JOBRNQ, the DYSTAT arrow is sent, and tienory bank switching (if
active) is carried out. An RRTT then sends the job off to continue whatever it
was doing before being interrupted.

When the priority titter routine is entered (either via an interrupt or
JUAIT — see below), the tine counter word(JOBRNO+IO) is decrettented and, :11 non-
zero, the job is allowed to continue. If the job has used all its allotted tiMe
and there are other jobs in the RUNQUE, a new job is scheduled (if no other jobs
are scheduled, the job is allowed to continue). Before scheduling the next job,.
the current job's SR is saved, the context switching routine address is placed
in the job's run address word, and the DYSTAT arrow is cleared. The link to the
next job is loaded fran RUNQUEs4. This is sonewhat oversinplifiedag the RUNQUE
linkage appears to be circular, but that is the general idea.

The initial link defines the end of the RUNQUE. If all scheduled jobs
are cottleted (and descheduled) within the clock tick (or no jobs were scheduled)
the last link is reached. This link is to a section of the job shceduler that
insures interrupts are enabled (so another clock interrupt will occur) and
executes an SOB 400 tittes (presunably waiting for an interrupt). If'a clock
interrupt does not occur after the SOB arguttent reaches 0, the processor is.
locked and the SCNQUE entries are processed again.

After the job scheduler is the BNKSWP routine which will swap ftenory
banks for the job in control of the CPU. The job scheduler does not use this
call, but rather, does it's own swapping. BNKSUP will not update the JOBBNK
word in the JCB and if the bank argunent passed in RI does not exist, the job
will either be stuck here forever or return the wrong or non—existant ne$ory
bank.

Although IJWAIT occupies the next block of neriory, discussion of this
call is postponed until after JRUN so that the scheduling of a job can be donefirst.

Th JRUN call first locks the processor and then picks up the fitig
!rsusent following the call (when the routine returns, the PC is adjusted past

this ar9I.uient). If none of the flag arunent bits are set in the current JOBSTS
ward, the routine returns. If any bits are set, they are cleared from the
JOESTS word (if the fla9 ar9unent is zero, it is a special case, and the hit
test is bypassed). The JOBRNO words are defined below to aid in the following
discussion on job schedulin9.

JOBRUQ (seven word block):

WORD 0 — unknon / always 0
tL WORD 1 — link to last scheduled job

•

WORD 2 —

WORD 3 —

link to next scheduled
job s run address

job

i'° WORD 4 — priority counter
--1 WORD 5— job priority
49- WORD 6 - current SP

The link to the next scheduled job (JORNR+4) is tested and, if it is
non—zero, the routine returns as the job is already scheduled. If the link is
zero, it is loaded with the link from the job currently in control of the CPU to
the next scheduled job. The link to the last scheduled job (JOBRNO+2) is loaded
with the link to the job currently in control. Thus, the JOB referenced by RD
when a JRUIN is executed is inserted between the job which executed the JRUN and
the next scheduled job. Because the interrupts were disabled by the call to
JRUN, the job will be the next one scheduled. Obviously, a JRLJN with RO
referencin9 its own job will accomplish nothin' as the job must have been
scheduled to execute the JRUN.

In the JWAIT call the fla9 ar'unent is picked up, its bits are set in
the JOBSTS word, and PC is adjusted past the ar9ument. The JWAIT functions in
an opposite Manner to JRUN. JWAIT links the job scheduled before the one
referenced by RO to the job scheduled after it and clears the forward pointing
link in JOBRNQ+4(R0). If the link was already cleared, JUAIT is exited as the
jab is already in a wait state. The job's 5? is saved in JOBRNQ+14, the
internal stack address is loaded, the RUNUUE is indexed, the DYSTAT arrow is
cleared, and the next job is scheduled. JWAIT may be called with RD referencin
its own job the caller should obviously provide a Means for the job to be
rescheduled.

The SCAN call follows JRIJU and executes entries in the SCNQUE until the

'7

-
-

link to the RUNQUE is reached.

The SLEEP call inserts a queue block into CLRQUE by loading R3 with the
address of the CLKQUE and callinq QINS. Part of the SLEEP code is a routine
which decreMents the tick arguiient of the SLEEP call until it is 0; one
decreMent per clock tick. The address of this code is placed in the second word
of the queue block (the first word in the block is the link to the next CLKOUEentry). The tick arguMent is placed in the third word of the queue block
(referenced by R3 after the call to the routine) and the job's address is placedin the fourth word. The job itself is placed in a wait state with ",JWAIT J.SLP.
When the tick argunent reaches :ero, the job's address is picked up froM the
queue block and a "JRUN J.SLP" is executed, clearing the J.SLP flag fran thejob's JOESTS word and rescheduljn9 the job.

For those progrannerg interested in Making use of the CLRUUE or theSCNOUE the followin•3 renarks and exanpie should prove helpful:

As described above, CLKQUE and SCNQUE entries are identical in tornatand in the nethod by which they are processed. The Major difference being thatSCIIQUE entries are processed not only at line clock interrupts, but also whenthe processor is idle and when the SCAN call is executed. The distinction canbe iMportant if the routine is to be used for controlling or nonitoring a realtiMe or external event. For the purposes of the following exaMple, an entryis inserted into the CLKQUE, but the Method is the saeie for the SCNOIJE.

EXHPLE: LOCK
; no interrupts

NOV 2IICLKQUE,R3 ; load address of chain
QINS

; insert queue clock at R3
LEA R1,CODE

; address of routine to be run
MOV R1,(R3+ ; set address of routine ii queue block
NOV DATA,(R3)+ ; reMaining six words can be used or data
UNLOCK

; routine Is now queued

balance of user progratt

EXIT

COOE:
; code which is executed when CLKIIUE entry is

called. R will index the second word of the

ti

• queue block for use as data area. R4 must

• ; not be disturbed! Calls which index a job
• ; may not necessarily index the caller's.

RIM ; the routine must return

Note: The block of code that is inserted into either SCNQUE or CLKDUE

may not reside in bank switched memory, it Must be in memory common to all users
as a job does not run this code, the Monitor runs it. In addition, the queue
entry Must be deleted from SCNQUE or CLKQUE before the program terminates which
inserted it if the code is a part of that pro9ram. If the code is another
memory Module which won't move after the program terminates, then the queue
entry may remain. Otherwise, garbage will probably be executed the next time

the entry is processed resulting in a system crash.

To allow the inserted code to remove itself from CLKQUE (or SCNOUE) when

some condition is met, the following instructions (or appropriate alternatives)
are added to the routine:

CODE: • user routine

191 VALUE ; condition met yet?
BNE RETURN ; no

LCC 2 ; yes, set "V" bit to delete entry
RETURN: RIM

if it is desired that the routine only be executed at fixed intervals a

SLEEP call cannot be used as the SLEEP call only deschedules jobs, not CLKOLJE

(or SCNOUE) entries. A routine such as the one described by Lefford Lowden

(Method One) in issue Number 2.3 of this Newsletter should be used. The CPU

loading is not severe as the overhead of job context switching is not incurred.

If the job which inserted the queue entry executed a "JUAIT FLAGS",
suspending itself until some event transpired, the queue entry can revive it
by executing a "JRUN FLAGS" with RO indexing the job's .1GB before the final
return.

Good luckl

The three memory calls (BETMEM, DELMEM, and GHGMEM) are all part of the

sane nodule and include extensive error testing. The GETMEIS call will ret;rn
fl nodule cleared to nulls.

The nost involved nodule in this section of the nonitor is the FETCH/
SRCH nodule. It is cosposed of over 150 instructions (coMpared to the barely 70
of the job scheduler). It first deternines what control flags have been set and
then units its search on that basis. Unless the F.ABS flag was set a search
of either user nenory (F.USR) or systen senory and user nenory is Made Ofl a
Module by Module basis.

If a disk fetch was requested, FETCH clears all flags and error codes
froM the user BOB, except flag bits 4 (transfer initiated) and 5 (read or
write). The 0DB is then pre—INITed (915 #40000,0DB) arid an INIT DBB is called.
This is done to get the address of the disk driver in ODB+12 without al1ocatin•
a buffer and also, FILSER will supply the user's default device if it was not
specified in the specification. The FETCH call uses this address to deterftine
the record size of the device (always the first word of a disk driver). It
sets this record size in 008+4 and then checks to Make sure the caller has
enough ncaory to acconodate a disk record. If not, the call will be aborted.
If no PPN was supplied in the 008, the user's PPN is picked up before a search
of the disk MFB is nade to find the address of the UFO. If the UFO was found,
its records are read until the specified file and its link are located. If the
file is found, its size is calculated and if the user has enough free MeMory, a
nenory nodule is built and the file is read in. If the user included the F.FIL
control flag, thefile's nane will be copied fron the 0118 to the housekeeping
words of the nenory Module and the Module "FIL" flag will be set.

The ICED call follows the FETCH/SRCH Module. If the job has no terRinal
attached, a "JWAIT J.TIW' is executed, descheduling the job until a terMinal is
attached. If the terninal is in inage node, a TIN is called and the input
character is placed directly in RI. If the terninal is in nornal node, the
job's connand file size word (JOBCMZ) is tested for cosinand file processing. It
the word is zero (not processing a connand file) TIN is called, adding characters
to the input buffer, until either a line-feed is reached or the buffer is full.

The MED routine also handles connand file processing. If the JOBCMZ
word is non—zero, RED will set its input fron the connand file buffer, echoing
the data if the Trace flag is set and placin9 it into the input buffer, unt.il a
line—feed or aspecial connand file synbol (delinited by ";") is reached. If

the coMMand is "C' the data is only echoed until a ">" is reached.

The TTY call tests the JODCMZ word to deterMine if a coMland file isbeing processed. If the JOBCMZ word is zero, no coMMand file is loaded and TTYcalls TOUT. If the JOBCMZ word is non—zero, bit 4 of JOBCNS is tested to
deterMine if the Trace flag is set; if not, TTY returns. If Trace is set, bit 2of JOBCMS (Revive) is tested and, if set, TOUT is called else IT? returns.

The TTYI call executes a TTR until a null character is reached. TTYLexecutes a TI?. In the TIYL call, a carriage return (octal 15) gets anautonatic line-feed (octal 12) appended.

The TAB call executes a ITYI with octal 11 and 0 as iiediate datE1 andCRLF does the sajie, but with octal 15 and 0 as iMMediate data.

The terMinal service routines follow the preceeding calls and theywill be discussed in the next article.

WARNING ON USE OF SLEEP MACRO

Related to the discussion above, one should not specify in an asseMbler
routine a SLEEP period greater than 32767 clock ticks (77777 octal or 7FFF hex).
In a systeM with a 60 Hz power line, this is equivalent to just under 9.1 inor 546 seconds. In the processing of the SLEEP call (see above), the arguentis placed in a queue entry and decreMented each clock tick until it reacheszero. With arguMents larger than 32767, the arguMent is technically negative as
viewed by the W016. Thus, decreMenting it will generate an overflow which isreflected in the setting of the status bits. On exit froM the decrenent routine
the "U" bit has not been cleared due to the overflow, thus causing the related
CLKOUE entry to be cleared. Thus, it will not be run next tiMe. However, that
code tests the decreMented value for zero which would ultittately issue a JRUN
instruction to restart the job! Er, the job will hang in linbo forever.
Presusiably at soe later release of the systeM this Minor error will be fixed.

TYPO IN SLEEP AND DING IN JUNE NEWSLETTER, NUMBER 1 .C

GTDEC in the listings was Mistakenly spelled as GEIDEC, sorry.

DISCUSSION Of AMOS (TM) MONITOR, PAIl 2

by Peter A. Jacobson

The terninal service routines, TIMBER, follow the first section of the
tonitor which was discussed in the last article. The source for these routines
Is available trot Alpha Micro in the file, T*NSE*.MAC' on the Driver. Source
Diskette tSPfl—00003—OO). Becutentation on the tajor operational aspects of
TIMBER is discussed in the dbtunnt, 'lemma! Service Systes' (DU*-OO100—33),
which is included with every Aft—lOG (TM) board. The supervisor calls which
access TIMBER ire well docunnted in the AltOS MONITOR CALLS NAItIJAL and the
rnder is advised to refer to that ilanual for further inforation. The
following discussion will cover only the najer points of TINSEl, those ttest
which are undocusented, and cone progranning techniQues.

TIMBER provides input and output linkage between the Jobs allocated to
the systes and their tersinals. This linkage is naintamned through the JDBTRM
wordin each Job's JC?. The .JODTRN word points to the ternmnal line table
nteociated with the actual teninal. The terninal line table is part at a
linked list which sakes up the temninal definition chain (TRNDPC). In addition,
each temsinal line table entry is linked back to the JCD of the Job to which the
tersinal is attached. This forward and backward linkage is an mnportant
nafeguard feature inuring that when a tertinal is attached to a Job (through
ATTACH), any Job previously attached to that temsmnal is detached fran it before
the attaching is cospleted.

The JOBTIN link in the JCB does not actually point to the baseentry in
the temninal line table, but rather to the terninal status word (word 3 starting
trot zero). The first three words consist oft 1) lmakte the next tersinal line
table entry (0 tar last entry), 2) first word of the tersinal nate (packed PADSO)
and 3) second word of terninal nine (also RAD5O).

Before getting into terninal TIC, sone definitions and explanations
should prove helpful. The following tonponents are necessary for terMinal lID
in an AN—toot

TIMER — The section of the sonitor which passes tertiul input and output
to and fron the Job attached to it.

JOBTRN — The line table at the terninal to which the Job i attached. It
contains links to the tersinal driver, Interface driver, the Job

attached to it, and the next terninal definition chain entry. In
addition, it contains the I/O butter addresses and the various
paraneters associated with the butters (see 01.2, tEll.

DRIVER — Two types at drivers are necesnryt
I) A hardware interface driver (DY), responsible for attutilly

receiving and sending data to and tron the terninal.
2) A sottvare terninal driver (ThY), which perforM tuitoM handling

• at data it necessary.

The ThY has the tollowing as an exasple at its first 5 words:

• UO*D JATA ; tereinal attributest
; bit 6 it set says tertiinal has null output

bit 7 it set says tersinal baa has local echo

eft INPUT ; input routine
PP OUTPUT ; output routine
PR ECHO ; echo routine
1* SPECAL ; special processing routine (cursor, ete)

•

It etiston handling is not required for a routine, the branch instruction
in replaced with a return (WIN). I

•

••• For .ost tersinal drivers, the attribute word is nra. The PSEUDO

•
ttrsinal driver has bit 6 set and the NUll. terninl driver has bits 6 and 7 set.

The charact*r input routine can be used to convert the input at
non—ASCII devices to ASCII or to throw away characters. The charcter it passed

• - ii RI while R5 indexes the terninal line table.

The character output routine can be used to convert trori ASCII to
whatever code the tersinal accepts, add nulls to ouput (see Slt7OO.MAC, or
pertorn a software torn—teed an hard copy terninals that don't support tors4eed
(see exasple below).Vs2

ml echo routine is used tar special processing at rubouts (on hard copy
terninals) and control—U.

The special processing routine is generally used on CRT's to provide
conforsity w*th Alpha Mien's defined standard fund tone for X—Y Cursor twVtMflt,
clear to the end of line, he.., cleat Cli, etc. However, it could be used with
any terninal to provide special fntures.

For hard copy teriiinals width nay have optional tor.—teed capabilities,
or which are nissing thesi entirely, or which have the torn—teed response fixed
mt one page size only, the followifig output routine can be inserted tnt; the
appropriate driver routine to generate sot tware torn—tufts

PH a 46 location at pagesize info
Ut 50 ; line taunter —— both nddr.ues Must be changed

; if Alpha Micro starts to use then

OUTPUTs 191 PSZ(R5) ; see it a page size defined
DONE ; 'no pig. size, ergo return

AND It??,R1 ; strip character to ASCII
tsp *1,114 ; fern—teed character?
DRE IF ; flO

LEA R3,22(R5) ; index terninal output queue
01119 ; get I insert block into output queue (2
NOV LNC(R5,2(13) ; set nunber of lines left on page (3
NOV 012,413) ; set literal character to * line—teed (4
Cit RI ; throw sway fern—feed character
PP DONE ; return

Its CNP R1,PI2 line—teed ehanctert
DONE ; no

DEC LNC(R5) decrenent line counter - at zero yet?
DONE ; no

NOV P9!(R5),UIC(R5) ; reset the lint counter to top at tors
DOMEs itt tO ; set N bit for position processing

PIN

There have bean two assueptions itade in the above codes 1) word at
locatIon 46 in the terninal tine table contains the nunber of lines per prnge fir
software control of torn teed;. If this yard is zero, it inplies that the
hardware on the tenThs! wilt interpret ton—feeds. 2) The word at locatiot 50

counts the renaming lines on the page. Currently these two words are UnUsedin the teretnal line table.

Tereinal output is processed both by an actual output butter mad by
queue block chains. Lines 1 ttiru 4 in the above code insert a queue block to
handle the software torn—feed, tine t loads the address of the output queueinto R3. DINS obtains a queue block fron the nonitor, links that queue block at
the front of the queue addressed by R3, and return! with ff3 addressing the firstdata word in the block obtained. Pith the 4.1 release of AMOS (TN) each queue
block consists of B words —— one link word and 7 data words (nusbered in this
context I thru 7). The first data word contains a connand code which deternines
how the queue entry is to be handled. A suseary of then connands tellotas

DATA COMMANDfla
0 data block (butter or literal)
2 Subroutine call
4 output inage data
6 cancel output wait state

10 output suspended

The queue block entries are processed baton output butters. Since the
PINS call returns the block with the data word; zeroed, the coenand lathe
exanple ii 0 — data block. The processing at this cbnnand takes two tornst
1) buttered data, and 2) lIteral characters. The first fore allows the titer to
queue up a buffer of data for insediate output and the secen4 fore allows the
tiger to specify a particular character to be output. In both cases the second
data word in the queue block contains the character count. The third thtm wordis either the literal character or the address of the butter. If the third wordis greater than octal 377, it is aniseed to be an address,

Note that when the torn—teed is replaced by the queue block entry for
the appropriate nueber of line—feeds, the line count is not restored. One isteepted to think that this is an error. It isn't, as the line—feeds generated
by the queue block entry also go through this routine and when all of then have
gone through, this routine resets the lint count by copying the page size inc

• the line counter and a new page begins.

Line S sets the return code free the tereinal output routine. The

possible codes are:

N bit set (ICC 10) — char is output and positioning is adjusted
Z bit set (ICC 4) — char is. bypassed (assused the routine performed output)
H and! bitt ott — char is output without positioning

Output positioning is Maintained to handle tabs, rubouts, anâ control-U's.

In addition to now being able to send torn—feeds to the terminal, it the
hard copy device has a key board, typing a control—I will echo a torn—teed.

Briefly (and sonewhat over—sisplitied) terMail input is handled at
tollowst

1) For interrupt driven interface drivers (*11—300 (TN) and *11—310 (TN)):
A key is depressed on the terninal's keyboard, causing the boat'd to
geneflte * vectored interrupt. The location of the interrupt handliag
routine is deternined by fetching PC tros absolute location 28 (hex)
and adding the device code to it. The contents of this intermediate
location is added to PC to torn the final address of the input routine.

for non—interrupt driven interface drivers (flISA! SIC (TN)):
When the driver is initialized (at its first apflrance in a TRJILEF
tonnnd in the SYSTEM.INI tile) an entry is placed in the SCHOIJE. Every
tine th. queue is scanned the device's status will be checked for
characters awaiting input. Uhen a character is ready, the input begins.
(For these drivers only: the scanning routine will also check for
possible output to process).

2) The address of the terminal line table is plated in P5 and TPtI1CP is called.
TRMCP calls the input routine of the terminal driver which will supply any
special processing the character needs.

3) If the character sakes it past the tests for image node input; control—I,
• —0, or —C, double escape, rubout or control—U, printable, etc.; it will be

• echoed via * call to uNiT.

4) It the character is a carriage return, a tree line—teed will he appendS.
When a line—teed is reached, it the terninat has a job attached which is in

1/

terninal input wait state, the job viii be rescheduled to process theinput line.

Again briefly terninal output it handled as tolloiss:

1) TOUT adds characters to the terMinal but put butter, tnitializin terninaloutput via the uNIT tall, and putting the job (it any is attached) intoa terninal output wait state it the butter is full. IBUF works the saneway, but uses the data fran a UtPt designated buffer rather than takingsingle characters fran fit as TOUT does. TCRT calls the tersinal's special -output handling routine, which in turn initiates output by calls to T1Y,ITYX, and TTfl. where a tall to TOUT is nade.

2) The interface driver for the terninal uses a call to TRNOCP to get the
next character tro the output butter.

In order for keyboard data to be processed by an asseebly languagepregran, the progras should execute a KU call which will deliver one line atdata, indexed by R2 and terninated by a line—feed. It the terninal is in inageMode, the character is delivered directly in Ri. KU nakes repeated calls to-.TlN, tilling the input line butter until a line—teed ii reached. It the jobhas no terninal attached, execution of the progran will stall in KU bydescheduling the job JItAIT J.TIti) until a terninal is attached and keyboarddata is available or is deliyerpd by a FORCE connand. TRHICP reschedules theJob (JRUN J.Tllfl when a line—teed has been entend.

The TIN call stalls via a 'NAIl J.TIU' until a line—teed is entered madall data has been echoed. The data is then transferred, character by character,tron the input butter to RI where it TIN was called by KU, the character isplated in the input line butter. The TIN call is the only routine in theMonitor which will perton lower to upper case ASCII conversion. Theconversion is nade if bit 4 of the status word is not set (the-EXIT call alwaysclears this bit to insure the entry of sytten tonnands in uper tate). Theconversion does not affect how the character is echoed, it only places the tippercase character in Rh

One disadvantage to utingeithera$ or TIN call to get data fran atersinal is that the Job is deseheduled until a tarring. return or line—teed isreceived. it the terainal is in ing. node, the Job is still stalled ustilat

151

least one character is received. It the programmer is writing real tiMe
programs, this technique will not work to get input data. In the August issue
(Number 2.2), teftord Lowden provided a method ot retrieving a single
character from a terminal only it one had been entered. The subroutine bypassed
the KDD cell until data had actually been placid in the input butter. Below is
a routine which will accomplish the tnt thing bypassing the KU call altogether:

terminal line table equates (from TRNSER)

ICC to ; input character count
Left • 37 ; last character input

START: CALL CHAR ; test for user input
REAL ; branch it no input

''S
process input data

"S
REAL:

; continue real tine processing

SR START

CNAR: 1IOV IIJODCtJR,RO ; load this job's JCB
NOV JODTRHRO,Ro ; load Its terminal lint table
TM , ICC(N0 ; any input?
SEQ DONE ; no
CIR ICC(RO) ; reset input character coust
MDVI LCC(R0,R1 ; load last character input

DONE: RTN

This method does not require setting the terminal into image node
nor does it require a call to NUB. (It does however, require that the leap
in the real tine programming section never stall longer than about 1/20th
second (the expected typing epnd at a good typist). A heavy computing load
due to several other jobs in the CPU night make this assumption invalid. Far
stand alone progran it is probably OK. If 1)

The routine can be modified to pretest buttered data by using a TTYII4
call as follows:

,ii&4jga4 4', j yj

CHAR: NOV PHJOICUP,RO ; land this Jéb's JC?
TTYIN P1,PRO ; get character fran input line buffer
181 RI set 1 bit reflecting presence of character
PHI

The TTY!N call adjusts the input character count, returns the tirst
character in the input butter, and adjusts the butter. If no characters are
anilable,Pt will be cleared.

NOTE TO SERiOUS DANE PLAYERS: You should now have enbuh intorsation
to construct gone really good ganes in a siultt—tnsking environnut (Klthgons
that shoot tint, real tiNe ganes between two terninals and/or jobs, etc.). The
gao can proceed whether or not the player is ready and the CLKOUE tdiscn:ed in'
the previous article) can be utilized to allot a specific mount Of ttee to each
player. Don't keep these prograMs to yourself.

Processing ot control—Cts does not require the use of a KM call. UMn
T*HICP detects a control—C, it clears the butter indices, echos a bell code,
sets the J.CCC bit in the JO?STS word and reschedules the job it, it was waiting
for terninal input (an earlier JWA!T J.TIV). CIRLC calls placed appropriatelyii progru will test the J.CCC bit of the JOISTS word, and, it it is set, will
adjust Pt to the trap routine specified as the argunent of the CTRLC tall.

Mntttly following the IRMER routines are the initial entries in IRRUC
(terstal intnfsct driver thain) ud T*NTDC (tersinal driver chain). TheliMit tias on entry in it; the PSEUDO Interface driver. Its input and output
reutlin •'e '5vft'n!y beth returns The TRMTDC chain contains two initial
entries; PSEUDO and NULL The PSEUDO terninal driver contain three Pm's as
neither input, output, nor echo require special handling with a PSEUDO terninal.
Th RUt!. terninal dflver contains RIft's for both input and echo, but the output
routine sets the Z bit, inticfling that the terninal driver handled output, with
the result that * NULL teninal discards all output.

.. .

.

H

NEWSLETTER FOR AM—lOG USER'S GROUP Produced by Lefford F. Lowden
616 Long Pond Road

1 DECEMBER 1979 Nurber 2.6 Rochester, New York 14612

DISCUSSION OF AMOS (TM) MONITOR, PART 3

by Peter A. Jacobson

The next section of the nonitor includes the tile service routine;,
FILSER, and the tile error nessage routines, FILERR. As with TRMSER, source for
these routines is available fros Alpha Micro on the Driver Source Diskette (part
nunber SFD—40003—OO). The nacro calls to these routine; are well docw,ented
in the AMOS MONITOR CALLS MANUAL and, again, the reader is advised to refer to
that Manual for inforaatjon on the individual calls. The following discussion
will focus on sone of the operational aspects of calls to FILSER. It is assuned
that the rnderhas knowledge of the structure of a DUB.

Entry into FILSER is Made only through an SVCB 0. As discussed in the
first article (Nunber 2.4), the SVCB decoding nodule will place the function
code in RO, the address of the first argunent in R4 (for SVCB 0 this will always
be the address of a UDB), and the address of the second argunent (if any) in R3.
Upon entry into FILEER, the function code and the address of the error recovery
routine are pushed onto the stack as a return address for possible error
trapping. If a device was not explicitly entered in the DD), the user's default
device code is picked up fran the JCB. The address of the general device driver
routine, DSKSER (discussed in the next article), is placed in R2 and the address
of the systen disk driver (first word of DSKSER) is placed in Ri as a default,
in that nost file calls will be to DSK.

The device driver will be fetched either fron DSKO:Cl,6) or nenory it
the device was not DSK. An error is reported if the driver can not be located.
The driver attribute word (described below) is tested to deteriqine if the device
is file structured; if not, the address of the DSKSER routines is replaced by
the driver's address. If the flag bits in the UDB indicate that INIT was
called, execution procedes to the indicated subroutine. All calls except INtl
require that a buffer be allocated first; thus, if the DDB has not been INITed,
an error occurs and processing depends on the settings of the flag bits In the
BPS (default is that an error nessage is produced and the routine EXIT;). If

the DDB is INITed, a TJNP to the appropriate routine within FIt.SER is e2<ecuted

where a call ay be nade to either DSKSER (for tile structured devices) or to
the actual device driver. NOTE: If DSKBER is being used, it in turn will call
the actual disk driver routines.

Both D8KSR and unique device driver! have a conunication area at their
beginning, where words three through eleven are the addresses of routines. The

basic layout of this area is:

WORD CONTENT

1 physical record size
2 driver attributes (function supported if bit set)

bit Oz read
bit 1: write
bit 2: assign
bit 3: open
bit 4: close
bit 5: input/output
bit 6: renane/delete
bit 7: not used
bit 8: special (bitsap Maintained)
bit 9—14: not used
bit 15: file structured

3 read/write
open

5 close
6 assign

input
8 output
9 delete

10 renaMe

11 special (bitRap routines)

Word I of DSKSER is the address of the systeM disk (rJSK) driver routine. To

clarify: if the device is file structured, the FILBER routines will call bSKSER
which, in turn, will Aake calls to the specific' disk driver; if the devic4 is
not file structured, the FII..SER routines will call the specific device driver.
RI will always contain the address of the actual driver, and R2 will contain

either the address of, DSKSER, or, if not file structured, the address of thedriver.

The tWIT call perforMs two functions, 1) places the address of thedevice driver routine in DDB+12 and 2) allocates a DOB buffer based on the sinof the physical record for the device. The size of the physical record Is putin DDD+4. The GETNEM call, with the NCR pointing at DDft+2, puts the addressof the buffer in DDDs-2. The driver address will always be placed In the DO).However, if a buffer has already been allocated, a new buffer will not beallocated.

The OPEN call ASSIGNs the device (if possible) and sets the open code inflfl+34. The open code is autonatically supplied as the second argunent of theRYC) 0 by the nero coded in 51S.NAC(7,7]. There are four types of open callsavailable, and they will set the following data in DDB+34i

Macro Wane Data
LOOKUP 0

OPENI t
OPENO

. 2

OPENR 4

Note that the fourth code differs fron that defined in the AMOS MONITOR CALLSMANUAL which appears to be in error.

The OPEN call then resets the logical record size in Dt4+4, clears thebuffer index (03)46), and reclear, the ODD buffer (addressed by DDB+2). Thedevice driver attribute word is tested to detersjne if an OPEN routine exists,and if it does, the routine is executed. Note that although the OPEN routine inFILSER clears the ODD buffer to nulls, the device driver's open routine nay usethe buffer and It say not renain null.

The CLOSE routine will return the error Message FILE NOT OPEN' if thefile is not open. If the open code indicates the file is open for sequentialInput or randon processing, the device's CLOSE routine is bypassed. If the D3Bwas open for sequential output, the final record is written and the device'sCLOSE routine is executed. When control is returned to the FILSER CLOSE routine,th! open code is cleared and the device is deassigned (if necessary).

The DELETE, RENAME, and SPECL calls are contained in the saMe routine of
FILSER and call the driver's routine (or the DSKSER routine) if it exists. If
the device is file structured, DSKSER is called and the SPECL calls perforn
Modifications to the device's bitsap.

The ASSIGN and DEASGN calls will lock non—sharable devicis to the
calling Job. If the device is shamble, the calls are ignored. If the device
is already ASSIGNed to another job, the 'DEVICE I•N USE' error nessage is
returned.

The READ and URITE calls clear or set bit 5 of the DO) flag byte, test
the ODD record size word (to deternine if a read or write is possible) and call
the driver's routine or the DSKSER routine. Through this call, physical
transfer; to and fron the device are initiated. The source code in FILSER for
the READ and WRITE calls indicates interrupt driven devices will have READ/URITE
requests queued, but in the 4.2 release of the nonitom, this is not yet
isplesented. The two lines of code which test for interupt driven service and
branch if true should be consented out, as they do not exist in the actual
sonitor.

Alpha Micro has not yet docunented the tODD call in that queued I/O is
not yet supported. Its function will be to dequeue a transfer request froM the
ODD chain after the transfer is cospleted.

The INPUT and OUTPUT calls both insure that the file is open for randon
or sequential input or output. If the device driver does not have input and
output routines, the read and write routines of the driver are called.

After a call to FILSER has been cospleted, the file I/O return (FIORT)
processor in FILSER is executed. Error codes are returned in DDB+1 , but if bit
7 is set, error processing is bypassed (bit 71; set by LOOKUP calls which do
not actually open files). If an error condition exists, a call is nade to
FILEfkR to print the error nessage and execution of the porgran is aborted with
an EXIT call. Roth the printing of error nessages and the abort on error can be
suppressed by setting the appropriate bits in the first word of the ODD as
described in the AMOS MONITOR CALLS MANUAL (page 6—4).

The next section of the nonitor contains the executive program and the
resainder of the supervisor calls which will be discussed in the next article.

NEUSLETTER FOR AN—too USER'S GROUP Produced by Letford F. Lowden
616 Long Pond Road

1 JANUARY t?80 Nunber 2.7 Rochester, New York 14612

DISCUSSION OF AMOS (TM) MONITOR, PART 4

by Peter A. Jacobson

The EXEC nodule thy designation) follows the FILSER routines which were
discussed in the last article. This Module contains the executive proiran and
the resainder of the supervisor calls.

The first routine in EXEC is EXIT. When a Job is allocated to the
systen, the JOBS program sets EXIT as the first progras the job will execute.
EXIT first enable! interrupts (in case the user' program -left the processor
LOCKed) and then determines if the EXIT call was forced by a CTRLC call, It a
Control C is waiting (J.CCC set in JOBSTS), "C is sent to the job's terminal
and the JOBCMZ word is cleared, which aborts any remaining commands in a comMand
tile. All flags except J.ALC are cleared Iron the JOBSTS word and the J.MON
flag is s.et.

The DDRCIft4 is than scanned to determine if the job has any I/O queued.
If it does, the remainder of the job's CPU tine is used to process it. (Oueued
interrupt driven I/O is not supported in the 4.2 release of the monitor).

The error control intercept (JOSERC) and the breakpoint vector address
(JOBBPT) are both cleared and the job's stack pointer is restored to the top of
the job's stack. If the job has memory assigned (the J.NUL bit is not set in
the JOBTYP word) the tIEUTBI is scanned and any devices assigned to the job are
deassigned, and the following memory tests are performed.

If the job has a new memory allocation, the first word of the Job's
memory will be cleared, insuring the memory partition contains no garbage. The

partition and any memory nodules in it are tested for address errors. The
system displays "tHEMORY NAP DESTROYED]" if the partition's base address or a
Module's address is odd, or the partition's base address or a nodule address is
nboye MEMEND. It none of the nodule flag codesi FIt, FGD, or 1.0K are set, the
Module is removed from the partition. This operation gets ridot buffers and

other tenporary nenory Modules that were created with the TWIT or GETMEM calls,
the progran tile unless it was placed ft nenory earlier with a LOAD connand
(which sets the FIt, flag autonatically), and Modules that were set for renoval
with the DEL coitnand (ERASE on Letford's systen).

The nenory calls, BETMEM and CHBMEM will always return an even nodule
size and clear the word following the nodule, but nenory nodule errors can be
caused by a progran which itself Modifies the nodule size word, either by error
or intentionally. The location of ascending Modules is deternined by adding the
Module si2e word (the first housekeeping word) to the address of the current
nodule, generating the address of the next expected nodule. If the content of
this location is zero, the end of nenory nodules is assuMed to have been
i'eached. If the address is odd, caused by an odd byte count, or the address is
beyond the end of user nenory (IIEMEND), the error is reported and the content
of the offending address is cleared.

If a progran leaves gone garbage Modules in tIe partition ('dUE used to)
which cannot be deleted with DEL, a MEMORY 0 connand followed by MEMORY xxxxx
will restore the partition. x,xx takes on the value of the previous size of the
partition. If you don't know this, type MEMORY with no argunent, and the systeM
will tell you what it is.

Nornally, this type of nenory error should not be fatal to the job a"
the systen, but there are two bugs in EXIT which can cause the job or the systen
to crath. The first is that no test is nade to deternine if a nodule, either
real or erroneous, ectends beyond the end of the job's partition. The second is
in the Method by which EXIT clears the erroneous address. The current Module's
address is saved in RI before the next nodule's address is calculated. If the
Module creates an error, the content of the word addressed by RI is cleared,
however, RI is not set until after the first Module is tested. Therefore, if
the tint nodule creates an error, the content of an undeternined word addressed
by RI is cleared.

If the job has tereinal output in progress (the flIP flag is set in the
terninal status word for the terninal ASSIGNed to the job), it will loop in LXIT
until all terninal output has been processed after which the terninal status
flags will be reset (restoring nornal terninal I/O) and control will pass to the
executive progran.

1

The executive progran (hereafter called EXEC) is at AMOS (TN) CoMMand
level, which upon entry issues the Monitor pronpt, and calls KDD where the
job is detcheduled until terninal input is available, or where, as described in
the first of these articles, it a comMand file is being processed, the input
line buffer is tilled from the command tile data area. After a command is
entered, EXEC resets the Job stack pointer to the top of the stack and
determines if the Job has any memory allocated. If the job does not have any
memory, EXEC will allocate to the Job all of the available memory in the Job's
bank. If at least 2000 decimal bytes are not available, the TMLNO MEMORY
AVAILABLE)" message h issued and EXIT is called.

An FSPEC call with a null default extension is performed on the command
line with the Job run block (JOBRBK — partial 1103 in the JEB) indexed to receive
the file specification. The file name is copied into the JOBNAN word;, the
J.NOM bit cleared, the J.1OD bit set in the JOBSTS word, and a search for the
file is made. The AMOS USER'S GUIDE is somewhat ambiguous on whnt format is
used for system commands (page 7—3), but full file specifications are allowed.
The file search order is documented, althoufl not accurately, in AppendiM B of
that manual, and is briefly summarized below. If the Device, Drive, Extension,
or PPM are supplied on the command line, the appropriate search is bypassed.

DEVICE EXTENSION PPM

system memory PRO 14/A

user memory PRO H/A
DSKOz. PRO 1,4
1151(0* CMI) 2,2
user PRO tiser
user CMD user
user PRO user library

It the search failed up to this point, I)sKO:MDO.PROL1,41 is loaded which
attempts to locate the tile in the following order:

DEVICE EXTENSION PPM

user DO user
user DO user library
DSKOi DO 2,2

It the file is found, it is loaded into the job's Renor, providing
enough nemory is available. If the tile is not found, the coMmand is echoed to
the job's terminal, bracketed with question marks. The essage "tlnsufticient
memory for progra,, loa& is returned if the job did not have enough semory,

After the tile is loaded, EXEC tests its first word to deterfline if the
program can be run not logged in. It the first word of the tile is non—zero,
the JOBUSR word is tested, and it it is zero (the job is not logged in), the
"(LOGIN PLEASE) proMpt is issued and 'the executive program EXITs.

The tile'! extension is tested, and it it is "PRO0, program execution
begins with NOV R3,PC. Upon entry into the program the registers contain

tO — base address of itS
RI — cleared
R2 — remainder of input line butter
R3 — base address of program
P4 — cleared
R5 — cleared

A file with an extension other than "PRO" is assirned to be a coq,mnd
file. EXEC Roves the tile in reverse order to the top of the job's partition,
sets the CISIL bit in the JDBCMS word, and branches to the entry point of EXEC.
If the file was loaded under control of MDC, the specified parameters are
inserted into the command file and a block move places the command file at the
top of the job's partition after which MOO EXITs.

The numeric conversion calls, DCVI and CCVI (or HCVT — hex convert),
follow EXEC. They perform binary to ASCII conversions based on table entries,
which limit the magnitude of the output.

Following the conversion routines is FOPEC which is well documQnted in
the "ANUS MONITOR CALLS MANUAL" (pp 6—8 through 6—?). Lower to upper case
ASCII conversions are not Made in ESPEC, therefore whatever P2 points to
(terminal input line buffer or program buffer) Rust be in upper case.

FF111 follows FSPEC and performs in essentially the opposite manner to
FSPEC. Its output is directed only to the job's terminal (via a TTYL) and PPP4

output H always in octal flgardless of the setting of the J.HEX flag in the
JDBSTS word.

The JUBIDX, JODGET, and JOBSET require More words to describe than th9
mount of code they occupy in the Monitor. They are all SYCS calls and require
a considerable asount of tiMe to decode in the SYC? processing nodule. It speed
of execution for a program is a consideration, the following sacro definition
will siaic these calls saving over sixty instructions to be executed:

J.IDX —1 ; JOBTOX control flag
J.GET • 0 ; JOBOET control flag
J.SET • I ; JOBSET control. flag

DEFINE JCB TAB,ITEN,CIRL
PUSH ITEN ; load JOB index
ADO #JOBCUR,tSP ; build job table entry
IF LT,.CTRL, POP TAG ; JOBITIX
IF EQ,CTRL, NOV P(SP)+,TAG ; JOBOET

IF flT,CTRL, NOV TAD,t(SP). ; JOBBE?

ENDM

Instead of JOPIDX RO,JOBTRN use JCB RO,JOBTPtM,J.!DX
and JOBOET RO,JOBTRN use JOB RO,JOBTRA,J.ET
and JOBSET RO,JOBTRN use JCB RO,JODTRM,PJ.SET

The object code resulting fran this nacro will use between 62 and 77 Machine
cycles, while just the SUOB instruction and the ensuing RSUC instructions alone
cousune 135 cycles (which doesn't include any of the decoding tining).

The three calls U9DAS, USREND, and tJSRFRE follow next in the nonitor.
They function as described in the TMAMOS IIONITOR CALLS MANUAL1.

The CULt call was briefly described earlier article on TRSER. it
tests the J.CCC bit in the JUOSTS word and, if set, it neans that a Control C
was entered at the Job's tersinal (or by the KILL progran) and, consequently,
the argunent address of the CTRLC is added to the saved PC.

The PRNAM call sends its output to the Job's terninal via a IT? call as
does PRPPN. Like PFILE, PRPPN displays the PPM in octal regardless of the

setting of J.MEX flag in the JOBSTS word.

The tersinal input line processing calls BYP, ALF, NON, YRM and LII

occupy the next section of the nonitor and are unrenarkable except to note that
ALT tests for upper case alphabetic characters only.

The FILNAM call functions exactly as described in the nanual.

The OTOCT call follows FIt.MAN and is really two calIs TOC1 and GIHEX.

The OTIIEX code is used if the J.HEX bit is set in the JO61S word. If the
leading character is a digit, it does not ned to be prededed by Zen. If the
input is greater than 177777? octal (fTP hex), causing an nor to be reported
(N flag set), the result contained in RI will be neaningless.

GIDEC, unlike OTOCT will stop processing the input line if the aext
character will cause the result to be greater than 65535.

The 8TPPN call will always process the input PPM on an octal basis
regardless of the getting of the J.HEX bit.

The final two calls in this section of the nonitor are the PACK and
UNPACK calls for which no description will be attenpted except to note that
UNPACK uses a snail (tue word) table for unpacking.

the concluding article will discuss DSKSER and lt(ITIA.

USER COMMENTS ON AMOS 4.2 (TM), SUOESTIONS FOR IMPROVEMENT

by Logical Software, Inc.

MONITOR:

Absolute, innediate check for ('C> (control—C) character input fron the
terminal. Would always cause innediate exit fran the progflft In control except
where specifically defeated within the program. Many A—N program; can't be

halted by <'C) entry or KILL, etc. ER, COPY TRNtslowterninalbigfile.

Buss errors: should write—protect the disk, report all busis errors to
the COHSOLE (terisinal connected to JOB1) then to all other terninals, then halt
or go to an error recovery procedure. Possibly should re—boot autonatically.
Most buss errors are sariousenough to require the attention of the systen
progranner, the users should not be left to wonder where everything went.
Usually, nothing will work right anyway, but a user who is unaware that the
systen is down can waste a lot of his tine before he finds that his new file is
now gone forever.

Should incorporate FLTCNY, SCNWLD, and TODCNV.

Ability to save away an existing running progran, lead and execute
another, then continue the first progna without error.

New special character, Control—i, would nean aAre you still alive, AMDS?'
Would respond with a beep for yes, silence for reboot tine. Second <Si> within

about I second would cause systat to be displayed. Third <si> would save away
the existing progran, make processor and nemory available to user. User' can
continue first progran via CONT.PRO.

Auto program loading: BASIC and others allowed to load subroutines (.SBR
and .RUN) as required by the program in control (from library areas), keep in
nenory or delete by internal cosnand. Would greatly staplify proran writing,
and avoid clogging up the BASIC progran and nenory with seldom—used subroutines.
Would effectively give BASIC prograss much sore nesory to work with, or allow
running in smaller chunks of semory.

DESIRED FEATURES IN SYSTEM PROGRAMS

BASIC: A) Structured programming including WHIlE, REPEAT t4TIt, EXIT
ON, and DO—ENDO. B) PRINT USD113 'ILL 'RRRR 'CCCC. C) Multi—line function
definitions (with local variables). B) A full renunber E) Provision for
initializing arrays at cospile tine, within MAP statements. F) CASE statenenti.
0) NAT statements. H) Edit capabilities — line and global. I) INCLUDE (would
work the sane as C—BASIC in CP/M —— reads in a naned source file). J) Allow
RUN to look in library or public file area for subroutines written in BASIC.
K) Allow prognn in control to determine whether to delete SBR files and
subroutines written in BASIC (tros sesory). I.) Allow system functions (date,
tine, 10, etc.) from the terainal attached to Jobi only. ID Include FLOCK as

tEUSLETTER FOR Aft—ICO USER'S GROUP Produced by Lefford F. Lowden
616 Long Pond Road

1 FEBRUARY lfl* Neither 2.8 Rochester, New York 14612

DISCUSSION OF AMOS (TM) MONITOR, CONCLUSION
by Peter A. Jacobson

The next section of the nonitor is DSKSER which is sentioned by Alpha
Micro only briefly in FILSER. DSKSER is the generalized device driver for ill.
structured devices such as floppy disk; and hard disks. It sinplifies the
actual code needed for a disk driver and allan the systen to access several
devices without a great anount of code. Like other device drivers, it has a
cosnunication area at its beginning which was defined in the Decenber issue.
The attribute ward of DSKSER is zero, but all functions are supported, except
ASSIGN. File structured devices cannot be assi9ned to one jab, but for obvious
reasons, two Jobs cannot be given access to the sane file structured device
siitultaneously. The controlling Job cannot lock other Jobs out by disabling
interrupts because other I/O devices night lose data. The solution is to
increase the controlling Job's priority considerably until it is done cith the
disk. In OSKSER, this is acconplishedby setting the Job's priority counter to
177777 octal (about lB ninutes).

Before discussing DSKSER's routines, the structure of a disk driver
connunication area will be described as well as the three support routines ned
by DSKSER.

Disk drivers, like non—tile structured device drivers, have m
connunicaions area at their beginning, which contains tone differences trots
other drivers. the 200DVR.DVR disk driver coasunication area is described beloc

:'..tM anexanplet

Word I physical record size
Word 2 driver attributes
Word 3 driver entry address offset
Word 4 physical sector size
Word S physical sectors per lefleal record
Word 6 ' '' saxinun record awiber

Vords 7e16 not used
Vord I? oxinun record nunber
Verd is directory entries p.r record
Mord 19 bitnap size

The renining fiv, words are specific to the physical diive type.

DSKSER includes three support reoutines for locatin9 devices and files.

The first of these is a routine (DEVTST) to deteraine of the device specified in

the 0DB exists and ii nounted. It the device is not specified in the bD),

DEVTST will pick up the job's default device and drive. It the device is
specified, but the drive is not (DDB+23 contains 377), device 0 is used. The

appropriate error code is set in DDB+I if the device is not found in the BEYTBL

or the device is not sounted.

The second routine (FILTST) is used to locate the UFD entry of the tile
specified in the DDE The calling sequence to FlITS! is sosewbat different thn

a nornl subroutine nil in that control flags are set to Unit the actions.
F!LTST can perforn. The sequence is:

CALL 5,FlLTST ; *1 is used as the liaksr register
Von FLAGS ; control flags

Control flags (when on):

Pit 0 locate tile
Pit I return error it tile already exists
Pit 2 test for prografler nusber ntch
Pit 3 lock directory (DSKDRL)

Various cosbinations of flags can be used. Uhen FILIST returns, R5 is
iacrnent.d past the control flags.

The third routine (nFDTST) reads the HED (record one) of the device to

locate the specified UFD. If the PP$ is not specified in the DDB, JDBUSR is

used to locate the UFD link.

The followin'9 is a discussion of the DSKSER routines. Keep in Mind that

these routines are called by FILSER and are not directly entered with an SVCB 0.

FILSER can call any device driver on the systes, at which DSKSER is oily one.

The tint routine in DSKSER ii the physical !EAD/UflTE routine. This is
the only section of DSKSER which actually sakes calls to the device driver.
A call to DEUTST insures that the device exists and is sounted. The specified
record nusber (flP+tO) is tested to detersine it it is within the range of the
device. If the REA/URITt call is valid, the device is locked to this job by
resetting the job's priority counter as described above. The DDB reCQtd nui*ber
is nultiplied by the nusber of sectors per logical block for the device to get
the physical sector nunber for the device and the transfer is initiated. Upon

return trw, the device driver, the job's priority counter is reset to 1 and, if
no other jobs are currently scheduled, the routine returns, It other jobs are
scheduled, the job is put to sleep formic clock tick (presunbly to give other
jobs Cpu tine).

The OPEN routine handles all tour OPEN callst LOCKUP, OPEWI, UPEND, and
OPENR. The OPEND call insures that the user has access to the PPN and that the
tile does not already exist with a ciii to ?ILTST and then allocates a disk
record for tile data. The physical record nunber is returned in Dfl+1$ and
09+42. The butter index (DD+6) is set to two. The OPtNI and OPENI calls
locate the tile and if it exists, insure that it has the sane type as specified
ii the open code of the U (91+35). If the tile type patches, the nusber of
records in the file is placed in DDB+36, the byte count of the last record is
pot in DIR+42 and 1103+10. The LOOKUP call does not distinguish bitüeen raldoM

H aid sequential files.

The CLOSE call locks the disk directory and then locates the UFTI of the
• PPM specified in DDB+32 with an KFDTST call. If a directory for the PPM is not

• allocated, CLOSE will allocate a record. if a directory for the PPM already
• exists, CLOSE locates the first espty or deleted entry, ir if the record is

full, allocates another directory record. Once an enpty directory entry is
•tound, the file nane and the tile directory paraseters are inserted late the
directory, the bitsap is updated, and the directory is unlocked. If it flus
necessary to allocate a directory record, the unused words in the record are
cleared to nulls to insure thate are no spurious entries.

The INPUT routine follows CLOSE. For files open for sequeatial input,
INPUT executes a READ based on the record nunber in 003+40. The link to the
next record is updated in DDP+tO, and the butter index, 333+6, is set to 2,

9

I? 'I
'3

bypassing the link word. For tiles open for randon processing, INPVT uses the
data in DDB+1O as an offset froM the base of the tile contained in 08042. In
this case, BBP+tb is not updated.

The DSKSEP OUTPUT routine for tiles open tar sequential output can be
called on two levels (DDI+22 contains the call level). * level one tall t Md
with a norMal user progran OUTPUT call which first allocates another disk record
forthe next call, inserts that retard nusber link into the first word of the
flU buffer, writes the current record, and sets the next record nunber in
fl99+IQ. A leverl two tall is nade through a FILSER CLOSE call, which in turn
calls the FILSER OUTPUT routine to writ! the last record. This call does not
allocate another record, instead it deternines the aMount data in the 0DB butter
and fills out to the record size with nulls before writing the record.

The OUTPUT routine for tiles open for randon processing insures that the
user has access to the PPM with a FILTST call and then writes to the record
using the file base offset in DDB.IO added to the file record base in DIB.42 as
the current record.nunber.

The DELETE routine locates the directory, insuring the user's PPN grants
access to the tile, sets the first word of the file nine in the directory entry
to —1, and then deallocates each record the tile had used fran the bitnip.

The RENAME routine also locates the directory, insures the user's PPM
allows access to the directory, detersines that a tile of the sane sane does not
already exist and then enters the new nan, contained in the three words
following the 9DB, into the directory in place of the previous nase.

The three support routines (DEVTST, FILIST, and MFDTST> are physically
located just after the above rentioned routines.

The FILSER SPECI.. routines are SVCB 0 calls with a function code of octal
14. They essentially are bitttap service calls naned OSKDRL, DSKDRU, DSKALC,

DSKDEA, DSKBMR, DSKBMLJ, and DSKCTG. They reside in the Monitor directly after
the above described DSK'SER routines. These calls are fully described in the
AMOS MONITOR CALLS MANUAL in the section entitled "DISK SERVICE MONITOR CALLS'

(pp 6-1? through 6—21) and the reader is advised to refer to that docunent for
detailed infornation.

Directly following these seven calls is a special bitiap service
routine. The function of this routine is to locate the device's bitnap (if
any), rewrite it if necessary, and recoMpute the hash total to insure the
current bitnap is correct. If the bittap is currently locked by soiie other Job,
this routine will stall until the bitsap is tree. If the bitnap hash total is
not correct, the drive is apparently disabled by setting the drive nunber

contained in the bitnap's partial DOS to 177.

Following this routine is the supervisor call I4TIN shich is called by
200DVR.DVR it PE*SCI drives are being used. NTIN copies the HIJTIM arguMent
into HLDTIN+2and inserts clock tick counter routine into the CLKQIW which
uill decrenent the HLDTIM+trgueent until it reaches zero. Upon reacbit9 zero, 't cs'
the routine sends the conand to unload the heads of the disk drive and then '/j
deschedules itself. The routine will not be scheduled again if it is already

tfltlifld in CIKOUE.

The next area of the systen sonitor is a 2000 (decinal) byte area which
is reserved for the systen disk driver. MONGEN.PRG inserts the driver routine
here and updates the KENBAS work in the systen connunication area to reflect the
end of thedriver. Describing the functioning of a di;!'. driver is beyond
scope of this article. However, in passing, it should be noted that disk
drivers saintain data storage areas within their code.

The last section of the nonitor is INITIA, the initialization prograM.

INITIA is not actually part of the Nonitor, it serely defines the initial systeti
paraneters and starts the first Job running the SYSTEK.INI connand file; it is
eventually overwritten as it resides above the base of systesnenory as
contained in NENDAS.

As deséribed in the first article, after one of the various sonitar
loaders (the controller board's PROM routine, OTST, UNGIOD, NUMLOD, etc.) has

•
finished loading the sonitor root, interrupts are disabled and a CIR PC is
executed which effectively causes a JNP to absolute 0. This location initially
contains a IMP instruction to 1NITIA. 10111* branches around a tesporary stack,
sets V to the address of this tenporary stack, and starts a sesory test to tiod
how such sesory the systes has in BANK 0, starting at the end of INITIA and
testing in 1K incresents. Uhen the end of sesory is found, it is set into
MEMO). JOPTIL and JOBCUR both get the address of MEKBAS, JOBESZ is defined
(currently 292 decinal bytes), and the first JCB entry is cleared MEMBAS is

., ,

updated to the end of this first JOBTBL entry.

An BK partition is then set up at the end of nenory which contains a
teMporary terninal line table for a pseudo terhinal with a pseudo interface
driver. This terninal is attached to the ftrst Job and allows it to coaMunicate
until the first terninal is defined. A tenporary device table (DEVTBL) entry is
also allocated in the partition for BSK*: and has no bitsap. The various JCB
entries are then inserted into the first JOBTBL entry including logging the job
into DSKOiCl,4).

"SYSTE$.INI<CR><LF> Is entered in the connand tile buffer at the top of
the partition and the address of EXIT is set on the joYs stack as the saved

PC of the first progran the Job will run. The job is then scheduled for CPU
tine with a JRUN, after which INITIA enables interrupts and loops, waittn3 for
the first clock interrupt to start the job with systeM initialifltioii.

ERROR WITH THE FU$CTION rix 1$ AIPHADASIC (IN)

It has been reported to ne that the function FIX in AiphaPASYC (Itt)
has an error in it. It scent that, for exasple, it one issues the ceiiand
PRINT FIX(—.5), the Job that one Is running crashes. It is not a systes crash
ft that other Jobs in the systes renin running. However, whatever FIX is
doing, the algorithe will not terainate, that job goes into a conpute bound
state. I have checked release 4.1 and found that the sane problen is $here also
so I think that the problea has been present for sone tine and Merely has not
been detected to date (I was unaware of the function in the first place). FIX

operates correctly over the range of real nunbers with the exception of those
argusents between 0 and —1. A rather sisple substitution of operators can be
nade so that the problen can be avoided until the function is corrected. The

substitution is the followln9l

For FIX(X) substitute SGN(X)*INT(ABS(X))

This substitutes three function calls for one and will run a little slower, but
I suspect that FIX is not used all that often and will, thus, sake little
difference. Thanks tfr Jack Hobbs.

