NEUSLETTER FOR AN-100 USER’S GROUP Produced by Lefford F. Lowdes
414 Long Pond Road
1 OCTOBER 1979 Nusber 2.4 Rochester, New Yark 14411

DISCUSSION OF ANMOS (TH) HONITOR, PART 1
by Peter A. Jacobson
The Alpha Micro systes monitor (SYSTEM.MONL1,41) is losically divided -

into seven modules. These modules (in the order in which they fall in aesory) -
are: '

SYSHON - bage nonitor

TRESER - terminal service routines

FILSER - file service routines

FILERR - file error message routines

EXEC - executive program module

DSKSER - disk driver routines for device DSKn:
INITIA - the sysien initializétion routine

SYSKON and EXEC are my own names for these noduleé. The following
discussion of SYSHON reflects the monitor as of the 4.2 release.

The thirty-one 16 bit words addressed fros 0 to 76 octal are reserved
locations as defined in the ¥D-14 Programmer’s Reference Manual that comes with
avery AH-100 (TH) board. A prief summary of these word locations and thedir
functions follow (the reader is advised to refer to the manual for a full
description of the definitions}:

HEX OCTAL FUNCTION

00-10 00-20 RO-RS, §P, PL, and PS5 are saved or fetched for halt or power up
{not inplemented on the AN-100)

The fellowing locations contain the value that is placed in PC when the
described event occurse

i2 22 buss errar

14 24 nonvectored interrupt powerfail

14 26 - power up/halt aption power restore

18 30 parity error

14 32 reserved op code

1€ 34 illegal op code format :

iE J4 ACT (execute single instruction) ervor
20 40 XCT trap

22 42 . GVCA table (see note 1 below)

24 44 SYCB

26 44 5VCC

28 50 vectored interrupt table (see note 2 below)
20 a2 nonvectored interrupt

2L 34 BPT (breakpoint} trap

2t a6 - 170 priarity mask

30-38 40-70 floating point operation storage
Jh-3C 72-74 not used
3JE 76 floating point error PC

Note 1t content of octal 42 plus twice the value of the wrgument is placed in
PL. The content of the word thus addressed by PC is added to PC to get the
final destination address. .

Note 2: content of octal 50 plus the device code is placed in PL. The conient
of the word addressed by PC is added to PC to get the final destination wddress.

Once the monitor is loaded, either by the disk controller board”s PROM
routine, HONTST.PRG, or a bootstrap loader (eg HUKLOD, WNGLOD, etc.), a "CLR PC"
is executed which sats the program counter to semary location 0. Initially that
location contains the instruction "JHP RH31572", which in the 4.2 release of the
manitor, is the address of the initialization rouiine, INITIA, which will be
discussed later.

In that there are no SVCC‘s currently impleaented on the sysiem,
Tocation 46 octal (ihe SVCC PC) contains zero. Therefore, if an SVUIC ever jets

called, the program counter will be set to location 0. After the first clock
interrupt, location 0 no longer contains the JHP instruction. Fart of the job
gcheduler’s task is to update the arrow display for the BYSTAT progran. This is
done by moving octal 15 to the semory location contained in the JOBDYS word of
each job’s JCB. If DYSTAT is not running on the system, the JOBDYS address is 0
and the original JHP instruction gets modified into an LEA R4,BR3. Uhen an SVCC
is executed the AN-100 starts executing garbage and the system crashes.

The next section of the monitor, starting at octal 100 is the gysten
comsunication ares as described in appendix B of the "AHDS MONITOR CALLS MANUAL".
In addition to that description, the following information is known about
selected words in that area:

SYSTEM - if bit 8 is set, the system is running from a cartridge disk.

DEVTBL - points to a contiguous area of merory. The table is built by JOBS
during system initialization. Each entry has four words:
Word 0 - device status (odd byte) and drive number (even byte)
status byte:
bit 0 is always set so that word 0 is never Zero
bit 1 set ==> sharable
bit 2 set ==> non-sharable device is assigned (set by ABSIGN)
bit 3 set ==> same as bit 2, but it is not known how it is set.
bit 4 set ==> mounted
Nord 1 - device name {packed RADSO}
Word 2 - JCB address if device is assigned. If address is edd, device
is assigned to "COHPUTER B"
Nord 3 - device bitmap address (if 0, device is not file structured)
address inserted here by BITHAP during system initializaiion
Last word of the table is zero

CLKQUE, SCNGUE, and RUNQUE =re discussed later with the job scheduler.
DRVTRK - the table initially contains -17s.

Following the system conmunication area is the vectoved interrupt (1/0)
.table and an illegal interrupt trap routine. There are 21ght entries in the
- table, uhlch Inltlally are offsets to the trap routine.

The internal stack is 100 octal words in size and is used 25 & worl
stack by the job scheduler.

The SVCA and SYCB offset tables are the next area in the aonitor, The
axecution of an SVCA is described in the ¥D146 manual. There are no undocuaented
8VYCA‘s, however, there appears to be an error in those copies of SYS.MAC lhat I

-have seen. The BRKSWP call is defined as an SVCA 44, but its table entry in the
moinitor makes it an SVYCA 435.

SVEB‘s are processed with a routine which follows their offset table.
This routine decodes the PSI fellowing the SVEB opcode and places the addvess
ot the first argument in R4 and the address of the second argument in R3. The
function code is placed in RO and the PC address is adjusted up to three vords
past the SVCB. The offset table is entered with a TCALL R, which contains
twice the value of the SVCB argument. If the SVCB uses an extra argument, as
SVCB 0, fuanction code octal 14 (DSKALC through DSKCTG) does, it is the = -
respon51b111ty of the final destination rout1ne to adjust PC past this word. .
There are no undocusented SYCR’s. AR

The nonitor error trap routines follow the SVCB processing module. The
first of these is the ubiquitous "BUSS ERROR - PC nnnn". The error control
_intercept words of the JCB are first tested for user error recovery. If these
words are null {they are aluays reset to null by EXIT - SVCA 11), 2 system errer
nessage is generated. A "BUSS ERROR" is reported for buss, breakpoint, and '
floating point errors. There are no SVCA © or SVCA 1 calls defined, and they

are trapped out, however, they will be erroneously reported as "77SVCA 1 CALLED"
ar "775VCA 2 CALLED".

The queue system routines and the initial tuwenty gqueue blocks fora the
next section of the smonitor. The gueue calls are fully described in chapter
five of the "AKOS MONITOR CALLS MANUAL". No test is made by any queue call to
detersine if there are any queue blocks available. If a particular systenm
installation makes hemvy use of the queue system, it is recomsended ithat QFREE
be tested before a queue call is executed.

The job scheduler follows the queuz system. It is entered whensver a
nonvectored intervupt (I1) is generated. This interrupt is the line clock. The
Job scheduler first executes a SAVE (PS and PC were pushed on the stack when the
interrupt occured), switches over to the internal stack, and then incrementis

g

TIME. CLKAQUE entries are processed every clock tick by first picking up the
address of CLKBUE which links i3 the firsi gueue eniry to be processed and the
first word of the queue entry links to the next, stc. The second word of the
queue entry contains the address of the routipe to be executed and the reaaining
51% words can be used for the routine’s datz (after the routine is called, R3
will contain the address of the third word of the gueue eniry). The routise
must exit with an RTN. If the "V™ bit (overflow bit in the status inforsation)
is set {via an LCC 2 or other operation which sets this bit) on return from the
routine, the entry is deleted from the CLEQUE by returning the queue block to
the OFREE list and relinking the rest of the gueus. The next entry is processed
by picking up its link from the previous entry. Exanples of CLKDUE entries zve
the SLEEF call (see below), HLDTIN, and DYSTAT {which is never descheduled},
CLKQUE entries are added with a QINS call and placing the address of the rautine
in the second word of the queue block.

When the end of the CLKQUE is reached, the initial entry will be
processed. The last entry is two words long; the first contains the liak to
SCNQUE and the second contains the address of an RTN instruction {alloving
simulation of an actual routine), '

SCNOUE entries are processed by the same routine i{hat handles LLHQUE
entries and the format is identical. The Job scheduler does not make a
distinction betwsen ithen at this point. When the end of the SCHQUE is reached,
its link points to the RUNQUE.

The RUMNGUE is five words in lengih; its initial entries are as follows:

RUNQUE: WORD RUNBUE+S link to current job’s run address

y
WORD 1004 y address of 2 RTN instruction
WORD RUNGUE y link to next job’s run address
WORD] y last link
UORD 2476 + end of the job scheduler

The RTN instruction (RUNQUE+2) will always be execuled yhen the RUNQUE
1s entered (this provides for an initisl sinulation of a CLKQUE or SCNOUE by,

It any jobs are scheduled (see JRUN for scheduling information) the first RUNQUE

word will contain the address of the fourth word of the currently scheduled
Jub’s JOBRND. This address is the run address far the job when it gets
scheduled and will be either the entry paint of the job context switching

routine or the job priority tiser routine. If the address is the first one, the
Job’s SP is restored from JOBRNO+14, the Job’s priority is copied into the tiser
word and incremented (to insure the job doesn’t get 45535 ticks of CPU tinel,
JOBLUR is updated, the address of the priority timer voutine is placed in the
fourth word of JOBERNR, the DYSTAT arrow is sent, and memory bank switching (if
active) is carried out. An RRTT then sends the job off to continue whatever it
was doing before being interrupted.

Uhen the priority timer routine is entered {either via an intevrupt or
JUAIT - see below), the time counter word(JOBRNG+10) is decremented and, it non—
zero, the job is allowed to continue. If the job has used all its zllotted time
and there are other jobs in the RUNRUE, a new job is scheduled (if no other jabs
are scheduled, the job is allowed to continue). Before scheduling the next job, .-
the current job’s SP is saved, the context suitching routine address is plated
in the job’s run address word, and the BYSTAT arrow is cleared, The link to the
next job is loaded from RUNRUE+4. This is somewhat oversinplified as the RUNQUE
linkage appears to be circular, but that is the general idea.

The initial link defines the end of the RUNBUE. If 31l scheduled jobs
are conleted (and descheduled) within the clogk tick (or no jobs were scheduled)
the last link is reached. This link is to a section of the Job shceduler that
insures interrupts are enabled {so another clock interrupt will occur’) amd
executes an 50B 400 tises (presumably waiting for an interrupt). IT'a clotk
irterrupt does not occur after the S0B argunent reaches 0, the processor is.
locked and the SCNQUE entries are processed again.

After the job scheduler iz the BNKSUP routine which will SYEP NENOPY
banks for the job in control of the {PU. The Job scheduler does not use this
call, but rather, do2s it‘s oun swapping. BNKSWP will not update the JOBBNK
ward in the JCB and if the bank argument passed in R1 does not exist, the job

will either be stuck here forever or return the wrong or non-existant aemary
bank. : '

Although JUAIT occupies the next block of mesory, discussion of this

c3ll is postponed until after JRUN so that the scheduling of & job can be done
first. '

The JRUN call first locks the processor and then picks up the flag
argunent following the call (when the routine returns, the PL is adjusted past

this argument). If none of the flag argument biis are set in the current JOBSTS
word, the routine veturns. 17 any bits are set, they are cleared from the
JOBSTS word (if the flag argument is zero, it is a special case, and the bit
Lest is bypassed}. The JOBRNG words are defined below to aid in the following
discussion on job scheduling. N

JOBRNG (seven word block):

WORD 0 - unknown / aluays 0

WORD 1 - link to last scheduled job
WORD 2 = link to next scheduled job
WORD 3 - job’s run address

WORD 4 - priority counter

WORD 3 - job priority

WORD & - current SP

The link to the next scheduled job {JOBRNB+4) is tested and, if it is
non-zero, the routine returns as the job is already scheduled. If the link is
zero, it is loaded with the link from the job currently in control of the [FU io
Lhe nexi scheduled job. The link to the iast scheduled Job (JOBRNB+2} iz leaded
with the link to the job currently in control. Thus, the JOB referenced by RO
when a JRUN is executed is inserted between the job which executed the JRUN and
the next scheduled job. Betause the interrupts were disabled by the call to
JRUN, the job will be the next one scheduled. Bbviously, a JRUN with RO
referencing its own job will accomplish nothing as the Jjob nust have been
ascheduled to execute the JRUN.

In the JUAIT call the flag argument is picked up, its bits are set in
the JOBSTS word, and PC is adjusted past the argument. The JWAIT functions in
@n opposite manner to JRUN. JUWAIT links the job scheduled befare the ome
referenced by RO to the job scheduled after it and clears the forward pointing
Link in JOBRNG+4{R0). 1If the link was already cleared, JUAIT is exited s the
Job is already in a wait siate. The Job’s SP is saved iw JOBRNR+14, the
internal stack address is loaded, the RUNQUE is indexed, the BYSTAT arvow is
cleared, and the next job is scheduled. JWAIT nay be called with RO referencing
its own job; the caller should obviously provide a means for the job to be
rescheduled. :

The SCAN call follows JRUN and executes entries in the SCNBUE until the

link to the RUNBUE is reached.

The SLEEF tall inserts a queue block into CLKGUE by loading R3I with the
address of the CLKBUE and calling QINS. Part of the SLEEP code is a routine
which decresents the tick argument of the SLEEP call until it is 0} one
decrenent per clock tick. The address of this code is placed in the second word
of the queue block {the first word in the block is the i1ink to the next CLKQUE
eatry). The tick argument is placed in the third word of the queue black
(referenced by R3 after the call to the routine) and the job“s address is placed
in the fourth word. The job itself is placed in a wait state with "JUAIT J.S5Lp*.
When the tick argument reaches zero, the Job’s address is picked up fron the
queue block and a "JRUN J.SLP" is executed, clearing the J.5LP flag froem the
Job’s JOBSTS word and rescheduling the job. '

For those programmers interested in naking use of the CLKQUE ov the
SCNOUE the following remarks and exanple should prove helpful:

As described above, CLKQUE and SCNQUE entries are identiczl in format
and in the method by which they are processed, The najor difference being that
SCRQUE entries are processed not only at line clock interrupts, but also when
the processor is idle and when the S5CAN call is executed. The distinction can
be important if the routine is to be used for controlling or monitoring a real
tine or external event. For the purposes of the following exanple, an entry
is inserted into the CLKQUE, but the method is the same for the SCNQUE.

EXHPLE: LOCK
oV RHCLKAUE,R3
RINS
LEA R1,C0DE
MOV R1, (R3)+
oy DATA, (R3)+

no interrupts

load address of chain

insert queue clock ut R3I

address of routine to be run

set address of routine ir quete block
reraining six words can be used for data

RS AN A Es AE

UNLOCK routine is now queued
::: i balance of user program
EXIT
CDHE: . y code which is execuﬁed whien CLHBUE entry is

‘ea ' ; called. R3I will index the second word of the

g quese block for use as data area. R4 aust

)
: not be disturbed! Calls which index = job
: may not necessarily index the taller’s.

; the routine musi return

Note: The block of code that is inserted into either BINGUE or CLXQUE
may not reside in bank switched memory, it sust be in mhenory coanon to all users
as a job does not run this code, the nonitor vumns it. In addition, the queue
pnatry sust be deleted from SCHEUE or CLKQUE before the progras terninates which
inserted it if the code is a part of that progras. If the code is another
menory nodule which won”t move afier ihe progras terninates, then the quaus
entry may resain. Otherwise, garbage will probably be executed the next time
the entry is processed resulting in a system crash.

_ To zllow the inserted code to resove itself from CLKQUE lor SCRQUE] when
some condition is met, the following instructions {or appropriate alternatives)
are added to the routine: :

CODE: ces ; user routine

T5T VALUE ; condition met yet?

BNE RETURN ; no

LCC 2 '+ yes, set "V" bii to delete entry
RETURN: RTN

I it is desired ithat the routine only be executed at Tixed intervals a
SLEEP call cannot be used as the SLEEP call only deschedules jobs, not CL¥QUE
(or SCMQUE) entries. & routine such as the one described by Lefford Lowden
(Method One) in iscue Number 2.3 of this Mewsletter should be used. The CFU
loading is not severe as the overhead of job context switching is not incurred.

I? the job which inserted the queue entry executed a "JUALT FLAGS",
suspending itself until some event transpired, the gueue entry can revive it

by executing @ "JRUN FLAGS" with RO indexing the job’s JCB before the final
Teturn. :

Good luck!

The three mesory calls (BETHEM, DELMEM, and CHBMEH) are all part ot the

sane module and include extensive error testing. The GETHEM call will vetusvn
a module cleared to nulls.

The #ost involved module in this section of the sonitor is the FETLH/
SRCH module. It is cosposed of over 150 instructions {compared to the barely 70
of the job scheduler). It first determines what control flags have been set and
“then limits its search on that basis. Unless the F.ABS flag was set @ search
af either user nemory (F.USR) or systewm senory and user meMory is made on a
module by #odule basis. . : :

1f a disk fetch was requested, FETCH clears all flags and error codes
fron the user DDB, except flag bits 4 (transfer initiated) and 3 (read or
write)., The DDB is then pre-~INITed (BIS #40000,DDB) and an INIT DDB is called,
This is done to get the address of the disk driver in DUB+12 without allecamting
a buffer and also, FILSER will supply the user’s default device if it was vot
specified in the specification. The FETCH call uses this address to deternine
the record size of the device (always the first word of a disk driver). It
seis this record size in DDB+4 and then checks to make sure the caller has
enough sesory to accosodate @ disk record. If not, the call will be aboried.
It no PPN was supplied in the DDB, the user’s PPN is picked up before a search
of the disk KFD is nade to find the address of the UFB. If the UFD wms found,
its records are read until the specified file and its link are located. If the
file is found, its size is calculated and if the user has eénough free semory, @
Mmemory sodule is built and the file is read in. If the user included the F.FIL
conirol flag, the file’s name will be copied from the DDB to the housekeeping
words of the sewnory module and the module "FIL"™ flag will be set.

The KBD call follows the FETCH/SRCH module. If the job has no teraisal
attached, a "JHAIT J.TIW" is executed, descheduling the job until a terainal is
attached. If the tersinal is in isage mode, a TIN is called and the input
character ‘is placed directly in R1. 1If the terminal is in nornal sode, the
job’s conmand Tile size word (JOBCHZ) is tested for command file processing. IF
the word is zero {not processing a command filed TIN is called, adding characiers
4o the input buffer, until either a line-feed is reached or the buffer is {ull.

The KBD routine also handles commang file processing. If the JOBCMI
word is non-zero, KBD will set its input froa the command file buffer, echoing
the data if the Trace flag is set and placing it into the input buffer, uniil &
line-feed or a special cosmand file symbol (delimited by ":™) is reached. If

the command is ":{" the data is anly echoed until a ">" is reached.

The TTY call tests the JORCMZ word to deterrine it 3 coamand file is
being processed. If the JOBCHZ word is Zerd, no cousand file is loaded and TTY
calis TOUT. If the JOBCMZ word is non-zero, bit 4 of JOBCHS is tested to
deteraine if the Trace flaq is set; if not, TTY returns. I Trace is set, bit 2
of JOBCHS (Revive} is tested and, if set, TOUT is called else TTY returns.

The TTYI call executes a TTYL until z null character is vemched, TTYL
executes a TTY. In the TTYL call, a carriage return (octal 15) gets
auvtonatic line-feed (gctal 12) appended.

The TAR call executes a TTYI with octal 11 and 0 25 imaediate duta and

a CRLF does the same, but with octal 15 and 0 as innediate data.

The terninal service routines follow the preceeding calls and they
Wwill be discussed in the next article.

WARNING ON USE OF SLEEF HACRO

Related to the discussion above, one should not specity in an asseabler
routine a SLEEP period greater thun 32747 clock ticks (77777 octal or 7FFF hex),
In a system with a 60 Hz power line, this is equivalent to just under 9.1 ain
or 346 seconds., In the processing of the SLEER call (see above), the arjunent
is placed in a queue entry and decremented each clock tick until it reaches
Zero. With arguments larger than 32747, the argunent is technically negative as
viewed by the WDié. Thus, decrementing it will generate an overflow which is
reflected in the setting of the status bits. On exit from the decresent voutine
the "V" bit has not been cleared due to the overflow, thus causing the related
CLKQUE entry to be cleared. Thus, it will not be run next tine. However, that
code tests the decremenied value for zero which would ultinately issue a JRUN
instruction to restart the job! Ergo, the job will hang in lisbo forever.
Presumably at some later release of the system this minor error will be Pined,

TYPO IN SLEEP AND DING IN JUMNE NEWSLETTER, MUMBER 1.C

GTDEL in the listings was nistakenly speiled as GETDEL, sorry.

- DISCU4SION DF ARBS (TH) MONITOR, PART 2
‘ by Peter A. Jacobson

The terainal service routines, TRASER, follow the firat section of the
-monitor which was discussed in the last article. The source fuor theae routimes
11 available from Alpha Micro in the fila, “TRHSER.MAC* on the Driver Hourte
Diskette (8FD-00003-00). Pacumentation on the major operational aspects of
TRMSER 19 discussed in the document, “Terainal Service Systea™ (DUR-00100-33),
which i included with every AM=100 (TH) board. The supervisor calls which
access TRMSER are well documented in the ANOS NONIYOR CALLS MAHUAL and the
reader is advised to refer to that Asnual fer furthar infornation. The
following discussion will cover enly the major points of TRMSER, thome ttemt
which are undocunented, and sone Prograaning technigques,

TRHSER provides input and output linkage betueen the jobs allocsted to
the systen and their termainals, This linkage is maintained through the JOBTRR
word in each job7e JCB. The JODTRM word points to the terninal line tmble
nssociated with the actual terainal. The terainal line table ts part of »
linked 1ist which makes up the terainal definition chain (TRMDFC). In additien,
sach terainal line table entry is linked back to the JCB of the job to uhich the
4erninal ie attached. This foruard and backuard linkage it an isportant
aafequard feature insuring that uhen a terninal is attached to » jod {through
ATTACH), any Job previously attached to that termainal is detached from it bafore
the attaching 13 conplated.

The JOBTRH ink in the JCB does not attually point to the base. entry in
the tarainal line table, but rather to the terminal status vord (word 3 starting
fron zero), The first three vords conaist oft 1) link ‘to the next terainal lime
table #ntry (0 for 1xst entery), 2) first word of the terainal nane (packed RﬁDﬁO)
and 3) second word of terninal nane (also RADNO).

bafore getting inte tarninal 1/0, sone definitions and explanations
ahould prove helpful. The following components ara necessary for tarsimal 1/0
in sn AH-100% ‘

TRNSER - The section of the aonitor which passes terainal input and sutput
te |nd fron the job tttnched to it.

JOBTRM = The line tadle of the terminal to whith the job is attached. 1t
contains 1inks ta the terminal driver, interface driver, the jeb
attached to it, and the next terninal definition chain entry. In
addition, it contains the 1/0 buffer addressos and the various
paranot!rs agsociated with the butfers {see ¥1.2, LFL].

DRIVER - Two typea of drivers are necessary:
1) A harduzre interface driver {10V}, responsibls for sctuslly
receiving and sending data ta and from the terainal,

2) A softvare teratnal driver (TDV), which perfaorss tustom hundling
© . ot dats 1if necessary. _

-The Tsv hat the following ae an example of its first § wordst

ey A

$ terninal attributes:
$ bit 4 1f set says terniml haa nill output
. ? bit 7 {f zet says terninnl has has iu:nl echo
BR RiicH $ input routine
CBR O QUTPUT ' output routine
BR ECHO $ echo routine
. lk SPtCAL ; spetinl praocessing ruutiue (cursur, ete)

1f custon handling is not required for a routine, the branch instructios.

BT rlpllcld uith » return (RTN), c
ff e For most tarminal drivers, the attridute word ix 2ero. The PSEUDD

ttrntnal driver has bit 4 et and th! NULL terminal driver has bits & and 7 set.

P 4;}." © The character input routine can be used to convert the imput of -
. non=-ASCII devices to ASCII or to throw nuay characters., The churcter is pas;ed
1n Rt vhile RY indexes the terninnl iine tabie.

The cheracter output ruutine can be used to tonvert from ASCIT %o
" uhatever code the terminal amccepts, add nulls to ouput (see 8IL700.MACY, of

pnrforn a softusrs fora~feed on hard capy terainsls that don’t support furn-faed
_;.*(!ll exanple below).

; The etha routine i used for spictal proce:sing of rubouts tan hard topy
|rn1n|l|) and control-u. .

The special processing routin® i3 qenerally ysed on CRT/S to provide
confornily with Alphn Micro’s defined standard functions for X-Y curssr movement,
clear to the end of line, hone, clesr CRT, atc. However, tt could be used with
nay terninul to provide spacial features.

For hard copy terainals which asy have eptional fora-feed capabilities,
- or which are nissing thea entirely, er which have the forn-feed response fixed
at one page size only, the following output routine can de inserted ints the
approprinte driver routing to qenerate softuare forp-fesde:

Paz . 44 } location of pagesize info
L¥C . 50 1ine counter -~ both nddresses muet de changed
1T Alpha Micro starts Lo use then

OUTPUTE TST PSZIRY) see if 2 page gize defined

»
!
.1 4:] DORE -} ™0 page size, ergo return
AND Mnr7,n 3 strip character to ASCII
Cue k1,4 4 forn-feed charactor?
BRE LF '} no
LEA R, 22(RY) } index terninal output queus R
QINS } get I insert Dlock into outpul queue {2
Ll LMCIRSY,2(R3) } set nunber of lines 1gft on page (1
nov #12,4(03) t set literal character to o line-feed {4
cLe Rt } ihrouw 2uay fora-fesd character
BR DOME ; return
LF: chp - R, M2 $ line-feed charactert
BNE DONE 5 ne
BEC LRCIRD) 7 decrenent line coumter - at 2o yet?
BRE DORE } e
noy - PSLCRT) ,LNC(RY) ; reset the line counter to top of farm
DONE: LLC 10 } set N bit for postition processing (3

RN

There have been tuo assunptions nade in the above coder 1) word at
location 44 in the terninal line table contains the nunber of lines per pnge for
- aoftuare control of forn feeds. If thiz word is zero, it inplies that the
harduare on the terninal will interpret fors-fesds. 2) The word at location 50 -

counts the renaining lines on the page, Currently these tus wards sre ynused
in the terninal line tabdle,

Terninal output is processed both by an actusl output duffer and by
queue block chains. tLines t thru & in the above eode insert a queur dlock to
handle the software fora-feed. Line t lo2ds the address of the output gueue
into R3. OQINS obtains a queue black from the nonitor, links that guese dlock at
the front of the queue addressed by R3, and returns with R3 sddressing the first
datz word in the block obtained. Hith the 4.1 release of AMOS (TH) each qLrLe
blotk consists of 8 words -~ one 1ink word and 7 data words (nunbered in ¢his
context 1 thru 7). The first dats word contains a3 command cede which dotermines
how the queue entry is to be handled. A sunnary of these comnands follous:

~ DATA CONNAND
0. data block (buffer ar titersl)
2 subroutine call
4 output iange data
8 cancel output watt state
10 output suspended

The queue block entriss are processad betone cutput buffers. Since the
DINS call returns the block with the data words zeroed, the connand in the
exanple 1s 0 - data block. TYhe protessing of this conmand takes tuo fornsy
1) buffersd data, and 2) 1iternl charactors. The first forn allous the user ¢o.
qQueue up » buffer of data for imnedinte output and the secund fora allous the
user to spetify a particular chasacter to be output. In both cases the second
data word in the queue block contains the character count. The third datm word
i3 either the 1iteral chasscter or the addrese of the buffer. If the third word

" 19 greater than octal 377, 4t is assunad to be an address,

Note that when the forn-teed s replaced by the queus plock entry for
the appropriate nuaber of line-feeds, the line count is not restored. oOne iu
tenptod to think that this 19 an error. It 1sn‘t, as the line-feeds gonerated
by the queue bloek entry alse 90 through this routine and when all of them have
gone through, this routine reaets the line eount by copying the page size isto
the line counter and & new page begins. ' '

Line 3 sots the return code fron the terminal output'rnutin!. The

possible codes aret

N bit get (LCC 10) = char is nutput and positioning in adjusted
Z bit zet (LCC 4) -~ ehar is dypaseed (assuned the routine performed outpt)
N and Z bits off - char is output without positioning

Output positioning ic aaintained to handle tabs, rubouts, and control-U’s.

In addition to now heing adle to send fora-fesds to the terminal, if the
hard copy device has a key doard, typing a control-L will echo a fora-feed.

Briefly (and sonewhnt over-siaplifisd) terainsl input is handied =3
follows:

1) For interrupt driven interface drivers (AN-300 (TR) and AN~310 {TH)):
A key is depressed on the terainnl’s keyboard, causing the board to
generate a vartored interrupt. The location of the interrupt handling
routine is deternined by fetching PC fron nbsolute location 26 (hex)
and adding the device code to it. The contents of this intermedinte
loeation is addad to PC to fora the final 2ddress of the input routine.

for non~interrupt driven interface drivars {IN3AL 810 (TH))¢
‘ VUhen the driver 4s initinlized (at ite first mpearance 4in » TRADEF
coanand in the SYSTEN.IRI file) an entry 49 placed in the BCNQUE. Every
tine the queue {4 scanned the device’s status will b2 checked for
tharacters avaiting input. When 2 churacter is ready, the input degins.
(For these drivers only: the scanning routine will also theck for
possible output to process).

2) The address of the terainal line table is placed in RS snd TRMICP is called.
TRWICP ealls the input routine of the terminal driver whieh will lupply any
special processing the eharactar neads.

3} It the character aakes it past the tests for iange node input; control-$,
- =R, or -, double escape, rubout or control-U, printable, ete.} it vill be
echoed via 2 cull ta TINIT.

4) 1t the character is a carriuge raturn, & free line-feed will be wppended.
When a line-feed 18 reached, if the terninal has & job attached which is tx

a tarainal input wait state, the job will be rescheduled to process the
input line, ' _

Again briefly terninal output is handled as followss

1) TOUT adds characters to the terminal output buffer, initializing tarmiml
output viz the TINIT call, and putting the job (1f any is attached) ints
B terninal output wait state 1f the buffar 18 full. TBYUF works the same
way, dut uses the data fron & yewr designated buffer rather than taking
single characters fron R1 as TOUT does. TCRT ealle the terainal‘s wpecial -
output handling routine, which in turn initiates sutput by calls to YTV,
TTYI, and TTYL where a call to TOUT is nade.

'2} The interface driver for the terminal uges 3 call to TRKGCP to gst the
next character fron the output buffer. o

In order for kaybozrd data to be proceased by an ussenbly langumge ‘
pragras, the program should execute s KBD call whieh will deliver one line of
data, indexed by R2 and terninated by & line-feed. 1f the terninal s in image
node, the character 4y daliverad directly in RYt. KBD makes rapeated calls ¢o

- LTIN, tilling the input line buffer until a line-feed is resched. If the job
has no terainal attached, mxecution of the progran will stall in KBD by
descheduling the job €JWAIT J.TI1¥) until a tetninal is attached and keyhoars
dats f9 svailable or 4s delivered by a FORCE conmand. TRNIEP reschedules the
Job C(JRUN J.TIM) when 8 1ine-feed has been entered. -

The TIN call stalls via a *JUATY J.TIU® until 2 line~fend is entered and

all data has been echoed, The data is then transterred, character by tharacter,

~ fron the dnput buffer to Rt where 1f YIit was called by XBD, the character 4%

- placed in the input 1ine duffer. Yhe TIN call is the only routine in the

- monitor which will perfornm lower to upper case ASCII tonversions. The
conversion 13 ande 4f bit 4 of the status word is not sel (the-EXIT eall alusys
clears this bit to insure the entry of system commands in uper tase), The
canversion does net affoct how the eharacter is echosd, 4t only places the upper
case characier in Rt, . o

One disadvantage to using-aither-a KBD or TIN eall te qet -datn from 3
terninal fs that the job 1s descheduled until a tarriage return or line-fesd 1
- received. If the termine) ig in inage node, the job ts still stalled ustid at

Ly

1east one character i3 peceived. If the prograaase fs yriting real time

prograns, this technique will not work to get input data, In the Auquat fssue
{Xunber 2.2}, Lefford Lowden pravided s sethod of retrieving a tingle

character from a terainal only if ane had been entered. The sudroutine bypissed
the KBD call until dats had actually been placed in the input duffer. Belaw iy
a routine which will aceoaplish the same thing dypasaing the KBR call altogether:

H terninal line table equates {fron TRMSER)

I = 19
Ll = 32

input character count
1ast character input

LT 1]

S8TART: CALL LHAR test for user input

-y

Bt REAL branch if no input
:::. 5 process input data
RESLE ...
. 3 continue real time protessing
® ~ START

CrARY MOV ERJOBCUR, RO
rov JOBTRN(RO) RO
T8T . ICC(RO)
BED DONE
cLR 1CCERD)
HovE LCC(RO),RY
DONE: RTH

load this job’s JB
l1oad it terninal line tnble
any fnput?

no
reset input character count
103d last character input

Y RS I EE W R

This nethod does not require sstiing the teraina! into iange node
nor does it raquire » call to KBB. EIt does, however, require that the loop
in the real tine progranning section never stall longer than about 1/20th
aecond {the expected typing speed of & gond typist). A heavy toaputing load
due to several other jobs in the CPU night nake this assumption tnvalid, Per
gtand slone prograns it ia probably 0. LFL] ,

The routine can be nodified to pracess buffered dats by using a TIVIN
call as followst |

CHAR: MOV eRJOBCUR, RO
TIYIN RY, RO
8T R
RTH

load this job’s JCB _
get character froa input line duffer
set 7 bit reflecting presence of charmcter

LT BT}

The TTYIN tall adjusts the input character count, returns the fipat

character in the input buffer, and adjusts the buffer. 1f no characters are
available, Rt will be cleared.

HOTE T0 SERI0US BARE PLAYERB: You should now have enough information
to construct some really qood games in a nultt-tasking environsent {Klingons
that shoot first, renl tiae games Betwesn two terminals and/or Jobs, ete.). The
gane can proceed whather or not the player is ready and the CLKRVE (discussed in
the previous article) can be utilized to allot a specific amsunt of time to ench
player. Don‘t heep these programs ta yourself,

Processing of control-L’s does not require the use of a KBD eall, dhen
TRHICP detects x control-C, it clears the buffer indicss, echos a bell ende,
aete the J.CCC dit fn the JOBSTS word and reschedules the Job 1f, 1% was wniting
for terainal faput (an earlier JUAIT J.TI). CTRLC calls placed zpproprintely
1a » progran vill test the J.CCC it of the JODSTS word, and, if it is set, will
_ndjust P 8 the trap routine specified as the argusent of the CTRLC eall.

Birectly folloving the TRASER routines sre the initial entries in TRRIDC

o 'tterntmal dnterface driver chain) and TRETIC (terainal driver ehain). - The

U pawtines see Shvisnsly both returns,

© . TERINC haw ome entry im 1%3 the PSEUDO interface driver. Its input and output
The TRETDC chain containe tuo inftisl

‘ E“;!ltrlll? POEUDD and MULL. The PSEUDO tersinal driver contains three RTN‘s as

.peither input, output, nor etho require special handling with & PBEUBD tevatnal.
ﬁTho RULL terminal driver contains RTN’e for both fnput and echo, but the autput

E u;;-rentine sets the 7 bit, inticating that the terminal drivar handled output, with

. the prsult thet w NULL terainal discards all sutput, i

NEWSLETTER FOR AM~100 USER’S GROUP Produced by Lefford F. Lowden
. 616 Long Pond Road
1 DECEMBER 197¢ Nunber 2.4 Rochester, New York 14412

DISCUSSION OF AKOS (TM) MDNITOR, PART 3
by Peter &, Jacohson

The next section of the monitor inciudes the f1le service routines,

FILSER, and the file error message routines, FILERR. As with TRHSER, ssurce for
these routines is available from Alpha Micro on the Driver Source Diskette (part
nusaber §FD-00003-00). The macro calls to these routines are well docusented

1n the AHOS MONITOR CALLS HANUAL and, again, the reader {a advised to refer to
that nanual for information on the individual calls. The fellowing discuasion
will focus on some of the operational aspects of calls to FILSER. It is assuned
that the reader has knowledge of the structure of a DIB. ' : :

Entry into FILSER is made only through an SVCB 0. As discussed in the
first article (Nunber 2.4), the SUCB decoding module will place the function
code in RO, the address of the first argument in R4 {for SVCB 0 this will always .
be the address of a BDB), and the address of the second argument (4f any) is R3.
Upon entry into FILBER, the function code and the address of the error recovery
routine are pushed onto the stack as a return address for possible errof
trapping. 1If a device was not explicitly entered in the DDB, the user”s defaull
~device code is picked up from the JCB. The address of the general device driver
routine, DBKSER (discussed in the next article), is placed in R2 and the addvess
of the sysien disk driver (first word of DSKSER) is piaced in R1 as a default,
in thal most file calls will be to BSK. ’

The device driver will be fetched sither frow DSKO:[1,43 or nenory 1t
the device was not DSK. An error is reported 1f the driver can not be located.
The driver attribute word (described below) is tested to gdetermine if the device
is file structured; 1t not, the address of the DSKBER routines is replaced by
the driver’s address. If the flag bits in the DDR indicate that INIT was
called, axecution procedes to the indicated subroutine. All calls grcept INMIT
vequire that a buffer be allocated first; thus, if the DDB has mnot besn INITed,
an error occurs and processing depends on the settings of the fiag bits in the
DIB {defaull is that an error message is produced and the routine EXITs). If

the DDB is INITed, a TJHP to the appropriate routine within FILSER is executed
where a call may be made to either DSKSER (for file structured devices) or to
the actual device driver. NOTE:r If DSKSER is being used, it in turn will call
the sctual disk driver routines.

Both DIKSER 2nd unique device drivers have a cosmunication area at their
beginning, where words three through eleven are the addresses of routines. The
basic layout of this area ist

WORD CONTENT
1 . physical record size
2 driver attributes {function supported if bit sel)

bit 0 read
bit 1: urite
bit 2t assign
bit I open
bit 43 close ‘
bit 35 input/output
bit 4: renana/delete
bit 71 not used
bit 8¢ special {(bitmap maintaired)
bit 9-14: not used
bit 15 file structured
read/write :
open
close
assign
input
output
delete
renane :
spacial (bitmnap routines)

T & 0 00~ O~ CA Bt

—

Word 1 of DSKSER ia tha address of the system disk (DSK) driver voutine. To
clarifys 1t the device is file structured, the FILBER routines will call ISKSER
which, in turn, will azke calls to the specific’ disk driver; it the device is
not file structured, the FILSER routines will tall the specific device driver.
R will always contain the address of the actual driver, and R2 will contain

either the address of DSKSER, or, if not file structured, the address of the
driver. '

The INIT call perforss two functions, 1) places the addrass of the
device driver poutine in DDB+12 and 2) allocates a DDB buffer based on the size
of the physical record for the davice. The size of the physical record is put
in DDB+4. Tha GETHEM call, with the HCB pointing at DDB+2, puts the arddress

. 0f the buffer in DBB42. The driver address will always ba placed in ths DDJ.

However, it a buffer has already been allocated, a new buffer will not be
allocated.

The OPEN call ASSIGNs the davice (i? possible) and zets tha open code ia
DPB+34. The open code is automatically supplied as the second arqunent of the
BYCE O by the macro coded in SYS.MACL7,71. There are four types of open calls -
available, and they will set the tollowing data in DDB434y

Hacro Namea - Data
LOOKUP 0
OFEN] -
OPEND . 2
OPENR 4

Note that the fourth code differs tron that gefined in the ARDE NONITOR CALLS
MANUAL which appears to be in epror. . '

The GPEN call then resets the logical record size ip DD¥+4, clears the

. butfer index (DDB+4), and reclears the DDB butfer {addressed by DDB+2). The

device driver atiribute word is tested to determine if an OPEM routine exists,
and if it does, the routine is executed. Hote that although the DPEN routise is
FILBER clears the DDB buffer to nulls, the device driver’s open routine may use
the buffer and it may not remain null.

The LLOSE routine will return the arpor nessage “FILE HOT OPEN® if the
file is not open., If the open code indicates the file is open for sequential”
input or randoa processing, the device’s CLOSE poutine g bypassed. If the DIR
was open for sequeniinl gutput, the final record is written and the devite’s
CLOBE routine is executed. WUhen control is returnad to the FILSER CLOSE routine,
the open code is cleared and the device is deassigned (if necessary),

The DELETE, RENAME, and SPECL calls are contained in the same routine of
FILSER and call the driver’s routine (or the DSKSER routine) 1f i4 exists. It
the device 1s file structured, DSKSER is called and the SPECL calls perfora
modifications to the device’s bitaap.

_ The ASBIGH and DEASBH calls will lock non-sharable devices to the
celling fob. If the device is sharable, the calls are ignored. If the device
iy already ASS1GNed to another job, the "DEVICE IN UBE™ error message is
returned. :

The READ and URITE calls clear or set bit 5 of the DDB flag byte, teat
the BDB record size word (to detarmine 1f a read or write is possible) and call
the driver‘s routine or the DSKSER routine. Through this call, physical
transfers to and from the device are inltiated. The source code in FILBER for
the READ and URITE calls indicates interrupt driven devices will have READ/WRITE
requests queued, but in the 4.2 release of the monitor, this is not yat
inpleaented. The tuo lines of code which test for interupt driven seprvice and
branch if true should be coamented out, as they do not axist in the actual-
mMonitor, :

Alpha Hicro has not yet docunented the 1008 call in that queusd 1/0 is
nat yet supporied. Its function will be to dequeue a transfer request from the
DBB chain after the transfer is completed.

The INPUT and QUTPUT calls both‘insure that the file is opsn for randos
or sequential input or output. 1If the device driver does not have input and
output routines, the read and write routines of the driver are called,

After a call to FILSER has been completed, the file 1/0 return (FIORT)
protessor in FILSER is executed. Evror codes are raturned in BDB+1, but if bit
7 1s set, error processing is bypassed (bit ? is set by LOOKUP calls which do
not actually open files). If an error condition exists, a call is aade to
FILERR to print the error nessage and execution of the pargram is aborted with
an EXIT call. Both the printing of error Aessages and the abort on error can be
suppressed by setiing the appropriate bits in the first word of the DDB as
described in the AMOS HONITOR CALLS HANUAL (page &-4),

The next section of the monitor contains the executive program and the
vesainder of the supervisor calls which will be discussed in the next article.

NEUSLETYER FOR AM-100 GSER‘S SROUP Produced by Leftord F. Lovden
. 414 Long Pond Rond
1 JANUARY 1980 Nunber 2.7 _ Rochester, Kev York 14412

BISCUSSION OF AMOS (TN) HONITOR, PART 4
by Peter'A. Jacobhson

The EXEC module (my designation) follows the FILSER vputines which were
discussed in the last article. This module contains the axecutive progran and
the renainder of the supervisor calls.

The first routine in EXEC i3 EXIT. When a job i allocated to the .
systes, the JOBS progras sets EXIT ag the first program the job will exacute.
EXIT first enables interrupts (in case the user progras -1aft the processor
LOCKed) and then determines if the EXIT call was forced by a CIRLC call. It a
Control C is waiting (J.CCC set in JOBBTS), *°C* is sent to the Job’s terainal
and the JOBCMZ word is cleared, which aborts any remaining cowsands in » coamand

file. All flags except J.ALC are cleared from the JOBSTS word and the J.MON -
flag is sgt. :

The DDBCHN is than scanned to determine if the job has any I/0 queued.
It it does, the remainder of the job”s CPU tine is used to process it. (fuened
interrupt driven 1/0 is not supported in the 4.2 release of the monitar}.

The error control intercept (JOBERC) and the breakpoint wvector address
(JOBBPT) are both cleared and the job‘s atack pointer is restored to the top of
the job’s stack. If the job has memory assigned (the J.RUL bit is not s=et in
the JOBTYP word) the DEVYBL is scanned and any devices assigned to the job are
deassigned, and the tollowing memory tests ara parforned. '

It the job has 2 new memory allocation, the first word of the job’s
menory will be cleared, insuring the memory partition contains no garbage. The
partition and any nemory modules in it are testad for address errors. The
systen displays “LHEMORY MAP DESTROYEDI® if the partition’e base mddress or a
#odule’s address i3 odd, or the partition’s base addreas or 2 module address is
above MEMERD, If none of the module fiagq codesr FIL, FBD, or LOK are set, the
todule 15 renoved from the partition. This operation gets rid ef buffers and

!

other temporary mentry nodules that were created with the INIT or BETMEM talls,
the progran file unless it was placed in memory sarlier with 2 LOAD coanand
(vhich sets the FIL flag avtonatically), and modules that ware set {aor removal
with the DEL command (ERASE on Lefford‘s systes).

The nenory calls, BETMEM and CHOMENM will always return an even nodule
size nnd clear the word following the nodule, but semory nodule errors can be
caused by a progran which itself sodifies the module size word, either by esvor
or intentionally. The location of ascending modules i3 deterained by adding the
nedule size word {the first housekeeping word) to the address of the current
#odula, janerating the address of the next expected module. If the content of
this location is zero, the end of memory sodules is assuned to have been

reached. If the address is odd, caused by an odd byte count, or the address is

beyond the end of uzer seaory (MEMEND), the error 15 reported and the content
of the offending address 18 cleared.

1t a progran leaves sose garbage modules in the partition (VUE used to)
which cannot be deleted with DEL, 2 HEMORY 0 command followed by MEMORY wxsxx
Will restore the partition. uxx takes on the value of the previcus size of the
partition. If you don’t know this, type KEMDRY with no argument, and the system
will tell you what it is,

Normally, this type of memory error should not be fatal to the job or
the systen, but there are two bugs in EXIT which can cause the Job or tha systen
to crash. The first is that no teet is aada to deteruine if a nodule, sither
real or erroneous, extands beyond the end of the job’y partition. The sascond is
in the methad by which EXIT clears the erroneous address. The current module”’s
address is saved in R before the next nodula“s address is calculated. It the
Module creatas an error, the content of the word addressed by RI {8 cleared,
howeaver, R3 is not set until afier tha tirst nodule iz tested. Therefore, if
the first nodule creates an error, the content of an undeternined word addressed
by R3 is cleared.

It the Job has teraina)l output in progress (the OIP flag is sed in the
terainal status word for the terninal ASSIGNed to the job), it will loop in EXIT
tntil 3ll terminal output has been processad after which the terainal status

flags will be reset (restoring normal terminal 1/0) and control will paes te the
ayecutive progran. !

Tha executive progran (hereafter called EXEC) is ot ARDS (TH) comaand
1svel, which upon entry issues the monitor prompt, *.", and calls KBD where the
job is descheduled until tersinzl input is available, or where, as described in
the first of these articles, if 2 command file is being processed, the input
1ine buffer is filled from the command file data area. After a command is
enterad, EXEC resets the job stack pointer to the top of the stack and
deternines it the job hae any memory allocated. If the lob does not have amy
memory, EXEC will allocate to the job all of the available memory in the Job‘s
bank. If a3t least 2000 decimal bytes are not available, the “INO MEMORY
AVAILABLEY" message is {ssued and EXIT is called.

An FSPEC call with a null default extension i3 performed on the toamand
line with the job run block "(JOBRBK - partial DDB in the JCB) indexed to receive
the tile specification. The file name i3 copied into the JOBNAM words, the
J.HOR bit cleared, the J.LOD bit zet in the JOBSTS word, and s search for the
file s made. The AMDS USER’S GUIDE is somewhat ambiguous on what format is
used for systen connands (page ?-I), but full file specifications are allowed.
The file search order is documented, although not accurately, in Appendin B of
that aanual, and is briefly sumnarized below. 1If the Device, Drive, Extension,
or PPN are supplied on the command line, the appropriate search is bypassed.

DEVICE EXTENSION PPN

systen memory PRO LIE:

USET NEADTY PRG K/A

DEKOr . : PRE 1,4

DSKOy Cip 2,2

user : PRO tiser -

user £HD user

usar PRG user librany

It the search failed up to this point, DSXO:MDO.PRGI1, 4] is loaded which
attenpts to locate the file in the following order:

nsoxce EKTEHS!OH 4]
uear S 1] user
user ki user library

RERT D 2,2

It the file is found, it is loaded into the job”s menory, providing
enough nenory is available. If the file is not found, the conmand is echoed to
the jobs terminal, bracketed with question marks. The Aessaqe “tInsyfficient
nenory for program load” is returned if the job did not have enough menory.

After the file is loaded, EXEC tests its first word to detsvaine if the
progran can be run nol logged in. If the first word of the file is non-zero,
the JOBUSR word is tested, and if it is zero {the job ts not logged in), the
“[LOGIN PLEASE]" prompt is issued and the executive progqram EXITs,

The file’s extension is tested, and if 1t is “PRG", program axecution
begins with NOV R3I,PC. Upon entry into the program the registars contadn:

RG - base address of JCP
Rt - cleared
R2 = vemainder of input line duffer

R} - base address of progran
R4 - cleared
RS ~ cleared

A file with an extension othar than "PRE™ is assuned to be a comaand
file. EXEC moves the file in reverse ordar to the top of the job‘s partition,
sets the C.8IL bit in the JOBLMS word, and branches to the entry point of EXEC.
If the file wes loadad under control of MDD, the specified parametera are '
inserted into the command file and @ block move places the command file =t the
top of the job’s partition after which KB EXITs.

The nuseric conversion calls, DCYT and 6CYT (or HCUT - hex convert),

follow EXEC. They perform binary to ASCII conversions based on table entries,
which 1imit the nagnitude of the output.

Following the conversion routines is FSPEC which 13 well docunanted da
the *AMDB HONITOR CALLS MANUAL® (pp 4-8 through é-9). Lower o upper case
ASCIY conversions are not made in FSPEC, therefore whatever R2 points to
(terninal input line buffer or progranm dbuffer) amust be in upper case.

PFILE follows FSPEC and perforss in essentially the opposite manner to
F8PEC. Its output is directed only to the Job’s terminal {(via a TIYL) and PPN

output is always in octal régardless of the setting of the J.HEX flag in the
JOB3TS word.

The JOBIDX, JOBGET, and JOBSET require pore words to describe than the
anount of code they scrupy in the monitor. They are all SVCB calls and require
B considerable anount of time to decode in the SUCH protessing nodule. It speed
of execution for 2 progras is a consideration, the following matro definition
will ninic these calls saving over sixty instructions to be executed:

JLIDX = -1 : 3 JOBIDX control tlag
J.OET » O ‘ _ + JORGET control flag
JBET = 1 3 JOBSET contrel flag

DEFINE JCB TAB, ITEN,CTRL

PUSH HITEN ; load JEB indeyu
ADD eRJOBCUR, OGP } build Job table entry
1F LT,CTRL, POP TAD 3 JOBIDX
IF EG,CTRL, MOV B(SP)+ TAD ; JOBBEY
IF 6T,CTRL, MOV TAG,2(3P)+ y JOBSET
ENDH
Instead of JOBIDX RO, JOBTRM use JtB £0,J8BYRN,). IDY
“and JOBBET RO, JOBTRH use JED RO, JOBTRN,J.BET
and JOBSET RO, JOBTRY use JCB RO, JOBTRY, J.SET

The object code resulting fron this nacro will use between 42 and 77 machine
cycles, while just the SYCB instruction and the ensuing RSVEC instructions alone
consune 133 cycles (which doesn’t include any of the decoding timing).

The thrae c¢alls USRDAS, USREND, and USRFRE follow next ia ihe aonitor.
They function as described in the "“AMOS MONITOR CALLS HANUAL®.

The CTRLC call was briefly destribed earlier article on TRHSER. It
tests the J,CCC bit in the JOBSTS word and, if set, it means that s Lontrol €
was antered at the Job’s terminal (or by the KILL progras) and, cansequently,
the argunent address of the CTRLL 1% added to the saved PC.

The PRNAM c21l sends its output to the Job’s terninal via & TIY call as
does PRPPN, Like PFILE, PRPPN displays the PPN in octal regardless of the

astting of J.MEX flag in the JOBSTH word,

The terainal input line processing calls BYP, ALF, NUM, YRE and LIN
occupy the next section of the nonitor and are unranarkable except ts note that
ALF tests for upper case alphabetic characters only,

The FILNAN call functions exactly as described in the manual.

The OTOCT call follows FILMAN and is really two calls; 8TOCT and OTREX.
The GTHEX code is used if the J.HEX bit is sat in the JOBSTS word. 1f the
leading character is a digit, it does not nad to be prededed by zers. It the
input iy greater than 1777777 octal {FFFF hex), tausing an eror to be reported
(H f1ag set), the result contained in R1 will be meaningless,

GTDEC, unlike GTOCT will stop processing the imput line if the et
character will cause the result to be greater than 63533,

Tha GTPPH call will always process the input PPN on an octal basis
regardless of the setting of the J.HEX bit, '

The final twg calls in this section of the monitor are the PACK and
UNPACK calls for which no description will be attespited except to note that
UNPACK uset a saall {tuo word) table for unpacking.

The concluding article will discuss DSKSER and INITIA.

USER COMMENTS ON AMDS 4.2 (TH), SUBGESTIONS FOR IMPROVEMENT

by Logical Software, Inc.

HONITORS

Absolute, immediate check for <*C> (control-C) tharacter input fros the
terminal. Would always cause imsediate exii from the progran in control extept
where specitically defeated within the prograa. Many A-N prograns can’t be
halted by <°C> entry or KILL, ete. EB, COPY TRMtslowterainalmbigtile.

* Buss errorst should writs-protect the disk, report 21l busa errvars io
the CONSOLE (terminal connected to JOBY) ihen to all other terminals, then halt
or qo to an arror recovery procedure. Possibly should re-boot automatically.
Mest busa errors are serious-enough to require the sttention of the aysiea
programmer, the users should not be left to wonder where averything went. '
Ysually, nothing will work right anyuay, but a user who i3 unaware that the
aystem is down can waate a lot of his time before he finde that his new Tile ia
now gone foraver,

Should incorporate FLTCNV, SCHULD, and TODCAV.

Ability to save away an existing running progrem, load and execute
another, then continue the first program without error.

Hew special character, Control-T, would mean "Are you still alive, ANDST®
Weuld respond with 2 beep for yes, silence for reboot time. Second <*T> within
aboul 1 second would cause syatat to be displayad. Third <"T> would save away
the existing program, make processor and memory available to user. User can
continue first progras via CONT.PRG.

Auto progran loading:t BASIC and others allowed to load subroutines (.SBR
and .RUN) as required by the program in control (from library areas), keep in
menory or delete by internal command. Would greatly simplify program writing,

~ ond avoid clogging up the BASIC program and memary with seldom-used subroutines.

Would effectively give BASIC programs much more memory to work with, or allow
running in smaller chunks of memory.

DESIRED FEATURES IN SYSTEM PROGRAMS

DASIC: A) Structured programming including WHILE, REPEAT UNTIL, EXIT
0N, and DO-EHDC. B) PRINT USING “LLL ‘/RRRR /CeCC. C) Multi~line function
definitions (with lozal variables). D) A full renusber. E) Provision for
initializing arrays ot compile time, within HAP statements. F) CASE stateaents.
B) HAT statements. H) Edit capabilities - line and global. I) INCLUDE (would
work the same as €-BASIC in CP/M -- reads in a naned source file). J) Allow
RUX to look in library or public file area for subroutines urittean in BASIC.
K) Allow program in control to determine whether to delete .SBR files and
subroutines written in BASIC (from memory). L) Allow system functions idate,
tine, 10, etc.) from the terainal sttachad to Job! only. H#) Include FLOCK as

NEVSLETTER FOR AN-100 USER’S BROUP Produced by Lefford f. Lowden
616 Long Pond Road
1 FEBRUARY 1980 Nunber_z.a Rochesier, New York 14442

DIBCUGSION OF ANODS (TM) WKONITOR, COMCLUSION
by Peter A. Jacobson

The next section of the monitor is DEKSER which is aeationed by Alpha
Micro only briefly in FILSER. DSKSER is the generalized device driver for flle
structured devices such as floppy disks and hard disks, It simplifies the
actual code needed for a disk driver and allows the systeam to acceas several
devices without a great amount of code. 1Llke other device drivers, it has @
connunication area at its beginning which was defined in the December issue.
The attribute vord of DSKSER is zero, but all functions are supported, except
ASSIGN. File structured devices cannot be assigned to one Jjob, but for obvious
reasons, iwo jobs cannot be glven access to the same flle structured devitce
sinultaneously. The controlliing job cannot lock other Jjobs out by diaabling
interrupts because other I/0 devices might lose data. The solution is to
increase the controlling job’s priority considerably until [t is done with the

disk. In DSKSER, this is accomplished by setting the Job s priority counter to -
177777 octal (about 18 minutes).

Before discussing DSKSER’s routines, the structure of a disk driver
cossunication area will be described as well as the three support routines nstd

" by DSKSER. .

Disk drivers, like non-file structured device drivers, have a

~comnunicalons area at their beginning, which contains sone differences trom

other drivers. ‘the 200DVR.BVR disk driver communication arsa is descrided below

2‘;a1.|n.txanplet .

physical record size

~ driver attridutes

« driver entry address offset

_ physical sector size

physicnl sectors per logical record
nlxlnun r!cord nunbor

at

Mords 7-1é not used

Yord 1?7 naxiaua record nuaber
Vord 18 directory eniries per vecord

Word 19 bitmap size
The remaining five words are specific to the physical drive type.

DSKEER includes three support reoutines for locating devices and Tiles.
The first of these-is a voutine (DEVTST} to detsrnine of the device spacitied in
the DDB exists and is mounted. If the device is not specified in the BDB,
DEVTST will pick up the Job’s default device and drive. If the device iy
specified, but the drive is not (DOB+23 contains 377), device 0 is used. Yhe
appropriate error code is set in DDB+1 if the device is not found in the DEVTEL
or the device is not mounted.

The second routine (FILTST) is used to locate the UFD entry of the tile
specified in the DDB. The calling sequence to FILTST is sonswhat differest thas
a norasl subroutine ¢all in that control flags are set to 1init the actions
FILTST can perfora. The sequence ist

CALL RS, FILTST
VORD FLABS

%3 is used as the liskage register
control flags

LT Y)

Control flags (when owm)t

Bit 0 locate file

Bit T return error if file already exists
pit 2 test for prograsner nunber match
94t 3 lock directory (DSKDRL)

Various tombinations of flags can be used. When FILTBT returns, RY is
istrenented past the control flags.

The third routine (HFDTST) reads the KFD (record owre} of the device to
locate the specified UFD, If the PPN is not specified in the DDB, JOBUSR is
used to locate the UFD link.

The following is a discussion of the DSKBER routines., HKeep in nind that
these routines are called by FILSER and are not directly emtered with an SueE 0.

mqﬁMZta§Q

FILSER can call any device driver on the systen, of which DSKSER is only one.

The tirst routine in DSKSER is the physical READ/URITE routine. This is
the only section of DSKSER which actually makes calls to the device driver,
A call to DEVTST insures that the device exists and is nounted. The spectfied
record nunber (BDB+10) i tested to deternine 14 it is within the renge of the
device. If the READ/URITE call is valid, the device is locked to this job by
resetting the job’s priority counter as deseribed above. The 3DB record number
is aultiplied by the number of sectors per logical block for the device to get
the physical sector number for the device and the transfer is initiated. Upon
vreturn fron the device driver, the job’s priority counter is reset to 1 and, if
no other jobs are currently scheduled, the routine raturns. If other jobs are
scheduled, the job is put to sleep for one clock tick (presunably to give other
Jjobs CPU tine).

The OPEN routine handles all four OPEN calls: LOOKUP, OPENI, OPERD, nd
DPENR. The OPEND call insures that the user has access to the PPN and that the
tile does not already exist with 2 call to FILTST and then allocates a disk
vecord for file data. The physical record number is returned in DDBH1Q and
DIB+42, The buffer index (DPP+4) is set to two. The OPEN] and OPENR calls
locate the file and if it exists, insure that it has the sane type an specified
{8 the open code of the BB (PD3+33), If the file type natches, the nunber of
vecords in the file is placed in DDB+34, the byte count of ithe last record is

~ put in BBB+42 and DDB+10. The LODKUP call does not disiinguish betwees raldon
. awd sequential files,

~ The CLOSE call locks the disk directory and them locates the UFD of the

PP specified in DDB432 with an HFDTST call. If a directory for the PPN is not

 allocated, CLOSE will allocate a record. If a directory for the PPN already
exists, CLOSE locates the Pirst ewpty or deleted entry, ir if the record is

full, allocates another directory record. Once an eapty directory entvy is

.found, the file name and the file divectory paraneters are inserted iats ithe
directory, the bitsap is updated, and the directory is unlocked. If it uas

. necessary to allocate a directory record, the unused words in the record are
tleared to nulls to insure thate are no spurious entries.

. The INPUT routine follows CLOSE. For files open for sequeatial input,
. INPUT executes a READ based an the record number in DDB+10. The link to the
: " next record is updated in DDB+10, and the buffer index, BDB44, is et to 2,

bypassing the link word. For files open for randon processing, INPHT utes the
data in DDB#10 as an offset from the base of the file contained in BBBe42. In
this case, BPBB+10 is not updated, :

The BSKSER DUTPUT routine for files open for sequential output can be
called on tuo levels (DDB422 contains the call level), A level one call is made
with a nornal user progran OUTPUY call which first allocates another disk record
for the next call, inserts that record number link into the first word of the
DI buffer, urites the current record, and sets the next record nusber in
DIB+10, A leverl two call is made through a FILSER CLOSE cail, which in turn
calls the FILSER ODUTPUT routine to write the last record. This call does not
allocate another record, instead it determines the amount data in the DD) butfer
and fills out to the record size with nulls before writing the record.

The OUTPUT routine for files open for random processing insures that the
user has access to the PPN with a FILTST call and then writes to the record

.using the file base offset in DDB+10 added to the file record base in DIB¢42 as

the current record nuaber.

The DELETE routine locates the directory, insuring the user‘s PPN grants
access to the file, sets the first word of the file nane in the directory entry
ts -1, and then deallocates sach record the file had used fron the bitnep,

The RENAME routine mlso locates Lhe directory, insures the user’s PPN
allows access to the directory, deternines that a file of the same nane dees sot
already exist and then enters the new nane, contained in the three words
following the BDY, into the directoey in place of the previous name.

The three support routines (DEVTST, FILTST, and HFDTSI) are physically
lacated just after the above mentioned routines.

The FILSER SPECL routines are SVCB 0 calls with 2 function code of ectal
14, They essentially are bitmap service calls named DSKDRL, DSKDRY, DSKALL,
DSKDEA, DSKBMR, DSKBMU, and DEKCTB. They reside in the nonitor directly after
the above described DSKSER routines. These calls are fully described in the
AHOS HONITOR CALLS KANUAL in the section entitled "DISK SERVICE HONITOR CALLS®

{pp 6-17 through é-21) and the reader is advised to refer to that docusent for
detailed information. '

Directly following these seven calls is a special bitmap service
routine. The function of this routine is to locate the device’s bitaap (if
any), reurite it if necessary, and recompute the hash total to insure the
current bitmap is correct. If the bitmap is currently locked by some other jeb,
this routine will stall until the bitmap is free. If the bitmap hash total is
not correct, the drive is apparently disabled by setiing the drive number
contained in the bitaap/s partial DBB to 177.

Following this routine is the supervisor call HTIN shich is called by
_ 200DVR.DVR it PERSCI drives are being used. HTIN copies the HLDTIN argumeat
" 4nto HLDTIN+2 and inserts a clock tick counter routine into the CLKQVE which
uill decrenent the HLDTIN42 argument until it reaches zerao. Upom reaching zeve,
the routine sends the commend to unload the heads of the disk drive and thes -
deschedules itself. -The routine will not be scheduled again if it is alveady
contained in CLKQUE. : . _ e .

The next area of the system monitor is a 2000 (decimal) byte area uhich

is reserved for the systes disk driver. MWONGEN.PRG inserts the driver routine

here and updates the HEMBAS work in the system communication area to reflect the

" end of the driver. Describing the functioning of a disk driver is beyond the .
acope of this article. However, in passing, it should be noted that disk. -~
‘drivers maintain data storage areas within their code.

The last section of the monitor is INITIA, the initialization program.

CINITIA is not actually part of the moniter, it merely defines the initial systenm

‘paraneters and starts the first job rumning the SYSTEN.INI command filej it is
aventually overwritten as it resides above the base of systen aeadry as
contained in HEHDAS, : '

" As described in the first article, after one of the various moniter
1paders (the controller board’s PRON routine, NONTSY, UNGLOD, HWKLOD, etc.) has
finishad loading the monitor root, interrupts are disabled and a CLR P is
executed which effectively couses a JNP to absolute 0. This location inftinltly
contains » JHP instruction ¢o INITIA. IRITIA branches around a teaporary stack,
sets 5P to the address of this temporary stack, and starts a nemory test to fiad
how auch nemory the system has im BARK 0, starting at the end of INITIA ard

-tasting 4n 1K increments. Uhen the end of memory is found, -it is set iato

~_ MEMEND. JOBYBL and JOBCUR both get the address of WENBAS, JOBESZ is defined =
(cqrrontly:!l!‘decinag bytes), and ihe first. JUB entry is cleared. MEMBAS s - i

bl

AT B 20

P e

R
1——-%"

updated to the end of this first JOBTBL entry.

An BK partition is then set up at the end of memory which contains a
temparary terminal line table for a pseudo terminal with a pseudo interface
driver. This terminal is attached to the farst Job and allows it to communicate
until the first terminal is defined. A temparary device table (DEVTBL) eniry is
also allocated in the partiiion for DSKO: and has no bitmap. The various JCB
entries are then inserted intn the first JOBTBL entry including logging the jsb
into DSKO:[1,41.

"SYSTEM.INICCRYSLF>" is entered in the conmand file buffer at the {op of
the partition and the address of EXIT is set on the job’s stack as the saved
Pt of the first progran the job will run. The Job is then scheduled for cPY
tine with a JRUN, after which INITIA enables interrupts and loops, waiting for
the tirst clock interrupt to start the job with systea inttializatioen.

ERROR WITH THE FUNCTION FIX 1IN ALPHABASIC (1M}

It has been reported to me that the function FIX in AlpMaBASIC (TH)
has an error in it. It seens that, for exanple, 1f one fssues the comand
PRINT FIX(-.9), the Job that one {s running crashes. It is not a sysiea crash
in that other Jobs im the systen remain running. However, whatever FIX is
doing, the algoriths will not terminate, that job goes into a compute bount
state. 1 have checked releass 4.1 and found that the same problem is there alse
ap I think that the problen has been present for sone tine and merely has not
been detected to date {I was unaware of the function in the first place). FIX
operates correctly over the range of real nunbers with the exception of those
arquments batween 0 and -1, & rather sinple substitution of operators can be
nade so that the problem can be avoided until the function is corrected. The
substitution is the following:

For FIX(X) substitute SGN(X)*INT{(ABS{X))
This substitutes three function calls fbr one and will ruw a little slower, but

I suspect that FIX is not used all that often and will, thus, nake little
difference. Thanks to Jack Hobbs.

