(Using MCTP 3-Chip Microprocessor Sef)

PROGRAMMER'S REFERENCE MANUAL

DWH-00100- 04
REV &

WD1600 MICROCOMPUTER

(Using MCP 3-Chip Microprocessor Set)

PROGRAMMER'S REFERENCE MANUAL

4 0OCTOBER 1976

1977 WESTERN DIGITAL CORP.
MEWPORT BEACH, (A 92663

e Mb-12-80

. APPENDIX E

TABLE-OF,CONTENTS

CHAPTER ‘ONE - GENERAL
Abbreviations
Processor Status Word
Registers

CHAPTER TWO - INTRODUCTION
Addressing Modes
Stack Operatiocns
Interrupt Lines
Priority Mask
‘External Status Register
Power Up Options

Halt Uptions

User Bootstrap Routine
System Error Traps

‘Reserved

‘CHAPTER THREE
Format
Format
Format:

Format.

Format
Format
Format
Format
- ‘Format
Format
~“Format

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

i

i

O 00w Ol B
o .
ke

OP
Op

Op

op
Op

Core Locations

CODES
Codes

Codes

Codes
Codes

3 Codés

Codes
Codes
Codes
Codes

10 Op Codes
11 Op Codes

Numeric Op Code Table
‘Assembler Notes
Programming Notes

Microm State Code Functions
Op Code Timings

PAGE
1.1

al. -
Bl -
Ccl
DL
El

‘.._n;_.._p-—»---x-__‘ .

CHAFTER 1 - GENERAL

- The WD16@@ microcomputer is a 16 bit machine with both word and byte

. addressing; an automatic push down hardwaré stack, vectored interrupt
‘handling, eight 16:bit registers, and PC relative addressing. A byte is

defined as 8 bits, ‘and a word is defined as 2 bytes. A menmory address
increment of one is an increment of 1 byte. An address increwent of two
is an increment of 1 word. Word addresses always start on even bytes.

‘For any memory location the even byte is the least significant byte.

Bit @ is defined as the LSB of a memory location,

'('ESB)._ 15 .8 7 , & (LsB)
High Byte = e Low. Byte
Byte Address . Byte Address
XL

_{opD)’

% (EVEN))

Word 'Addi.:'_éss X (EVEN)

Unless otherwisé'statéd,-word addressing is-implied. All addresses

and op codes are done in hex unless OtherWLSe stated. All hex nunbers

are enclosed within double quotes.

LEGEND OF ABBREVIATIONS
REG- = Reg].ster '

SRC = Source Address

“(SRC) é.cohﬁeﬁts_qfuspurCE'ﬁdd;ess

‘DST 3=-DESfiha€i¢h'ﬁddress

K

(DST) 'Contents of Destznatlon Address

(SRCIBg= Contents of Source Byte Address

(DST)BQ=-Gontents of Dest;natxon Byte Address

R
H

Ones comblemnt’- of X) o . : | ’
—¢ = Twos Complement of X | ' '

A = Logical And e

¥ = Logical or ‘ | '

2 = l}‘#'c’:lu'siva or.

& = Indirect

Push

e
]

+ = Pop

= Des-tina'tio_!.'l_ pirection
+ = Badition S e e

= = Subtraction

*®
1]

Mul ti'pi_-_i cation -

/ = Division

: = Double Precision Chain Link . -

PROCESSOR STATUS WORD -

A 16 bit Processor Status (PS) Word ex’!.stm ‘e mt is as folluws.
15 - .8 7 '@43213
ngr.. Status Reg. | Ay] NizT¥]d &

Where bits B-15 are the contents’ of the axturm ntatus rag:.ster

(see chapter 2), bits 4-7 are the status of the microprocessor ALU flags,
and bits # -3 are the status of the condition' indicators at the time the

PS is formed. The ALU flags are of no use or coneern to the.programmer.
They are stored along with the ceonditien é’.ndibawtt automatically as a func-
tion-of the micro-op. The four condition flngs -aFe updated during the exa-
cution of most op codes, and are uged by the branch instructions to test

. for valid branch conditions. The exact status of each indicator is de-
fined along with. the descriptions of individual Op, codes in chapter 3,

In general, however, the indicatofs are sai: by tha fol.l.owing conditions:

N = get. if the MSB of the result is set. Ces e
Z = get if the result is zZero. el L
V = get if arithmetic overflow {underflwi occure during addition (subtrac“”]
_ Set to exclusive-~or of N-and € 1nﬂicatdrs otherwise.
C= set if carry {(borrow) ocauﬁ*a Aduring nddj.bion (subtraction) . Also set
to last bit shifted out during a sh&ﬂ: mration. o : .

E L . R) -

‘REGISTERS

‘There are 8 registers in the WD1600. All are 16 bits long.
can be hsed as eilther accumulators or index registers, one is the
stack pointer (SP), and one is the program counter (PC). The registers
are numbered RF - R7 with R6 = SP and R7 = PC; The register set is
usually referred to in the following manner: R - R5, SP, PC.

Six

CHAPTER TWO - INTRODUCTION

ADDRESSING MODES

In general there are 8 addressing modes for both source and
degtination addIESSLHg, Not all op codes accept all 8 modes (see
chapter 3). Those that do iuse the following format: 3 bits for
the index register (R - RS, SP, PC) and 3 bitg for the mode. The
mode bits are the upper 3 bits of the 6 bit set. Thé modes are de-
fined below. The numbers in parenthesis refer to notes that follow
‘the definitions.

MODE _ NAME _ SYMBOLIC . ___ DESCRIPTION
@ birect Register REG REG is or contains operand,
1 Indirect Register @REG REG contains address of operand,
2 Auto-increment (REG)+ REG contains address of operand.
‘ REG is post—incremented (1).
3 Auto-increment @ (REG) + REG containg address of adds
deferred ress of operand. REG is post-
incremented by 2.
4 Auto-decrement ~ (REG) REG is predecremented (l}. REG
. then contains address of operand.
5 Auto-decrement @-{REG) REG is predecremented by 2. REG
deferred then contains address of address
of operand,
6 Indexed register X(REG) Contents of REG plus X is address
. ' of operand. (2}.
7 Indexed register @X(REG) Coritents of REG plus X is address
deferréd of address of operand {(2).

NOTE 1: For word operations the increment/decrement is 2. For byte
operations the increment/decrement:is 1 unless the ipdex register -
is SP or PC. In this case the increment/decrement is always 2.

NOTE 2: The contents of REG remain unchanged.
When using PC as the index register the assembleh.accepts the

foliawing 4 formats in place of the formats mentioned abowve for
ease of programming.

MODE NAME . SYMBOLIC . . DESCRIPTION

2 Irtediate N © Operand N follows op code,.

3 Absolute @#N Address of operand is N and it

' follows the ¢p code in memory.

6 Relative =~ A PC relative offset to address A,

" which contains operand, follows
. _ op code,
7 Relative deferred @A _ PC relative offset to address A,

which contains address of operand,
follows the op code.

The 8 modes are referred to at Source Mode # to Source Hode-?
(sM@ -SM7) and Destination Mode @ to Destination Mode 7 (DM@ -DM7). In
Chapter -3 these modes are referred to in general terms dur;ng op code def-
initions as M™SRC" and "DST".

STACK OPERATIONS

Although automatic stack operations are provided for; no
specific area of memory is set aside for the stack. The user mst
assign an area of memory by loading the stack pointer with the top
address of the designated stack area. Stack operations are push-
-down pop-up operations with predecrements and post—increments of SF.
Stack operations may also be executed explicitly by using 8P &g an
itidex register W1th op codes that allow SM@ ~ SM7 and/or DM@ - DM7
addressing.

When pushing the PS the word is formed just prior to the push
When popping the PS the condition indicatois and interrupt enable flag
are get to the status of the dppropiate bits in the popped PS. Other
than that the popped PS goes mowhere. Unless otherwise stated popping
the P8 from the stack perforis the above fientioned operations and only
the above meritioned operations.

When pushing the PC onto the stack PC will bé set to. thé address
of the op code that follows the op code that caused the plush. There
‘are cases where some op code formats can alter this rule. They gen-
erally involve advanced programming technigues. A few are mentioned
in appendix C. In particular, system eriors that are caused by pro-
gramming errors and riot real time error conditions will push a PC
that points to the op code that follows the op code that caused the
error. The stored PC must be decremented by two to get the ndﬁruss
of the offending op code .

INTERRUPT LINES o _ . "l.'

There are 4 interrupt lines available to the aystsm Tﬁeg'afe
labeled I¥ ~ I3. These lines are assigned functions 'as follows:

7Iﬁ'= Vectored inta;rupt,line

Il = Nonvectored interrupt line

I2 = Bnable/disable for I@g and Il.
I3 = Halt switch o

' The_priofity among the lines is as follows:
I3, I1p12, I@AT2.

Note that I3 is always enabled. Note also that the nonvectored inter-

rupt has prlorlty over the vectored interrupt. The system is currnntly

- set.up so that power: fa11 and a rea} time clock can be assigned to I1,

and up .to 16 devices assigned to 1@. Thé two interrupts operate as follows:

R) Nonvectored Interrupt (I1) _

PS ‘and PC are pushed onto the stack. 1I2 is diSabledi The axternal:
statug register is tested for a power fail. If power fail is true
PC is fetched from location "14". I1f power fail is false PC is
fetched from location "2A", and a microm state ¢ode is transmitted
to clear the line clock (see appendix D).

B) Vectored Interrupt (Ip) ' -
PS and PC are pushed onto the stack. I2 is disabled. An Interrupt ¢4
Acknowledge is executed, and the device code of the interrupt:.ng de= .

~ vice is read in and satripped to bits 1-4. PC is fetched from- location
*NOTE: Although only a 4bit deyice code ia currently used, a minor microm
change can allow a device code of from 1-15 bits.

2

28" and the device code is added to it. The ccntents of this inter-
mediate location are read in and added to PC to form the final address.
Bach intermediate location is a table entry that contains the PC rela-
tive offset from the start of the device handler routine to itself. The
absolute address of the start of the table is in location n2gv,

PRIORITY MASK

_ Associated with the interrupts is a priority interrupt mask. This
is ‘a 16 bit mask where each bit position represents a priority level.
Each priority level can be assigned to one or more devices. A one in-any
bit position can represent an interrupt enable or disable for its associ-
ated devices as the hardware dictates. The SAVS, RSTS, and MSKO op codes
each alter the mask. When the mask is altered it is ertten into location
wop* for storage. While the mask is on the bus a microm state code is
transmitted (see apperdix D) to signal the I/0 devices that a new mask is
being transmitted. Each device can then look at its assigned mask bit
while the memory write to location "“2E" is taking placé. Whether or not
*he mask feature is actually used by the I/0 devices in no "way alters

the operations of the op codes mentioned above.

EXTERNAL STATUS REGISTER

As a part of the hardware external to the CPU the External Status
Megister supplies the CPU, upon demand, with information about the status
of certain hardware areas. This register is gated onto the bus when its
associated microm state code is present (see appendix D). The format
of the register is as follows: : :

Bit 7 = Power Fail Status

Bit 6 = Bus Error (Timeé Out) Status
Bit 5 = Parity:Error Status

Bit 4 = I2 Interrupt Line Status
Bit 3 = Halt Option Jumper #2

Bit 2 = Halt Option ‘Jumper #1

Bit 1 = Power lip Option Jumper #2
Bit ¥ = Power Up Option Jumper #1

Bits 8-15 are don't care. Bits 5-7 are real time error conditions that
also generate a system reset (see next section). Bit 4 is the interrupt
enable status. The jumpers can be logic units, switches, or hard wired
jumpers as theé user wishes. The various options associated with the 4
jumpers are discussed later. S ' '

POWER*UP OPTIONS

A system reset indicate one of 4 conditions: power fa11 bus error,
parity error, Or power up. There are 2 levels of power fail po331b1e in
this system (see appendix C): minor and major. Only a major power fail
generates a system reset. Both types sét bit 7 in the External Status
Register. The following steps are performed after a system reset.

Al) Trace and wait flags are reset if on,
‘AZ) The external Status Register is fetched.

(¥}

A3} The Line-clock-clear state code is transmitted. .
R4) 12 is reset. '
A5) If power fail bit is set go to DI.

A6} If bus error bit is set go to Cl.

A7) If parity error bit is set go to Bl.

AB) Go to D2 othexrwigse.

. Bl} Push PS and PC onto stack. : ‘
B2) Fetch PC. from location "12"and begin execution.

C1l) Push PS and PC onto stack. _
C2) Fetch PC from location "18" and begin execution.

~Dl) Wait until power fail status = §@.

D2) Send a sysStem reset microm state code.

D3} Wait 300 cycles.

D4} Execute power up option 1,2,3 ox 4 per jumpers.

For a proper ‘initial power up either bit 7 must be set or bits 5-7 must
be reset when the system reset line is released.
The 4 power up options are -as follows:

JUMPERS o ' OPERATION
aa - _ .Execute user bootstrap routlna.
&1 Fick up R@~RS, SP, PC, and PS from momory ' '
- locations g-"1g", (]
1@ Execute selected halt optlon.

11 _ _ Fetch PC. from location "16".

HALT OPTIONS

When the halt switch (I3} is set during program execution one of 4 halt
options is selected. The halt op code* and power up option #2 also select
the halt option specified. The options are as follows:

JUMPERS _ __OPERATION
a9 R Execute user bootstrap routine.
gl Save R@-R5,SP,PC and PS in memory locatlons

g=-v1g" . Wait until I3 = @, then restore R@~
R5,SP,PC and PS from memory locations @g-"1g".
1@ Lock up processor (requires a system reset to clear).
11 Fetch new PC from location "16“

*NOTE: Conditional. See Chapter 3.

USER BOOTSTRAF ROUTINE.

when the user bootstrap routine is selected as an option the systém creates

the starting addréss by placing address “Cggg" in PC and ‘then replacing)
bits 8-13 with the contents of the 6 bit External Address Register. This .
register is gated in with a microm status code (sea appendix D). 4

It allows the user 64 different starting addresses in the range rCogs”
tO -llFFﬁﬂ " . . :)

SYSTEM ERROR TRAPS

With thé exception of the major power fail error that is a function
of a system resegt, all error conditions perform a common routine as outlined
pbelow. A non-vectored interrupt and some op codes also dse this routine.

" The numbers in parenthesis refer to notes that follow the table.

1) PS is pushed onto the stack
2) PC is pushed onto the: stack .
3) PC is fetched from location X where "% is from the following table

(1) (2) (3) "12" for bus error PC

(1) {2).(3) "14" for mnonvectored interrupt power fail PC
(1) {(2) (3) "18" for parity error PC

(1) {2):{3) "1A" for reserved op code error PC

(1) (2) (3) "1c" for illeégal op code format error PC
{1)(2) (3) "1E" for XCT error PC

{1) (2) w2g" for XCT trace PC
(1) {2) (3) "2a" for nonvectored interrupt FC
f1y {2y - "2¢" for BPT PC :

NOTE 1: wait flag reset if on
NOTE. 2: trace flag reset if on
NOTE 3: interrupt enable (I2) reset if on

The meaning of the wait and trace flags is discussed in chapter 3. Note
that the nonvectored interrupt power fail PC is a minior power fail condition,
not a major one. See appendix C for full detail on how to include both
major and minor power fail conditions in the hardware. '

RESERVED: CORE LOCATIONS

The fqllowing is a complete list of memory locations that are re-
served for specific system functions or optionsg. Byte addresses are given.

LOCATIONS L RESERVED FUNCTION

g - " RZ ~ RS, SP, PC and PS for power up/halt options
»y1av - 13" bus error PC i
w14 - "15" nonvectored interrupt power fail PC
"lg™ - 17" power up/halt option power restore PC
18" - "1lg" ‘parity error PC

"ip" ~"1B" reserved op code PC

"1Cc" - "1D" illegal op code format PC:

w1lg" = “IF" . XCT error PC

wagn - n21” XCT trace PC

Hg2n = "23" SVCA rable address

"24ht = "25" SVCB PC

n2e" - "27" svcec PC

nag"- “29" vectored interrupt {(I@) table address
H2A" - "2B" nonvectored interrupt (Il) PC

mc” - "2p” BPT PC

“IEM. - 2P I/0 priority interrupt mask

n3g® - "3IF" reserved for floating point option

5

. CHAPTER 3 — OP CODES

This chapter is divided into a ‘humber of sections, each repre-
senting one. ¢lass of op codes. At the beginning of each section there
is a detailed description of the format for that c¢lass. A list of op
codes and their base numeric values, less arguments, is also included.
A detailed description of each op code in the class then follows.

FORMAT. 1 OP CODES

single word - no arguments

15 12 11 8 7 43 o
% 1 @ 7] o |

N There are 16 op codes in this class representing op codes "@@Pe" to
"g@@F" . ‘Each is a one word op code with no arguments with the exception
of the SAVS op code which is a two word op code. Word two of -the SAVS .
op code is the I/0 priority jnterrupt mask. The op codes and thejir mnemonics

are:
BASE OP CODE __ MNEMONIC

e poop NOP

.* - - - RESET

- 2 : IEN.
[k IDS
ggga : HALT
gpgs XCT
Pog6 BPT
eap7 WFI
ggps RSVC
2099 RRTT.
#ega ‘SAVE
peps ’ SAVS
gopc. ‘ REST
@@aD : RRTN
@gRgE - S RSTS
PRgF ' RTT
NOP _ NO OPERATICN
FORMAT : NoP _
FUNCTION: - No operations are performed
'INDICATORS : : tmchanged _
RESET _ L I/0 RESET.

: » FORMAT : . RESET S
g FUNCTION An I/0 resét pulse is transmitted
. : INDICATORS ! Unchanged

IEN INTERRUPT ENABLE

FORMAT : IEN : .

FUNCTION: The interrupt enable (I2) flag is set. Allows
ohe more instruction jo execute before inter-
rupts are recognized.

INDICATORS: Unchanged

IDS. -INTERRUPT DISABLE

FORMAT : 1DS :

FUNCTION: The. 1nterrupt enable (I2) flag is reset.
This instruction can honor interrupts, but
Jthe I2 bit in the PS that is stored on the stack
is reset if an interrupt oceurs. ™

INDICATORS . Unchanged

*NOTE: On some machines I2 will be set .or reset during the- IEN or

IDs

If s the change will be valid immediately, not oneé Op
code later. .

HALT HALT

FORMAT: HALT

FUNCTION: Tests the status of the Power Fail bit in the
external status register. If the bit is set it
is assumed that the HALT occured in a power fail
routine, and the following operationg occurs _
1) The interrupt enable (I2) flag is reset .
2) The CPU waits until the Power Fail bit is reset
3} PC is fetched from location "16", and program

-execution beglns at this new location
If the power fail bit is reset then the CPU waits
until the halt switch {(I3) is set. At that time
the seleécted halt option (see chapter 2) is executed.
: The interript enable flag is also reset.

INDICATORS: Unchanged '

XCT EXECUTE: SINGLE INSTRUCTION

FORMAT: XCT

OPERATION: PC « @spP, SP ¢4
PS + -@sP, SP +
Trace flag set,execute op code
5P, @SP + PS
¢5P, @SP + PC
Trace flag reset
PC 4+ (loc “2g") if no error
PC «{loc "1E") if error

FUNCTION: Pc and PS are popped from the stack, but I2 is net

altered. The trace flag, which disables all ingggw
rupts except 13, is set. The op code is executed
PS and PC are pushed back ontd the stackyand PC

is fetched from location "2@". The trace flag isg
tTeset. If the program tries. to éxecute aHALT ; X
BPT, or WFI the attempt is aborted, PS and PC are

2

pushed onto the stack, and PC is fetched from location "1E" instead.

' 12 is also reset. :
. INDICATORS : Depends upon executed op code
BPT _ e BREAKPOINT TRAP
FORMAT: BPT
OPERATION: 4 SP, @SP <«PS
+ SP, €SP +PC
PC ~-{loc "2C") . _
FUNCTION: ’ PS and PC are pushed onto the stack. PC is
" fetched from location "2C"
INDICATORS: Unchanged
WFI . . _WAIT FOR INTERRUPT
FORMAT : WFI
FUNCTION: The CPU loops internally without accessing
the data bus until an interrupt occurs. Program
execution continues with the op code that follows
the WFI after the interript has been serviced.
The interrupt enable flag is also set.
INDICATORS : unchanged)
SAVE - SAVE REGISTERS -
L FORMAT: SAVE
‘. OPERATION: +SP, @SP+ RS
i +SPp, @S« R4
: 4 8P, @SP+ R3
4+ SP, @SP+ R2
¥8P, @SP + R1
48P, @SP+ Ry :
FUNCTION ; - Re-g_isters- R5 to R are pushed onto the stack.
INDICATORS % _ Unchanged. o
SAVS .)) _ . ___SAVE STATUS
FORMAT : SAVS MASK
‘OPERATION : SAVE
‘ “¥SP; @SP < {(loc "2E")
{loc "2E") %+ (log "2E") V mask
IEN
‘FORMAT : Registers RS to R and the priority mask in location
w2E" are pushed onto the stack. The old and new masks
are ORED together and placed in locatian "2E".)
A mask out state code {see appendix D) is transmitted
and the interrupt enable (I2) flag is set.
TINDICATORS 1 Unchanged :
REST _ _ _ RESTORE REGISTERS
’“ ' " FORMAT ¢ REST

OPERATION: RP < @sp, SP t
: Rl «: @SP, SP ¢4
R2 @sP, SP +

3

R3+ @8P, SP &

R4 « @SP, SP+
R5+ @SP, SP+

FUNCTION: Registers Ry to RS are popped from the stack,
INDICATORS: Unchanged '
RTT RETURN FROM TRAP
FORMAT . RTT
OPERATION: PC +@Sp, SP+
' PS +@5P, SP+
FUNCTION: PC and PS are popped from stack
INDICATORS : N = Set per PS bit 3
Z = Set per PS bit 2
'V = Set per PS bit 1
C = Set per PS bit @
RRTN RESTORE AND RETURN FROM SUBROUTINE
FORMAT : RRTN
OPERATION: REST
PC + @SP, SPF
FUNCTION: Registers R@ to RS and PC are popped
from the stack
INDICATORS: Unchanged
RRTT RESTORE AND RETURN FROM TRAP
FORMAT: RRTT
OPERATION: REST
RTT
FUNCTION: Registers Rg to BS, PC and PS are popped
from the stack. 5
INDICATORS : Set per PS bits # - 3
RSTS RESTORE STATUS
FORMAT : RSTS
OPERATION: {1OC "2E") + @SP, SP ¥
MSKO
REST
m . .
FUNCTION: The priority mask is popped from the stack and
restored to locaton "2E". A MASK QUT state code.
(See Appendix D) is transmitted. Registers W
to By PC and PS are popped from the .stack-
INDICATORS: _ Set per PS bits @ - 3
RSVC . o ___ RETURN FROM SUPERVISOR CALL (B or C)
FORMAT: " RSVC
OPERATION: REST
‘ SBt
RTT

4.

FUNCTION:

INDICATORS 1.

Registers RY to Rg ,' PC and PS are popped from
the stack with the saved SP bypassed,
Set per PS bits @ - 3

FORMAT 2 OP CODES

SINGLE WORD - 3 BIT REGISTER ARGUMENT

15 12 11 ' 8 7 3 2 0

¢ | g | orc XEG

are 4 op codes in this class representing op codes "@@lg"

There

‘o "ﬂﬁZF?, EBach is a one word op code with a single 3 = bit register

argument. The op codes and their mnemonics are:

BASE OP CODE L MNEMONIC

2919 IAK

#g18 RTN

gg2p MSKO

gg28 PRTN

IRK INTERRUPT ACKNOWLEDGE

FORMAT: IAK REG | _

FUNCTION: An interrupt acknowledge (READ and IACK) is
executed, and the 16 bit code that is returned
is placed in REG unmodified. Used with the
nonvectored interrupt when - the user does
not wish to use the vectored format:.

INDICATORS Unchanged

RN __RETURN FROM SUBROUTINE

FORMAT: RIN EREG

‘OPERATION: PC * REG

_ REG + @sP,SPt _

FUNCTION: The linkage register is placed in PC and the
saved linkage register is popped from the stack.
The register used must be the same one that was

. . used for theé subroutine call,

"INDICATORS 1 Unchanged ' ‘

MSKD MASK OUT

FORMAT: MSKO REG

OPERATION:: (LOC "2E") <« REG

: MBKO .

FUNCTION: The ‘contents of gEpG are written into location
“JE" and a MASK OUT state code (see appendix D)

_ is transmitted. ‘

INDICATORS: Unchanded

PRIN POP_STACK AND RETURN

FORMAT # PRTN REG

CPERATION: TMB « @SP
SP <« SP+(TMP*2)

RTN REG

6

FUNCTION: Twice the value of the top word on
the stack is added to SP, and a standard
RTN call is then executed.

INDICATORS ¢ Unchanged

FORMAT 3 OF CODES.
SINGLE WORD -~ 4 BIT NUMERIC ARGUMENT

15 12 1 8 7 4 3
7 1T 7 1T ¢] WJ'

~~ There is only one op code in this class representing op codes
"ga3g" to "GEIP", It is a one word op code with a 4-bit numeric argument.

BASE OF CODE . MNEMONIC
k) ‘ LcC

K . 1OAD CONDITION CODES

FUNCTION: The 4 indicatars are loaded from bits @-3
‘of the op code as specified.
INDICATORS:. N = Set per bit 3 of ap code
% = Set per bit 2 of op code
V = Set per bit 1 of op code
C = Set per bit @ of op code

15

FORMAT ‘4 OP CODES

‘SINGLE WORD - 6 BIT NUMERIC ARGUMENT

8 7 6 5 2

g o | mw]

There are 3 op codes in this class representing op codes

"ﬂﬂﬂ it to s ﬂﬂFF "

All 3 are supervisor calls . All 3 are one word

op codes with a 6-bit numeric argument.

BASE OP CODE

MNEMONIC

o949
wgeg
pace

SVCA

SVCA
SVCB
‘svVCC

SUPERVISOR CALL "A"

FORMAT:
OPERATION:

FUNCTION:

INDICATORS :

svCe

SVCA ARG _

+SP, @SP + PR3+ SP,@SP+ PC

PC « (LOC "22") + (ARG *2)

PC PC + @PC

PS atrid PC are pushed onto the stack. The

contents of location "22" plus twice ‘the value

of the argument (which is always positive) iB placed
in PC to get the table address: The contents

of the table address is added to PC to get the
final destination address. Each table erntry is the:
relative offset from the start of the desired
routine to itself.

Unchanged

SUPERVISOR CALL. "B"

svcc

SUPERVISOR CALL "Cf

FORMAT:

OPERATION:

FUNCTION :

SVCH ARG
svee ARG

TMPA © SP

+sp, @sp+ PS

+8P, @sP + PC

TMPB +SF

'SP, @SP“ TMPA

SAVE .

R1 .+« TMPE

R5 « ARG*2

PC +« (LOC "24") if SVCB
PC « (LOC "28') if svce

- PS and PC are pushed onto the stack. The value
&6f SP at the start of op code execution is the

pushed followed by registers RS to RZ. The address
of the saved PC is placed in Rl, and twice the value

of the 6-bit positive argument is placed in RS.

PC is loaded from location "24"
- for SVCB or "26" for SVCC.
INDICATORS: Unchanged.

10

FORMAT 5 OP CODES

SINGLE WORD - 8 BIT.SIGNED'NUMERIC-ARGUEENT'

15 8 7 @
[OPC ' | DISPLACEMERT]

There are 15 op codes in this class representing op codes
"F138" to "ﬂ?FF" anid "8g@E" to "87FF". All are branches with a
sldhed 8 bit displacement that represents the word offset from PC
{which points to the op code that follows) to the desired branch
location. The op codes consgist on one unconditional branch, 8
signed conditional branches, and € unsigned conditional branches.
No op code in this class modifies any of the indicator flags. Max-

imum branch range is +128, -127 words from the Branch op code..

BASE OP CODE. MNEMONIC

91gp . BR

2209 BNE

@309 ' BEQ

g4ago ‘BGE

2599 BLT

g6p9 BGT

ggg BLE

890 BPL

H190 BMI

8200 BHI

‘8398 ' BLOS

8490 i BVC

8599 BVS.

8600 BCC, BHIS

‘8709 . BCS, BLO.

BR. _ . BRANCH UNCONDITIONALLY
FORMAT : BR DEST _
OPERATION PC #* PC+ (DISP *2)
FUNCTION: Twice the value of the signed displacement

is added to PC.

SIGNED BRANCHES

BNE _ _BRANCH IF NOT EQUAL TO ZERO

FORMAT: BNE LEST

‘OPERATION: IF Z = @, PC + PC + (DISP *2)

BEQ 3 ____BRANCH IF EQUAL TO ZERO _

FORMAT: BE) DEST

OPERATION: IF Z = Y, PC « PC + (DISP *2)

BGE _____ BRANCH IF GREATER THAN OR EQUAL TO ZERO
FORMAT: " BGE LEST

OPERATION: IF N¥V = @, PC « PC + (DISP *2)

1.

BLT - BRANCH IF LESS THAR ZERQO
FORMAT : BLT DEST
OPERATION: IF N¥V = 1, PC. 4 PC + (DISP *2)
BGT BRANCH IF GREATER THAN ZERD
FORMAT: - BGT DEST :
OPERATION: IF 2 V(NW) = @, PC + PC + (DISP *2)
BLE ERANCH IF LESS THAN OR EQUAL TO ZERO
FORMAT: BLE DEST | o
OPERATION: IF zZV(WW) = 1, PC « PC + (DISP *2)
BPL 'BRANCH IF PLUS
FORMAT : ‘BPL - DEST _
OPERATION: IF N = @, PC + PC + (DISP *2)
BMI BRANCH IF MINUS
FORMAT: BMI DEST
OPERATION: IF N = 1, PC « PC + {(DISP *2)
UNSIGNED BRANCHES

BHI BRANCH IF HIGHER
PORMAT: BHI DEST Co
OPERATION: IF CV2 = @, PC +« PC + (DISP *2)°
BLOS . BRANCH IF LOWER OR SAME
FORMAT: BLOS DEST
OPERATION: IF CVZ = 1, PC + PC + (DISP *2)
BVC BRANCH IF OVERFLOW CLEAR
FORMAT: BVC DEST
OPERATION: IF VvV = @, PC « PC + {(DISP *2)
BVS. BRANCH IF OVERFLOW SET _
FORMAT: BVS- " DEST Vi e e i
OPERATION: IF V = 1, PC + ©C + (DISP *2)
BHIS BRANCH IP HIGHER OR SAME
FORMAT: BCC DEST

: BHIS DEST
OPERATION : IF C = @, PC + BPC + (DISP *2)

12

BCS

_BRANCH IF CARRY SET

BLL-

BRANCH IF LOWER

FORMAT i

-QPERATION:

BCS DEST
BLO DEST

IF C = 1, PC4 PC + {(DISP *2)

13

FORMAT 6 OP CODES

SINGLE WORD ~ SINGLE OPS - SPLIT FIELD - DM§ ONLY

15 9 8 6 5 4 3 o
[(orcease | ®eG | opc | COUNT]

There are 12 op codes in this class representing op codes "@Bgg"
to “"@POFF", "88gg" to "8BI9FF", and “gE@@" to “BFFF". There are 4 immedi-
até mode op codes with a register as.a destination, 4 mult:.ple count
single register shifts, and 4 multiple count double register shifts.
In all op codes the actual count (or number in the case of the immedi-
ates) is the value of bits @ - 3 plus one., Count is always a positive
number in the range 1 - "1g", biit it is stored in the op code as § =
"gpi. A1l of these op codes are tne word op codas with the op codes ‘them-
selves split between bits 9- 15 and 4-5. .

In the case of the double shifts the 32 bit number (IEGd-l) :
(REG) is the operand. If REG = PC then (REG+l} = RS

‘BASE OP CODE _ MNEMONIC

L ADDI
C@8lg . : SUBT

gez2g - BICI

#8308 MOVI

a8 SSRR

‘a81g ' SSLR

8s2g SSRA
883g SSLA

‘BEA@ S SDRR

BE1¢ SPLR

BE2@ ‘SDRA

SR 3@ SDLA

ADDI : ___ADD IMMEDIATE
FORMAT; ADDI NUMBER, REG
;OPERATION:: REG 4 REG + COUNT + 1

FUNCTION: The stored number plus one is added to the
destination register: :

INDICATORS: N = Set if bit 15 of the result is set.
% = Set if the result = @
Vv = Set if arithmetic overflow occurs; i.e. get

if both operands were positive and the gign of
the result is negative
, C = Set if a carry was generated from bit 15
- of the result

SUBT ' __ SUBTRACT IMMEDIATE

FORMAT: | SUBI NUMBER, REG
OPERATION: REG « REG - (COUNT +1)
FUNCTION: The stored number plugé one is subtracted from

the destination register

14

INDICATORS t N = Set if bit 15 of the result is set

Z = Set if the result = @ :

VvV = Set if arithmetic underflow occurs; i.e. set
if the operands were of opposite signs and
the sign of the result is positive

C = Set if a borrow was generate from bit 15
of the result.

BICT BIT CLEAR IMMEDIATE

'FORMAT BICL NUMBER, REG

OPERATION: REG <+ REG A{COUNT + 1}

FUNCTION: The stored number plus One is ohe's complemented
and ANDED to the destination register '

INDICATORS : N = Set if bit 15 of the result is set

Z = Set if the result = @

VvV = Reset

¢ = Unchanged

MOVI MOVE IMMEDIATE

FORMAT : MOVI NUMBER, REG

OPERATION: REG < COUNT + 1

FUNCTION: The stored number plus cne is placed in
the destination registeér '

INDICATORS ; N = Reset

Z = Reset

V = Reset

C = Unchanged

SSRR SHIFT SINGLE RIGHT ROTATE.

FORMAT : SSRR REG, COUNT _) ‘

FUNCTION: A 17-bit right rotate is done stored count+l
times on REG:C-Flag. The C-Flag is shifted into
bit 15 of REG, and the C-Flag gets: the last bit
shifted out of REG bit ¢.

INDICATORS: N = Set if bit 7 of REG is set

Z = Set if REG = @

vV = Set to exclusive or of N and C flags

C = Set to the value of the last bit shifted

out of REG bit ¢

SSLR SHIFT SINGLE LEFT ROUTINE

FORMAT : SSLR REG, COUNT

FUNCTION: A 17-bit left rotate is done stored count+l
times on C-Flag:REG . The C~Flag is shifted
into bit # of REG and the C-Flag gets the

last bit shifted out of REG bit 15.

INDICATORS: N = Set if bit 15 of REG is set

Z = Set if REG = @

V = Set to exclusive or of N and C flags

¢ = Set to the value of the last bit shifted
out of REG bit 15.

15

SSRA ' SHIFT SINGLE RIGHT ARITHMETIC

FORMAT: SSRA REG, COUNT f _
FUNCTION: A 17-bit right arithmatic shift is done .
stored count+l times on REG:C-Flag. Bit ;
15 of REG is replicated. The C-Flag gets the
last bit shifted out of REG bit ¢#. PBits shifted
out of the C-Flag are lost.

INDICATORS: N = Set if bit 7 of REG is set
Z = Set if REG = @
Vv = Set to exclusive or of N and C flags
C = S&t to the value of the last bit shifted
out of REG bit @
SSIA SHIFT SINGLE LEFT ARITHMETIC
" FORMAT: SSLA REG, COUNT : _
‘FUNCTION: A'17-bit left arithmetic shift is done stored

counttl . times on C-Flag:REG. Zeros are shifted
into REG bit @, and the C-FLAG gets the last bit
shifted out of REG bit 15. Bits shifted out of the
' C-Flag are lost.
INDICATORS: N = Set if REG bit 15 is set
Z = Set if REG = @
V = Set to exclusive or of N and C flags
C = Sét to the value 6f the last bit shifted
out of REG. bEit 15

SDRR. SHIFT DOUBLE RIGHT ROTATE .
FORMAT: SDRR. REG, COUNT
FUNCTION: REG+1:REG:C~Flag is rotate right stored

count+l times. The C-Flag is shifteﬁ_into
REG+1 bit 15, REG+l bit # is shifted into _
REC bit 15, and REG bit # is shifted into the C-Plag.

INDICATORS : N = Set if bit 7 of REG is set
C Z = Set if REG = & :
V = Set to exclusive or of N and C flags
C = Set to the valua of the last bit shifted
out of REG bit @
SDLER _ SHIFT DOUBLE LEFT ROTATE
FORMAT': SDLR REG, COUNT
FUNCTION: A 33 bit left rotate is done stored count+l

times on C-Flag:REG+L:REG. = - The C-Flag is

shifted into REG bit #, REG bit 15 is shiftea

into REG+1 bit @, and REG+l bit 15 im shifted

into the C-Flag

INDICATORS: N = Set if REG+1l bit 15 is set

Z = Set if REG+]l = ¢

V = Set to exclusive or of N and C flags

C = Set to the value of the last bit shifted —
out. of REG+l bit 15. o

16

SDRA

SHIFT DOUBLE RIGHT ARITHMETIC

FORMAT:
FUNCTION:

INDICATORS:

SDLA

SDRA REG, COUNT.

.R right arithmetic shift is done stored

count+l times on REG+1:REG:C-Flag,
Bit 15 of REG+l is replicated. Bit @ of
REG+1l is shifted to bit 15 of REG. Bit
@ of REG is shifted to the C-Flag. Bits
shifted out of the C-Flag are lost.
Set. if bit 7 of REG is set
- Set if REG = @

Set to exclusive or of N and C flags
Set to the value of the last bit
shifted out of REG bit @

[l

nn

a<wZ

SHIFT DOUBLE LEFT ARITHMETIC

FORMAT':

FUNCTION:

AINDICATORS

SDLA REG, COUNT

A left arithmetic shift is done stored

count+l times on C-Flag:REG+1:REG.

Zeros are shifted into REG bit @, REG bit

15 is shifted to REG#¥1 bit #. REGH1

bit 15 is shifted to: the C-Flag. Bits

shifted out of the C-Flag are. 16st.

N = Set if REG+1 bit 15 is set

Z = Set if REG+l = @

Vv = Set to exclusive or of N .and C flags

C = Set to the value of the last bit shifted
out of REG*1l bit 15

17

[

- FORMAT 7 OP CODES

SINGLE OPS .~ ONE OR TWO WORDS - DM@ TO DM7

15 6 S 3 2 0
1 oPC | MODE [REG |

There are 32 op codes in this class representing op codes
“gA@E" to "PDFF" and “8AgE" to "SDFF". All addressing modes from
to 7 are available with ‘all registers available as index regis-
ters (see chapter two). A one word op ¢ode is generated for ad-
dressing modes # to 5. A two word op code is generated for addres—
sing modes 6 and 7 with the offset value in word two. For DM6 and-
DM7 with PC as the index register PC is added to the offset from word
two affer the offset is fetched from memory. The offset is there-
fore relative to a PC that points to the op- code that follows (i.e.
current op code + 4). Codes "8A@P" to "8CCE" are BYTE opSs-

‘BASE. OP. CODE __ MNEMONIC BASE OP CODE = MNEMONIC
gApg . ROR angg RORB
gaag ROL 8a4g ROLB
[+).521] TST BASY TSTB
gacy ASL 8ACH . ASLB
#Bgg BET 8Bpg SETB
@B4Qg CLR. 8B4g CLRB
[r.): 220 : ASR 8B8g ASRB
gBCH SWAB BBCH SWAD
. [ol" 1"] ‘COM BCEP COMB
gcag NEG : 8c4g NEGB
pgcag ING 8csg INCB
gccg DEC ‘ . acecy DECE
© gDgg Iw2 8@y LSTS
PD4g SXT 804y - 88TS
pD8g TCALL 8p8sy ADC.
#DCg TIMP 8pcg SBC
WORD OPS:
ROR ' ROTATE RIGHT
FORMAT : ROR DST
FUNCTION: A l-bit right rotate is done on (DST):C-Flag

The C-Flag is shifted into (DST} bit 15, and (DST)
bit P is shifted into the C-flag.

INDICATORS : N = Set if bit 7 of (DST) is set

2 = Set if {DST} = ¢ : :

v = Set to exclusive or of N and C flags

& = Set to the value of the bit shifted out of (DST)
ROL ROTATE LEFT
FORMAT: ROL DST.

FUNCTION: A 1-bit left rotate is done on C-Flag: (DST). The

18

—Flag is shifted into (DST) bit @, and (DST)

bit 15 is shifted into the C-Flayg.

INDICATORS « N = Set if bit 15 of (DST) is set
Z = Set if (DST) = ¢
vV = Set to egclusive_or of N and C flags
¢ = Set to the value of the bit shifted out of {(DST)
TST TEST WORD
FORMAT: TST DST
OPERATTION :- (DST) A (DST)
FUNCTION : The indicators are set to reflect the destindtion
operand status.
INDICATORS N = Set if (DST) bit 15 is set
2 = Set if (DST) = ¢
V. = Reset)
C = Unchanged
ASL ARITHMETIC SHIFT LEF'I‘
FORMAT: ASL DST
FUNCTION: A 1-bit left arithmetic shift is done on (DST). A
zero is shifted into (DST)} bit ﬂ, and (DST) bit 15
is shifted intoc the C-Flag.
INDICATORS: N = Set if (DST) bit 15 is set
Zz = Set if (DST) = #
V = Set to exclusive or of' N and C flags
C = Set to the value of the bit shifted out of (DST)
SET SET TO ONES
'FORMAT : SET DST
OPERATION: (DST) « "FFFE¥"
FUNCTION: The destination operand i§ set to a11 ones
INDICATORS : N = Set
Z = Reset
V = Reset
C = Unchanged
CIR CLEAR TO ZEROS
FORMAT: CLR DST
OPERATION: (bsT) «+ @
FUNCTION= The destination operand is cleared to all zeros
INDICATORS : N = Reset
Z = Set
V = Reset
C = Unchanged =f DM#. Reset if DM1-DM7.
ASR _ARTTHMETIC SHIFT RIGHT
FORMAT: “ASR’ DST
FUNCTION: A 1-bit right arlthmetlc shift is done on (DST). Bit®

15 of (DST) is replicated. Bit @ of (DST) is shifted
into the C-Flag.

19

29

INDICATORS : N = Set if (DST) bit 7 is set
Zz = set if (DST) =9
Y u Set to exclusive or of N and C flags
C = Set to the value of the bit shifted out of (DST)
SWAB SWAP BYTES
FORMAT: SWAB DST,
OPERATION = (DST) 15-8 Z (vsT) 7-9
FUNCTION: The upper and lower bytes of (DST) are exhanged.
INDICATORS: N = Set if (DST) bit 7 is set '
7 = Set if (DST) lower byte =9
Vv = Reset
C = Unchanged
‘COM COMPLEMENT
FORMAT: com -DST - X
" OPERATION (DST) « (DST)
FUNCTION: The destination operand is one's complemented.
INDICATORS: N = Set if (DST) bit 15 is set
Z = Set if (DST) = @
V = Reset
C = Set
NEG.. NEGATE
FORMAT: NEG DST
OPERATION : (DST) « -(DST)
FUNCTION : Thé destination operand is two's complementedg
INDICATORS : W = set if (DST) bit 15 is set
%z = Set if (DST) = @
v = Set if (DST) = "“Bggg"
C = Reset if (DST) =@
INC _ INCREMENT
FORMAT: INC DST
_ OPERATION: {DST) + (DST) + 1
 FUNCTION: The destination operand is incremented by ote i
INDICATORS: N = Set if (DST) bit 15 is set
Z = Set if (DST) =@
v = Set if (DST) = "Bgg@g"
C = Set if a carry is generated from (DST) bit 15
DEC DECREMENT -
FORMAT : DEC DST
‘OPERATION: (DST) « (DST) -~ 1
FUNCTION? The destination operand is decremented by one -
IRDICATORS : ‘N = set if (DST) bit 15 is set
7 = Set if (DST) = @
VvV = Set if (psT) = “TFFF"
C = Set if a burrow is genarated from (DST) bit 15

IW2 INCREMENT WORD BY TWO

FORMAT ¢ IWw2 DST

OPERATION : {DST) + (DST) + 2

FUNCTION: The destination operand is incremented by twos

INDICATORS: N = Set if (DST) bit 15 is set
Z = Set if (DST) = ¢ o
v = Set if (DsT) = "8ggg" or "8gg1"

C = Set if a carry is generated from (DST) bit 15

SXT SIGN EXTEND

FORMAT : SXT DST-

OPERATION: IFN=@g, (DSTY+« @

IF N = 1, (DST; + "FFFP"

FUNCTION: The N-Flag status is replicated in the destination operand

INDICATORS: Urichanged

TCALL TABLED SUBROUTINE CALL

FORMAT : TCALL DST

‘OPERATION:. { SP, Q@SP+ PC

PC+ PBC + (DST)
PC+ PC + @PC

PUNCTION:. PC, which points to the op code that follows; is pushed
onito the stack. The destination operand is added to
PC. The contents of this intermediate table address is
also added to ?C to get the final destination address.
Note that at lsast one op code must exist between the
TCALL and the :table for a subroutine return.

INDICATORS ¢ Urichanged

TIMP: TABLED JUMP

'FORMAT: TIMP DST

OPERATION: PC+ PC + (DST)

. PC+ PC + @PC _

FUNCTION : The destination operand is added to PC, and ‘the contents
of this intermediate location is also added to PC to get
the final destination address.

INDICATORS : bnehanged

LSTS LOAD PROCESSOR STATUS

FORMAT :: LSTS - DsT

FUNCTION: The four indicators and the interrupt enable (I2}
are loaded from the destination cperand.

INDICATORS : Set to the status of (DST) bits @ -« 3

SS8TS STORE PROCESSOR STATUS

FORMATS SSTS DST

FUNCTION: The processor status word 1ls formed and stored in (DST).

INDICATORS: Unchanged

21

ADC ADD CARRY
FORMAT: ADC DST
OPERATION: (DST} + (DSTY + C-flag
FUNCTION: The carry flag is added to the destination operand
INDICATORS : N= Set if (DST) bit 15 is set
2 = get if (DST) = @ _
V = Set to éxclusive or of N and C flags
C = Set if a carry is generated from {DST) bit 15
SBC SUBTRACT CARRY
FORMAT:: _ SBC DST
OPERATION: (DST) « (DST) - C-Flag
" FUNCTION: The Carry flag is subtracted from the dnstination operand
INDICATORS : = Set if (DST)} bit 15 is set

Set if (DST) = @
Set to exclusive or of N and C flags
Set if a borrow is generated from (DST} bit 15

o<nNZ
oo

BYTE: OPS

“For DM@ addressing only the lower byte Qf_the destination register
is affected by a byte op code. For DML-DM7 addressing only the speci-~
fied memory byte is affected by a byte op. FoX even memory addresses

the lower byte is altered, and for 4dd memory addresses the upper byte

is altered,

' RORB ROTATE RIGHT BYTE

FORMAT:. RORB DST

FUNCTION: A l-bit right rotate is done on {DST)g.C-Flag., Bit
P of (DST)p is shifted into the C-Flag, and the C-Flag

‘ is shifted into (DST)g bit 7.

INDICATORS: N = Set if (DST)g bit 7 is set
Z = Set if (DST)g = @
Vv = Set to exclusive or of N and C flags
C = Set to the value of the bit shifted ocut of‘{DST}Bbit'ﬁ

ROLB _ROTATE LEFT BYTE

FORMAT : ROLB DST

FUNCTION: A 1-bit left rotate is done on C-flag :(DST)y. Bit 7
of {DST}B is shifted into the ({-flag, and tha C—flag
is shifted into (DSTJB bit ﬂ

INDICATORS: N = Set if {(DST)g bit 7 is set
Z = Set if (DST)g = @
Vv = Set to exclusive or 6f N and C flags
C = Set to the value of the bit shifted out of 1DST}B-bit 7

TSTB TEST BYTE

EORMAT:. TSTB DST

OPERATION: (DST) y A(DST)g

22

: .

FUNCTION: The destination operand status sets the indicators,

INDICATORS: N = Set if (DST)yp bit 7 is set
Z = Set if (DST)g = @
V = Reset
C = Unchanged
ASLB _ __ARITHMETIC SHIFT LEFT BYTE
FORMAT: ASLB DST
FUNCTION: A 1-bit left arithmetic shift is done on C-Flag:(DST)g

A gero is shifted into (DST)p bit @, and {DST)g bit 7 is
: shifted into the C-flag.
INDICATORS : N = set if (DST)g bit 7 is set

Z = Set if (DST)g.= @
V = Set to exclusive or of N and ¢ flags
C = Set to the value of the bit shifted out of (DST)g bit 7
SETB SET BYTE TO. ONES
FORMAT: SETB DST
OPERATION: (DST)g+ "FF"™ -
FUNCTION: The destinatior byte operand is set to all ones
INDICATORS: N = Set :
Z =: Reset
V = Reset
€ = Unchanged
CLRB o . CLEAR BYTE TO ZEROS
FORMAT: - CLRB DST
OPERATION: { DS'-l‘)_'B <« @
FUNCTION: ‘The destination byte operand is cleared to all zeros,
INDICATORS: N = Reset
Z = Set
V = Reset
C = Reset
ASRB _ARITHMETIC SHIFT RIGHT BYTE
FORMAT: ASRB DST
FUNCTION: A 1l-bit right arithmetic shift is done on (DST),:
c-flag. Bit 7 of (DST), is réplicated. Bit @ of
{DST}.. 318 shifted irto the C-flag.
INDICATORS: N « Set if (DST)_ bit 7 is set
Z2 = Set if (DST), = @
V = Set to exclusive or of N and C flags
€ = Set to the value of the bit shifted out of (DS'I‘)B b1t P
SWAD SWAP DIGITS
FORMAT: SWAD DST
FUNRCTION: The two hex digits in the destination byte operand
are exchanged with ea¢h other,
~INDICATORS: J{ = Set if (DST) bit 7 is set

N
% = Set if (DST)B =@

YV = Set if (DST)g bit 7 is get
C = Rsset

23

COMB COMPLEMENT BYTE
FORMAT: COMB DST
OPERATION: {DST)g« TDSTTR _
‘FUNCTION: The destination byte operand is one's complemented
INDICATORS: N = Set if (DST)g bit 7 is aet ‘
Z = Set if (DST)p = §
V = Reset
C = Set
NEGB NEGATE BYTE
FORMAT: NEGB . DST
OPERATION: {DST) .« —{DST)gp _
FUNCTION: The destinatian byta_opprand is two's complemented
INDICATORS: N = Set if (DST)g bit 7 is set
Z = Set if (DsT)g = # ,
v = Set if (DST)y = “8PEg"
¢ = Reset if (DST)p = #
INCB INCREMENT BYTE
FORMAT: INCB DST .
OPERATION: (DST)p« (DST)g + 1 L :
FUNCTION: The. destination byte operand is incremented by one
INDICATORS: N = Set if (DST)p is set =
z = Set if (DS = &
v = set if (DST)gy = "BEEP" o
C = Set if & carry is geperated from'(pswln bit 7
DECB DECREMENT BYTE
FORMAT: DECB psT
OPERATION: (DST)g+ (DST)p - X
FUNCTION: The destination byte operand is decreménted Ly one
INDICATORS : N = Set if (DST)p bit 7 is set

Z = Set if (DST)g = @

Vv = Set if (DST)p = "7FFF"
C = Set if a borrow is generated from (DST)g bit 7

24

FORMAT B8 OP CODES*

‘DOUBLE OPS = SINGLE WORD - SM@ AND DM@ ONLY

15 . 6 5 3 2 "]
| OPC | S REG] DzREG]_

There are 8 op codes in this class representing op codes
"GEFF" to "PFFF". Only addréssing mode @ is allowed for both the
source and destination. All are one word op codes, and all are block

‘move instructions, The last 4 can be used as pseudo DMA ops in some

hardware -configurations. In all cases the scurce register contains
the address of the first word or byte of memcry to be toved, and the
destination register contains the address of theé first word or byte

of memory to receive the data.belng moved. The number of words or
‘bytes being moved is contained in Rf. The count ranges from 1-65536

(# = 65536). words or bytes. The count in R@ is an unsigned positive
integer. None of the indicators are altered by these op. codes.
Bach of these op ches is interruptable at the end of each word

oY byte transfer. 1f no interrupt requests are active the trans-

fers continue. PC is not incremented to the next op code until the
op.code is completed. This allows for complete interruptabllity
as long as reglster integrity is maintained durlng the interrupt.

BASE OP CODE. MNEMONIC
PEPP MBWU
PE4P : MBWD
PEBP MBBU
PECH MBBD
PFPO ' MBWA
prag MBBA
praeg MABW
PFCHE MABB

* NOTE: These op codés are all in the third microm.

- MBWU 7 MOVE BLOCK OF WORDS UP
PORMAT : MBWU SRC, DaT : :
FUNCTION: The word string beginning with the word addressed

by the source register is moved to successively -
increasing word addresses as specified by the des-
tination register. The source and destination reg-—
isters are each incremented by two after each word
is transferred. R# is decremented by one after each
transfer, and transfers continue until R = g.

MBWD MOVE BLOCK OF WORDS DOWN.
FORMAT: MBWD SRC, DST
FUNCTION: The word string beglnnlng with the word addressed

by the source register is moved to guccessively

25

decreasing word addresses as specified by the des-
tination register. The souxce and destination reg=
isters are each decremented. by two after esach word is
transferred. R# is decremented by one after each
transfer, and transfers continue until Rg = .

INDICATORS: Unchanged
MBBU. MOVE BLOCK OF BYTES UF
FORMAT: MBBU SRC, DST
PUNCTION: The byte string beginning with the byte addressed by
' the source register is moved to successively increas-~
ing byte addresses as specified by the destination.
register. The source and destination reglsters are
each incremented by one after each byte is transfer-
red. RP is decremented by one after each: transfer,
- _ and transfers continue until RF = #.
INDICATORS: tnchanged.
‘MBBD MOVE BLOCK OF BYTES DOWN
_ FORMAT: MBED SRC, DST
FUNCTION: The byte string beginning with the byte addregsed by
the source register is moved to successively decreas-—
ing byte addresses as specified by the destination
register. The source register, destination register,
and R{, are each dec¢remented by one after each byte is
transferred. Transfers continue until RF = &,
INDICATORS : Unchanged
MBWA MOVE BLOCK OF WORDS TO ADDRESS
FORMAT: MBWA SRC, DST
FUNCTION: Same as MBWU except that the destination register is
never incrementeéd.
INDICATORS: Unchanged
MBEA MOVE BLOCK. OF BYTES TO_ADDRESS
FORMAT: ‘MBBA SRC, DST
FUNCTION: Same as MBBU except that the ‘destination register is
Never incremented.
INDICATORS Unchanged
MABW MOVE -ADDRESS TO BLOCK OF WORDS
FORMAT: MABW SRC, DST
FUNCTION: Same as MBWU except that the source fegister is never
incrementeds
INDICATORS : Unchanged
MABB _MDVE ADDRESS TO BLOCK OF: BYTES
FORMAT: MABB SRC, DST
FUNCTION: Same as MBBU except that the source regigter is never
incremented.
INDICATORS: Unchanged

26

.

FORMAT 9 OP CODES

DOUBLE OPS - ONE OR TWO WORDS - SM@, DM@ to DM7

15 9 8 8 5 3 2 #
oPC | sre¢c | pmopbE | DREG |

There are 8 op codes in this class representing op codes
"Ig@8" to *TFFF", PHource mode P addréssing only 1s allowed, but des-—
tination modes @ - 7 are allowed for all op codes exoept 3: JSR and
LEA with DM@ will cause an illegal instruction format trap {see chap=
ter 2}, and SOB is a special format unique to itself. It is includ-
ed here only because its destination field is 6 bits long. SOB is
a branch instruction. Its 6 bit destination field is a positive
word offset from PC, which points to the op code that follows, .
backwards to the desired address: Forward branching is not allowed.
S0B is always a one word op code, and it is used for fast loop con-
trol. All other op vodes are one word long for DM# to DM3 addressing
and two. words long for DMé or DM7 addressing. The rules for FC rel-
ative addressing with DM6 or: DM? are the same as they are for the
format. 7 op codes. Preliminary decoding of all these op codes ex-—.
cept SOB pregets the indicator flags .as follows: N = 1, Z = @,
v=@g,C= 1.

BAEs oP CODE MNEMONIC
7088 JSR
7200 LEA
740 ASH.
76080 SOB
7800 XCH
TAPP ASHC
o MUL
TEGP DIV
JSR. o _ JuUMP TO SUBROUTINE
FORMAT: JSR REG, DST
OPERATION : ¢ SP, @SP «REG
REG +PC

) PC «DST

FUNCTION: The linkage register is pushed onto the stack; PC,

which points to the op code that follows, is placed
in the linkage register; and the destination add-
ress is placed in PC. DM@ is illegal. The assem-
bler recognizes the format "CALL DST" as being
equivalent to "JSR PC, DST".

INDICATORS : Preset

LEA o LOAD EFFECTIVE ADDRESS
FORMAT:: LEA REG, DST
OPERATION: REG + DST

27

FUNCTION: The destination address is placed into the source
registeér. DM@ is illegal. The assembler recognizes
the format "JMP DST" as being equivalent to “LEA PC,DST". .

INDICATORS Presat

 XCH EXCHANGE

FORMAT: XCH REG, DST

OPERATION: REG Z(DST)

FUNCTION: The source register and destination contents are

' exchanged with each other.

INDICATORS: Preset

SOB SUBTRACT ONE AND BRANCH (IF # @)

FORMAT: SOB REG, DST

OPERATION: REG< REG - 1
IF REG # @, PC <« PC ~(OFFSET *2)

FUNCTION: The source register is decremented by one. If the
result ig not zero then twice the value of the des-
tination offset is subtracted from PC,

INDICATORS: Unchanged

ASH ARITHMETIC SHIFT

FORMAT: ASH REG, DST

FUNCTION:. The source register is shifted arithmetically with
the number of bits and directiocn specified by the .
destination operand. If (DST) = @ no shifting occurs.
If (DST) = ~X then REG is shifted right arithnntically
X bits as in an SSRA. If (DST) = #X then REG is shifted
left arithimetically X bits as in an SSLA. Only an 8
bit destination operand is used. Thus, DST is a byte
address. For DM@ only the lower byte of the destin-
dtion register is usged.

INDICATORS: Preset if (DST) = @ . Otherwise:

‘ N = Set if REG bit 15 is set
2z = Set if REG = §#
v = Set to exclusive or of N and C flags
C = Set to the value of the last bit shifted out of REG

ASHC ARITHMETIC SHIFT. COMBINED

'FORMAT: ASHC REG, DST

FUNCTION: Exactly the same as ASH except that the shift is done
on REG+1:REG. All other commehts apply.

INDICATORS: Preset if (DST) = @g. Otherwise,

N = Set if REG+1 bit 15 is set

‘7 = Set if REG+1l: REG = @

V = Reset
C = Set to the value of the last bit shifted out

28

MUL MULTIPLY

FORMAT: MUL REG; DST

QOPERATION: REG+1:FEG « REG *{DST)

FUNCTION: An unsigned multiply is performed on the source
register and the destination operand. Thie unsigned
32 bit result is placed in REG+1:REG.

INDICATORS: N = Set if REG+1l bit 15 is set
Z = Set if REG+1:REG = ¢
V = Reset
¢ = Indeterminate

DIV DIVIDE

FORMAT: DIV REG, DST

OPERATION: REG + [REG+1:REG/ (DST)]
REG+1 i REMAINLER

FUNCTION: An unsigned divide is performed on the 32 bit source
operand REG+1:FEG and the destination operand. The
unsigned result is placed in REG, and the unsigned
remainder is placed in REG+1.No divide occurs and the
v-flag is set if REG+l is greater than or squal to (DST)
since the result will not fit into 16 bits. If the
divisor is zero both the V and C flags are set.

IMDICATORS: I1f no division @&rrors:

N = set if REG bit 15 is set
2 = Set if REG = ¢

V = Reget

C = Indeterminate

1f division error:

N = Reset

Z = Reset.

vV = Set.

C = get if (DST) = ¢

29

FORMAT 10 OP CODES

DOUBLE OPS - ONE TO THREE WORDS - SM@ TO SM7, DMJ TO DM7.

15 12 11 9 B &€ 5 3 2 . g
[P | =S Moo | S REG]| D MODE | D REG |

There are 12 op codes in this claas representing op codes "1@gg"
to "6FFF" and "9g@gd" to “EFFF". Nine of the op codes are word ops.
Three are byte ops. Full source and destination mode addressing with
any register is allowed. A one word op code is generated for SM@-

SM5 and DM@-DM5 addressing. A two word op code is generated for either
SM6-SM7 or DM6-DM7 addressing, but not both. For both SM6-SM7 and
DME-DM7 addressing a three word op code is generated, For a two word
op code with word #1 at location X: X +. 2 contains the source or
destination offset and PC = X + 4 if PC is the register that applies.
to the offset in location X + 2, For a three word op code with word

#1 at location X: X + 2 contains the source offset and X + 4 contains
the destination offset. If the source register is PC then PC =X + 4
when added to the offset to compute. the gsource address. If the destin-
ation register is PC then PC = X + 6 when added to the offsat to compute
the destination address. :

BASE OP CODE MNEMONIC
1ggg¢ ADD
2098 SUB
3ppe AND
4pa9 BIC
Segp BIS
6ase ¥OR
‘ogpg CMP
rgpg BIT
BPgG MOV
cope “CMPB
oggg MOVB
EGPp BISB
WORD OPS
ADD ADD
FORMAT: ADD SRC, DST
OPERATION: (DST) + (SRC) + (DST)
FUNCTION: The source and destination operands are added to-
' gether, and the sum is placed in the destination.
INDICATORS & N = Set if (bST) bikt 15 is met -~ = =

7z = Set if (DST) = @ -

v = Set if both operands were of the same sign and
the result was of the opposite sign -

C = Set if a carry is generated from bit 15 of the
result

30

oy

SuB SUBTRACT

FORMAT: SUB SRC, DST

OPERATION: (DST) < (DST) - {SRC)

FUNCTION: The two's complement of the source operand is added
to the destination operand, and the sum is placed
in the destination.

INDICATORS : N = Set if (DST) bit 15 is wet
7 = Set if (DST) = ¢
Vv = Set if operands were of different signs and
the sign of the result is the same as the sign
of the source operand
C = Set if a borrow is generated from bit 15 of the
result

BND __AND

FORMAT : AND SRC, DST

OPERATION: {DLT) «~+{SRC) A (DST)

FUNCTION: The source and destination operand= are logically
ANDED together, and the result is.placed ih the
destination. .

INDICATORS : N = Set if {(DST) bit 15 is set
% = Set if (DST) =@

V = Reset
.C = Unchanged

BIC _BIT CLEAR

FORMAT : BIC SRC, DST

OPERATION: {DST) + (SRC)A(DST)

FUNCTION: The one's complement of the source operand is 1og-
ically ANDED with the destination operand, and the. .
result is placed in the destination. '

INDICATORS: N = Set if (DST) bit 15 is set
Z = Set if (DST) = @

V = Reset
€ = Unchanged

BIS __BIT SET

‘FORMAT: BIS SRC, DST

‘OPERATION: (DST) <« {SRC) ¥ {DST)

FUNCTION: The source and destination operands are logically
ORED, and the result is placed in the destination.

INDICATORS: N = Set if (DST) bit 15 is set
Z = Set if (DST) = @

'V = Reset
¢ = Unchanged

XOR_ EXCLUSIVE OR

‘FORMAT: HOR. SRC, DST

OPERATION: (DST) <+ *(SRC) & (DST)

‘FUNCTION=: ‘The source and destination operands are logically EX-

CLUSIVE ORED, and the result is placed in the destination.

31

INDICATORS : N = Set if (DST) bit 15 is set
Z = Set if (DST) = ¢
V = Reset '
C = Unchanged
CMP __COMPARE
FORMAT : CMP SRC, DST
OPERATION:: (SRC) - (DST)
 FUNCTION: The destination operand is subtractad from tha
' ' source operand, and the result sats the indicators.
Neither operand is alterxed. ,
INDICATORS: N = Set if result bit 15 is set
' 2 = Set if result =@
Vv = Set if operands were of opposite sign and the
sign of the result is the sama as the sign of (DST)
C = Set if a borrow is generated from bit 15 of the
result
BIT BIT TEST
FORMAT: BIT SRC, DST
OPERATION: - {SRC) § (DST)
FUNCTION: The source and destination operands arg logically
' ANDED, and the result sets the :I.nd:l.catorc lhithlr
operand is altered.
INDICATORS: N = Set if result bit 15 is set
Z = Set if result = ¢
Vv = Reset
€ = Unchanged
MOV MOVE
FORMAT: MOV SRC, DST
OPERATION: (DST) & (SRC)
FUNCTION: The destination operand is replaced vith. the source
P operand-
“INDICATORS: N = Set if (DST) bit 15 is set
Z = Set if (DST) = #
V = Resget
€ = uUnchanged

For SMJ addressing only the lower byte of the source register is
used as an operahd. For SM1-SM7 addressing only the addrdssed mamoxy
byte is used as an operdnd. For DM addressing onli the lower byte

of the destination register is used as ah operand W

th one emption 3

‘MOVE will extend the sigm through bit 15. For DM1-DM7 addreseing only
the addressed memory byte is used as an operand.

CMPB COMPARE_BYTE
 FORMAT:. CMPB SRC, DST
OPERATION: (SRC)g - (DSTip

32

“a

FUNCTION: - The destination operand is subtracted from the
source .operand, and the result sets the indicat-
ors. MNeither cperand is altered.

INDICATORS: N = Set if result bit 7 is set
2 = Set if result = ¢
V = Set if cperands were of different signs and
‘the sigri of the result is the same as the sign
of {DST)B.

= Set if a borrow is generated from result bit 7

MOVE MOVE BYTE

FORMAT: MOVE SRC, DST

OPERATION: (DST)p =« (SRC)p

FUONCTION: The destination operand is replaced with the source
operand. If DMJ the sign bit (bit 7) is replicat-

; ed through bit 15.

INDICATORS: N = Sét if {DST)B bit 7 :|.s set
7 = Set if (DSTig = #

V = Reset
C = Unchanged

BISB BIT SET BYTE

FORMAT: BISB SRC, DST

OPERATION: (DST)g~ “(SRC)g V (DST)p

FUNCTION: The source and destination operands. are 1ogically
ORED, and the result is placed in the destination.

INDICATORS: N = Set if (DST)g bit 7 is set
Z = Set if (DST)p = @

vV = Reset
€ = Unchanged

when using auto increments or decrements in either the source
or destination {or both) fields the user must remember the following
rule: ' All increments or decrements in the socurce are fully completed
before any destination decoding begins even if the same index regis-
tar is used in both the source and destination. The two fields are
totally independent.

33

FORMAT 11 OP CODES

DOUBLE OPS - OME WORD - FLOATING POINT.

-15-.._ 12 11 g 7. 8 4 g
L 1n | oec 11l SRC__] 1] _ DST L]

There are 16 OP Codes in this class representing OP Codes "Fg@® to
"gFPFF". Only five are currently defined. They reside in ‘the third
-microm along with the Format 8 OP Codes, The remaining 11 oP Codes
are mapped to the fourth micyom for future expansion or customlzed
user OP Codes. All are one word long. Two source and destination
addressing modes are available. These two modes, FP§ and FPl, are
unique to thege OP Codes. Each consists of a 3~bit Register Desig-
nation &nd a 1 bit indirect flag preceeding the registsr designator.
For FP@ the indirect bit is ¢, and FP1 it is ona. Both the source and
destination fields have both addressing modes. The modes are defined
ag follows:

FPP The designated register contains the address of the Opera:id;

FPLl The designated register contains the ‘address of the address
of the operand. . :

" FP@ ig the same as standard addressing mode 1, and FP1 is the same
- as standard addressing mocde 7 with an offset of zero. o
The computed address is the address of the firat word of a 3 word.
floating point operand. The first word contains the sign, exponent,
and high byte of the mantissa. The next higher address contains the
middle two bytes of the mantissa, and the next higher address aftax
that contains the ‘lowest two bytes of the mantissa. This format is
half way between single and double precision floating point formats,
and it represents the most efficient use of microprocessor FOM and.
register space. The complete format is as follows:

1. A 1 bit sign for tﬁe entire number which is zerv for positive.

3. An 8-bit base-two exponent in excegs-128 notation with a range of
+#127, -128. The only legal number with an exponent of -128. is
‘true zero (all zeros).)

3. A 40 bit mantissa with the MSB implied.

Since every operand is assumed to be normalized upon entry and every
result is normalized beforé stcrage in the destination addresses,
and sirce a normalized mantissa has a MSB equal to one, then only 39
bits need to be stored. The MSB is implied to be a one; #nd the

bit position it normally occupies is taken over by the exponent. to
increage its range by a factor of two. " The full format of a floating
point operand is a follows: :
a 76

LOCATION X:. . ' {HI!
_ 15 8 7 - g
LOCATION X+2: |___ MANTISSA ., (MIDDLE) |
15 8 7 jj
LOCATION X+4: [MANTISSA (LOW)

34

True zero is represented by a. field of 48 zerces. 1In effect, the CPU
considers any number with an exponent of all zeroes (-~128) to be a zero
during multiplication and division. For add and subtract the only legal
number with an exponent of ~128 is true zero. AaAll others cause erronecus rosult#i
No registers are modified by any Format 11 OP Code. However, to make room
internally for computations 4 registers are saved in memoxy locations

30" - "38" during the exelution of FADD, FSUB, FMUL and. FDIV These
registers are retr;eved at the completlon of the OF Codes. The.

registers saved are: the destlnation address; SP, PC and R#. No

Format 11 OF Code iz interruptable (for obvious reagons). FMUL uges
location. *38" for temporakxy storage of partial results,

FLOATING POINT ERROR TRAPS

lLocation "3E" is defined as the floating point error trap PC. When-
ever an overflow, underflow, or divide by zero occurs a standard trap
call is executed with PS and PC pushed onto the stack, and PG fetched
from location "3E"™. 1I2 is not altered. The remaining memory locations
that are reseérved for the floating point optLOn ("3a and "3C") are

not currently used. The status of the indicator flags and destina=
tion addresses during the 3 trap conditions are defined as follows-

FOR UNDERFLOW (FADD, FSUB, FMUL, FDIV)

N=1 pDegtination contains all Zzeroces

Z2=24 {true zero).

val '

C = g A
FOR OVERFLOW-(FADD, FSUB,;FMUL}

N =w¢' Destination not altered in any way.

v =1

c =@

FOR- OVER FLOW (FDIV)

N =4y Destination not altered if overflow detected
zZ =g during exponent computatiun. Undefined
v =1l otherwise. (Used to save unnormalized
Ceg partial results during a divide).

FOR DIVIDE BY ZERO (FDIV)

Destination not altered in any way.

(oL - I
‘R
RS-

RESERVED TRAPS

'If the third microm is in the system and the fourth is mot then the
last 11 floating point OP codes are the only cones that will cause a
raserved OP c¢ode trap if executed. TIf the third microm is mnot in the
system then all Format 8 and 11 OP Codes will cause a reserved OP code
trap if executed. - However, since theé Format B OP Codes. are: interrupt~

as

able the PC is not. advance until the completion of the moves. In
all other cases PC ig advanced when the OP Code is fetched. For

~ these reasons the PC that is savad onto the stack will point to the
' offending OP Code during & reserved OP Code trap if and only if
thée offending OP Code is a Format 8 OP Code. For the Format 11

OP Codes the saved PC will point to the OP Code that follows the
offending OF Code. If the User wishes to identify which OP Code
caused the reserved OP Code trap he must not preceed a Foitat B

oP Code with a Format 11 OP Code or a literal that looks like a
Format 11 OP Code.

BASE OP CODE ‘ MNEMONIC

FEOR . FADD
Flog FSUB
F29¢ FMUL.
-F3g@ FDIV
ragg ‘ _ FCMP
F&g@
- F99
FBgg
Fogy
FAQY
FB@
Fcgg
FDPP
FEBP
Frog
FADD FLOATING POINT ADD
FORMAT : - FADD SRC,DST
OPERATION: (DST) + (DST) + (SRQC).
FUNCTION: 4 The source and destination operands are added

together, normalized, and the result is stored

in ‘place of the destination operand.
INDICATORS : (if no errors)

N = Set if the result gsign -is negative (set).

Z = Set if the regult is zéro

V « Resst
C = Reget
. PSUB " FLOATING POINT SUBTRACT
 FORMAT: FSUB SRC, DST,
OPERATION: (DST) « (DST) ~ (SRS}
FUNCTION: The source operand isg subtrac&ed ‘from the

destination operand. The result is normaliged
and stored in place of the destination operand.

WARNING: THIS OP CODE COMPLEMENTS THE SIGN OF THE SOURCE OPERAND IN
MEMORY AND DOES AN FADD.
INDICATORS 3 ' (4f no errors)
N = Set if the result sign is negative (aet)
7 = Set if the result is zero.

36

V = Resget

C = Reget
FMUL, FLOATING POINT MULTIPLY "
FORMAT: FMUL SRC, DST
OPERATION: {DST) «+{DST) *(SRC)
FUNCTION; The source and destination operands are multi-
. ;plied togather, normalized, and the result is
stored in place of the destination operand.
INDICATORS: (if no errors)
N = Set: {f the sign of the result is negative (set).
‘2 = Set if the result is zero
V = Resgset
¢ C = Reget
FDI1IV FLOATING POINT DIVIDE
FORMAT @ FDIV SRC, DST
OPERATION: (DST) +(DST)Y / (SRC)
- FUNGCTION: The destination coperand is divided by the gource
operand. The result is normalized and gtored in
Place of the destination operand,
INDICATORS; {1f no errors)
N = Set if the sign of the result is niﬁlElVi (sat) .
Z = Set if the result is zero
= Resgeét
C = Reset
.-FCMP FLOATING POINT COMPARE
‘FORMAT: FCMP SRC, DST
OPERATION: (SRC)~ {DST)
FUNCTION: The destination operand is compared to the source
' operand, and the indicators are set to allow
a SIGNED conditional branch.
INDICATORS : N = Set if result is negative

Z = Set if result is zero
V = Set if arithmetic underflow occurs.*
C = Set if a borrow ig generated. * '

*NOTE: True if first words - of both operands are not.equalf

CAUTION: The same physical operand may be used as both the source and
destination operand for any of the above floating point OP

Codes with no abnormal results except two. They are:
1) If an error trap occurs the operand will probably be altered.
2) BAn FSUB gives an answer of -2x%, if % # @, instead of @.

37

APPENDIX A

NUMERIC OP CODE TABLE

‘OP_CODE L - _ _ MNEMONIC
goge @ege vege Pegp NOP
gogp gopp opge 2esl RESET
2gge @Pee gege gel1p IEN
gege ggog @ogg @P11 IDS
Pgeg pees @ppg plog : HALT
o098 9ogpe @gEpg P19l : XCT
Popg pgoE gege 8119 BPT
Pgee @dod ppes P11l WFI
ggee @pag @gpe 19P¢ RSVC
opeg Joop Pedg 1991 RRTT
Pppe @pge peed 191p SAVE
goop @pde gege 1p11 SAVS
#pgp gege gegd 11p@ REST
gopg @@pe @ese 11g1 RRTN
poog pogg 20908 1114 . RSTS
gopes @gpe @ggg 1111 RTT
ggps 9Ogg@ P@gPl PREG IAK
pge@ @geg @e@l 1REG RTN
Pgeg Pegg @gly PREG MSKO
P¢0g pg@p @218 1REG PRTN -
29pP @Pg@ @@Ll ARGU LCC
Ppge @@Pp 1P9AR GUME . SVCB
gggd @¢@@P 11AR GUME _ svee
Pp¢@ @pP@Fl DISP LACE BR -
¢@@p @@18 DISP LACE BNE -
g@@@ @G@Fll DISP LACE BEQ
@#@@g @1PF DISP LACE BGE
PggF @1p1l DISPF LACE BLT
gg@g @11 DISP LACH - BGT
@g@@ @111 DISP LACE BLE
#9g¢ 19PR EGPF VALU ADDI
PgPg 1ggR EGPL VALU SUBI
ggpg 1¢gR EG1F VALU BIcI
Pgg@. 1ggR EGl1l. VALU MOVI
gogg 1918 P@gMO DREG ROR
gege 191g @IMI- DREG : ROL
ge@@ 1¢1@ 1$MO DREG TST
go@@ 181¢ 11MO DREG ASL.
ggg@ 1§11 @gMO DREG " SET
#@g@ 1P11 @1IMO- DREG . CLR.
g@g@ 1§11 1gMO DREG ASR.
#P@d 1411 11MO DREG : SWAE
Pgge 1149 @PMO. DREG coM
pgg@ 11g@ @G1MO DREG NEG
@pg@ 119¢ 1PMO DREG _ INC
#g@g 11@¢ 11MO DREG DEC

OP CODE

gggg 11p1 @PMO DREG w2
9998 1191 PIMO DREG 8XT
PPgg 11g1 1pMO DEREG TCALL
gggg 1191 11M0 DREG TIMP
ggpgg 111p @@SR CDST MBWU
@g@@ 111¢ PISR CDST MBWD
gggy 1119 19SR CDST MBBU
gg@g 111 11SR CDST MBED
@gp@ 1111 Q@SR CDST MNBWA
Pggg 1111 @ISR CDST MBBA
@gggg 1111 14SR CDST’ MABW
@#ggd 1111 11SR CDST MABR
@Pgl SRCR EGDS TREG ADD
g@Fl@ SRCR EGDS TREG - 8UB
@F11 SRCR EGDS TEREG AND
Plgg SRCR EGDT TREG BIC
g1l SRCR EGDT TREG BIS
g11¢ SRCR EGDS TREG ¥OR
#111 @@FR RRDS TREG JSR
@111 @J1R RRDS TREG “LEA
@111 @1PR RRDS - TREG ASH
@111 @llR RROF FSET SOB
_#111 1ggR RRDS TREG _ XCH
@111 1P1R RRDS TREG ASHC
@111 11gR RRDS TREG MUL
#111 1ll1R RRDS TREG - DIV
1ggd @dg@d DISP LACE BPL
1gggd PEFl DISP LACE BMI
1¢9@ @glg DISP LAUE BHI -
1¢@g@ @@gll DISP LACE BLOS
199¢ @lgg DISP LACE BVC
1998 @191 DISP LACE BVS
1ggg @11¢ DISP LACE BCC,. BHIS
1¢9¢ @111 DISP LACE BCS, BLO
1¢99 199R EGEE VALU BSRR
199 196R EGEL VALU SSLR
1gg¢ 1¢ggR REGlg VALU SSRA
1999 1gPR EGL1 VALU SSLA
1g@g 1919 @@MO DRBG ‘RORB
1999 191g JIMO DREG ROLB
1ggd 1g1g 1PMO DREG TSTB
1¢9@ 19lg 11M0 DREG ASLB
1ggg 1@11 9gMO DREG Eﬂ'g
19@9¢ 1911 @1MO DREd CLR
1999 1911 1PMO DREG ASRB
19g¢ 1811 11M0 DREG SWAD
1999 1194 @PMO DREG COMB
149¢ 11g¢9 @1M0 DREG NEGB
194¢ 1199 1gMO DREG INCB
19g¢ 11g@ 11MO DREG DECB

OP CODE ' . _ . . MNEMONIC

1¢g@ 1191 @PMO DREG LSTS
1¢g¢ 11p1 PIMO DREG SSTS
1299 11¢1 1gMO DREG ADC

1¢¢@ 11¢1 11MO DREG SBC

1¢¢¢ 111R EG@@ VALU _ SDRR
198 111R EGF1 VALY SDLR
1gg9 1R EGL VALU ~ soma
19¢¢ 111R EGll VALU SDLA
1gp1l SRCR EGDS TREG CMP

1P1F SRCR EGDS TREG BIT

1411 SRCR EGDS TREG _ MOV

11 SRCR EGDS TREG . CMPB
1191 SRCR EGDS TREG : MOVB
111 SRCR EGDS TREG BISB
1111 @@@@F ISRC IDST. FADD
1111 @@gl ISRC IDS3T , | PSUB
1111 @@glg ISRC IDST " FMUL
1111 @@ll ISRC 1IDST FDIV
1111 @1g¢ ISRC IDST FCMP

1111 @1gl ISRC IDST
1111 P11 1ISRC IDST
1111 $111 1ISRC IDST
1111 1¢gg@ ISRC IDST
1111 1p¢1 ISRC IDST
1111 1p1g ISRC IDST
1111 1P11 ISRC IDST
1111 11¢¢ ISRC IDST
1111 11¢1 TISRC IDST
1111 111g ISRC IDST
1111 1111 ISRC IDST

APPENDIX B

ASSEMBLER NOTES

FORMAT 1 OP CODES:

Bll are one word-op codes except SAVS which is a two word op
code. The second word of the SAVS op code is an absolute value,

FORMAT 2 OP CODES

All are one word with a 3 bit register argument

FORMAT 3 OP CODE

A one word op code with 4 4 bit numeric argument

FORMAT 4 OP CODES

All are one word with a & bit numeric argument

FORMAT 5 OP CODES

All are éne werd with an 8 bit signed PC relative word die-
placement. The displacement is relative to op code+2. Maximum
dinplacement from the op code is +128, =127 words. :

FORMAT & OP CODES

All are one word with a 3 bit register and a 4 bit numeric argu-
ment. The stored numeric arguméent is a positive number from g -"F"
that equals the actual numeric argument (1-"14") minus one.

FORMAT 7 OP CODES

All are one word op codes for DMJ - DM5 addressing and two word
op codes for DM6 - DM7 addressing. For DM6- DM7 addressing the off-
set is in the second word. If the index register is PC with DM6 -
DM7 the &ffset is relative to op code+4.

FORMAT 8 OP CODES

All are one word with a 3 bit source and a 3 bit destination reg-
ister argument. The count register is implied to be RF.

FORMAT @ OP CODES

All have a 3 bit register argument with a 6 bit destination argu-
ment that allows DM@ - DM7 addressing. For DM@ - DM5 ‘a one word op code
is generated, For DM6 =~ DM7 a two word op code is generated with the
offset in word two. Lf the index register is PC with DM6-DM7 then the
offset is relative to op code+4. : :

FORMAT 10 OP CODES

All have a 6 bit source and a 6 bit destination argument that
allow SM@ - SM7 and DMJ - DM7 addressing. For SMJ - SM5 and DMJ -
DM5 combined addressing & one word op code is generated. For SM6-
SM7 or DM6 - DM7 but not both a two word op code is generated with
the offset in word two. If the field with mode 6 or 7 addressing
uses PC as the index register then the offset is relative to the op
code + 4. For SM6 - SM7 and DM6 - DM? combined addressing a 3 word
op code is generated. Word two containg the source offset, and
word 3 contains the destination offset. For SM6 = SM7 with PC the
offset is relative to the op code + 4. For DM6 - DM7 with PC the
offset is relative to the op code + 6.

Any autoincrements/decrements in the source are fully comple-
tad before any destination decoding bégins.

‘FORMAT 11 OP CODES

All are one word op codes with a 4 bit.souzce.and a 4 bit des-
tination argument. Each argument c¢onsists of a 3 bit register ar-
gument preceeded by a 1 bit indirect argument.

APPENDIX C

PROGRAMMING NOTES

Several of the op codes and addressing modes have person-
allty pecullarltles that the user should be awvare of. Most of
these can be put to good use in particular situations. This
appendix attempts to list most of them.

IEN: This instruction allows one more instruction to begin ex-
ecution before enabling I2.

IDS; This instruction allows one more instruction to begin ex-
ecution before disabling I2. 1IDS is therefore interruptable.
If such a situation occurs the status of I2 that is included
in the pushed PC will equal g

HALT: There is no halt in the microcode. A selection of op-—
-tions is therefore viven that allows the user to define HALT for
himselt.

ADDRESSING MODES

In order to clarify the function of the various address- o
ing modes several programming examples are given. In each case -
assume that the. first word of the op code is at location x. E

SET Rg@
Register R{ is éet-to all ones.

CLR_@R2
The memory location pointed to by R2 is cleared to Zeros. - If R2
contained a "@#1gg" the memory word address “ﬂlﬂﬂ" would be clearad.q

INC (R3)+

The memory location pointed to by R3 is incremented by one. R3 is
then incremented by 2.

DEC (PC)+

location X + 2 is decremented by one, and progrém'édntrSI_is ad-
vanced to location X + 4. This allows for in-line literals in a
program, a method that saves a word of ‘memory in most cases..

SWAB @(R4)+

If R4 contains a "@#l@gp" and location “ﬂlﬂﬂ“ contains a "@2@%" then
the two bytes in location "ﬂzgﬂ" are swapped and R4 is incremented
to “@igav, .

1&

COM ~-(R5)

R5 is decremanted by twoi_fThe_address specified by the altered B5
is oné's complemented. :

NEG ~(PC)

A BOZO no-no since location X is the location negated and program
control is again transferred to location X after the negation is
completed. :

TST @8-(R1)

IfR= “¢1¢4ﬁ and Iocatiqn~"¢1¢2" contains-ag"lﬁﬂﬂ“ithen the following

sequence occurs: (1) Rl is decremented by 2 to "@g1g2". (2) The contents

. of location "@1@2" (i.e. "1gg@g") becomes the address of the operand
to be tested.. ' - - : '
" ROR 4(R4)

The contents of memory location R4 + 4 is rotated right. R4 is not
alteryad. Word two of this op code dontains a 4. Program control is
advanced to location X + 4 at the completion of the rotate. '

ROL @6 (SP)

The contents of memory location SP + 6 contains the address of the:
operand to be rotated. Word two of this 6p code contains a 6. Pro-
‘gram control is advanced to jocation X + 4 at the completion of the
rotate. ' :

ISR PC,TAG |

Location X + 2'contains!the'byte offset from location'“TﬁG"tq 1o¢ation‘
X + 4. The address of location X + 4 is pushed onto the stack, and the

" address of location "TAG" is placed in PC.

JSR PS5, TAG .

Location X + 2 contains the byte offset from location "TAG" to location

X + 4. The content of register RS is pushed onto the stack, the ad-
dress of location X + 4 is placed in R5; and the address of leocation
“TAG" is placed in PC. .

JSR PC, (R4)+

Location X + 2-is ﬁdﬁhed ohto the stack, R4 is moved to PC, and R4 is
incremented by two. - N '

JSR PC,@(gP)+

This is a ge-routine ca;lﬁ_'Pay attentiont -
1) The contents of the lotation pointed to by SP is saved in CPU
" register "TMPA".. :

2) SP is incremented by two. _
3) The address of location X + 2 is pushed onto the stack
4) CPU register “TMPA" ig moved to PC

The effect of all thig is to swap the top word on the stack
with the addréss. of location X + 2 without altering SP or stack size.
Consider the followirig routine,
SUBR: JSR PC; 2(PC) '
TAGA: ISR Pc Q(pc)
TAGB: . S

RTN PC

The first ISR places the address of TAGA on the stack and exe-
cutes the routine starting at TAGBE. The RTN PC transifers control
to: location TAGA whern it is executed. The-sécond ISR places address
TAGB onto the stack and into PC, effectively leaving PC unaltered.
The second. time the RTN PC is executed program control passes to lo=
cation TAGE. The third time the RTN PC is executed program control
passes back to the routine that call subroutine SUBR. Since TAGA
and TAGE are never addressed explicitly both of the labels could be
eliminated from the program. If left in then the "2(PC)" could be
replaced with "TAGE".

CMP_(R@)+, (RE)+

If RF = "@glgg" then the contents of location "@iPp" is compared to
the contents of location "@1g2" , and R is incremented to "@#1@4".

All source auto incremerts oy ded¢rements are completed before destin-

ation decoding: begins.

MOV _@Rr2,-{R2)

If R2 = "g1g6" then the contents of location "glge" is moved to lo-
cation "#1¢4", and K2 is decremented to "@lg4".

BIT #2,8%#4

The contents of absolute memory location 4 is tested against the lit-
eral value 2. This is a three word op code with word two containing

a 2 and word three containing a 4. This op code works on location 4
from anywhere in memory.

CMP (PC}+,TAG

This won't work. The assembler generates a. two word op code for this

with the destination offset in word two. The execution of the op.
code, however, Uses word two as a literal and word three (which does

not exist) as the destination offset. By swapping the source and
destinations around then an in-line literal could be used for word

'three, and word two would contain a wvalid source offset.

Jsr PC, (PCI1Y

The address of location X + 4 is pushed onto the stack, and PC gets
the address of locatlon X+ 2.

JSR R5, (PC)+

The contents of R5 are pushed onto the stack, R5 gets the address of
location X + 4, and PC gets the address of location X + 2.

MOVE (R@)+, (RE)+

If Rg = “H1¢2“ then the contents of memory ‘byte location “ﬂlﬂZ“ is moved
to. memory byte location "g1@3", and RP is 1ncremented to "glgan.

:mvn (5P)+,R1

The contents of the memory byte addressed by SP ig moved to the lower
byte of R1l, the sign bit {(bit 7) is replicated through bit 15 of R1,
and SP is incremented by 2. SP is always autoincremented or autade-
cremanted by two. .

CLRE (PC)+
The contents of the lower byte memory location X + 2 is cleared to

Zéros. The upper byte (X + 3) is not affected. PC is incremented
by two. PC is always autoincremented or autodecremented by two.

BISB RZ,RL

The lower bytes of register RZ is logically ORED with the 1owgt byte
of register Rl. The upper. byte of Rl is not altered.

MOVE @ (R2)+, @~ (R3)

If R2 contains a "g1gg" and R3 contains a "@2@@" then location "giggn
contains the byte address of the source operand and location "@IFE"™
contains the address of the destination byte that is to receive the
source byte. R2 is incremented by two, and R3 is decremented by two
since they point to addresses of (16 blt) addresses. .

JSR _SP, TAG

'Not recommended since the value of the stack is lost. Perfectly le-
gal howevar.

SAvVE and ns'rs _

Although designed to be used for automatic register and I/C priority
level saving and restoring, the lack of hardware priority masking
does not alter the operation or the op codes. The SAVS op code is
usually the first instructioa executed in a device interrupt routine,
and the RSTS is the last. The priority mask can use a one bit as an
enable or disable with bit @ the highest or lowest priority level,
Such decisions are made by the hardware.

POWER FAIL

Two levels of power fail are provided for in the firmware. The
hardware may use two, one, or no levels of power fail.The three
modes are discussed in increadsing order of complexity.

NO LEVELS: External address register bit 7 is hardwired to @,
and a prayer is offered.

ONE LEVEL: The detection of a power fail-séts bit 7 of the exter-
nal status register and the CPU RESET line. When the
power fail disappears the CPU RESET line is reset,; but
bit 7 of the external status register remains set. The
Line Clock Clear State Code (see appendix D) clears
bit 7 of the external status register (and bits 5, 6
if used). A system power up is then executed.

TWO LEVELS: This redirires two hardware functions, AC LOW and DC
LOW, plus two levels of power fail; AC and DC. It
all works like this: If AC power begins to deterior-
ate AC LOW is set first. This sets bit 7 of the ex-
ternal status register and generates an interirupt via
If or Il. If AC power does not deteriorate too far then
nothing else happens except that bit 7 of the external
status register is reset when power is restored. If
AC power continues. to deteriorate then .eventually DC |
power will begin to deteriorate. When this happens
pC LOW is set and DC LOW sets CPU RESET. AC LOW is-
still set and it maintains bit 7 of the external status
register. When power is restored DC LOW is reset. This’
resets CPU RESET. A power Up sequence is initiated, and
the Line Clock Clear State ({(see appendix D) clears The
External Status Register bit 7 (plus 5 and 6 if they are
used). If the user wishes to be able to execute a pro-
grammed power fail routine even during a sudden and com=
plete power failure then the DC power Supply must be
strong enough to run the CPU and MEMORY for at least 2
millisedonds. The power fail interrupt must also be.
programmed, and the interrupts enabled.

The use of the Line Clock Clear State Code to clear bits 5-7 on
a CPU RESET function (plus thé line clock of course) should have no
effect on normal $ysteém operation. Should an error occur during a

non-vectored interriupt the error would be cleared momentarily and then
set again as CPU RESET obviously could not have been generated. If it

had been then the system could not be in the non-véctored interrupt
routine.

BARITY AND BUS ERRORS

These functions are also part of the CPU RESET function alohg with
power fail/up. In order to get only one or the other then bit 7 of
‘the eéxternal status register must be reset when the CPU RESET function

APPENDIX D

-MICROMHSTATEHCODE FUNCTIONS

Below is a list. of MICROM STATE CODE FUNCTIONS for the WD1600 with a
brief degcription of what each does. More elaborate descriptions,
where necessary, follow the table.

CODE __ MNEMONIC _____FUNCTION
gga1 PMSK Priority mask out

ga1e RUN: Macro instruction fetch

g11. I0RST 1/0 reset

g1gg INTEN 12 set

@121 INTDS I2 reset

#11g ESRR External status register request
g111 SRS System reset

1g0g BYTY Rzdd byte operation

1921 RMWW Read-modify-write word

191¢ RMWB: Read~modify-write byte

1¢11 RLCIL Reset line ¢lock interrupt

11gd EARR External address register request
1191 Duplicate of "BYTE"

111¢ Duplicate of “RMWW"

1111 Duplicate of "RMWB"

PMSK: The state code is generated on an OUTPUT WORD instruction when
a new mask is written into location “2E". It signals the I/O
devices that a new inteérrupt mask is on the DAL,

RUN: Generated during macro instruction fetch for a run light.

IORST: Generated during a RESET macro op code to reset I/0 devices to

' somé preset state..
INTEN: Enables the intérrupt enable line -I2.
INTDS: Disables the interrupt enable line -IZ2.

ESRR: Generated during an INPUT STATUS BYTE micro op code to indicate
that the external status register is being requested. See note 1.

SRS: Generated during a power up for a master system reset. This code
is followed by a 300 cycle wait to allow time for any reset func=
tions the hardware denerates to be completed before any DAL re~
quests are generated.

BYTE: Generated during an INPUT BYTE micrd op ¢ode to indicate a read
' byte operation witholt a read-modify-~write.

RMWW: Generated duyring an INPUT WORD micro op code with RMW active to
indicate a read-modify-write word sequence.

RMWB: Generated during an INPUT BYTE micro op code with RMW active to
indicate a read-modify-write byte sequence.

;

Generated during a CPU RESET or a non~vectored interrupt with-
cut a power fail to clear both the line clock interrupt and ex-
ternal status register bits 5-7. S

Generated’during an INPUT SIATUS-BYIE hi¢ro op code to indicate
a request for the external address register during the user boot-
strap routine.

"pre - T Dupli¢ates of codes "8" - “A" respectivaly except that

CODES

thesé codes appear as a part of the READ micro op codes
ingtead of as a part of the INPUT micro op codes. Either
or both may be used by the hardware as is convenient. '
‘These codes preceed the others., They are generated only
once, however, instead of repeating in the event of a
wait state as the others do, -

NOTE 1l: INPUT STATUS BYTE is not a function of reply and does not gen—

erate a SYNC. For these reasons the DAL must be tri-stated if
a DMA device also exists. The data “ijs always gated onto the low-
er byte, The upper byte is ignored. . .

NOTE 2: Lack of state codes "8" - "A" or "D” - “F" during a READ - INPUT

sequence implies a read word operation without read-modify-write.

APPENDIX E

QP CODE TIMINGS

All times are in cycles. Timirigs include all 0P Code fetches,
memory reads, and memory writes applicable to each. Timings

assume that the memory is running with full speed with respect to
the CPU. This requires a 16 Bit accaess ‘time = 1 CPU cycle, and a

16 Bit memory read/write cycle time = 2 CPU cycles, One CPU cycle =
300 Ns @ 3.3 MHZ, U NS @ 2.5 MHZ, and 500 NS @ 2 MHZ clock rates.
‘Timings are included for SM@ and DM@ as basic with additions as
necessary in tables that follow the OP Codes for SML-7 and DM1-7
timings. ‘

FORMAT ONE OP CODES

OP ‘CODE # CYCLES
NOP 1@
RESET 19
IEN 17
IDS 1g
HALT le+
XCT 44 + OP CODE .EXECUTED
BPT 24
WFI le+
RSVC 62
RRTT 60
SAVE 46
SAVS 65
REST 48
RRTN 52
RETS 64
RTT 13
FORMAT 'TWO-FOUR COP CODES
0P CODE # CYCLES
IAK 1g
RTH 12
MSXO 1
PRTN 22
nces 7
‘SVCA 37
SVCB - 73

svCe 71

FORMAT FIVE OP CODES

All branches = 9 cycles if branch occurs or not.

FORMAT SIX OP CODES

OP CCDE - # CYCLES

ADDI 9

SUBI 9

BICT 9

MOVI 9 ,
SSRR 8 + (5 X # bits shifted)
SSLR 8 + (5 X # bits shifted)
SSRA 8 + (7 X # bits shifted)
SSLA 84 (5 X # bits shifted)
SDRR ‘ 20 + (7 X # bits shifted)

+
SDLR 20 + (7 X # bits shifted)
SDRA 20 + {9 X # bits shifted)
SDLA 20+ (7 X 3 bits shifted)

FORMAT 7 OP CODES — DM@

For DMl - DM7 and:

CLR. subtract 1 cycle
‘SWAB subtract 1 cycle

. OP CODES # CYCLES ... OP CODES. _ # CYCLES:
ROR 1g RORB - 9 '
ROL 1@ ROLRB 9
TST) g TSTB 9 -
ASL . 1g ASLB -
SET 19 - SETB T
CLR 1p : CLRB 9
ASR ’ 12 ASRE 11
‘SWAB , 19 SWAD .21
COM 19 COMB 9
NEG 19 NEGB - 9
INC 19 INCB 9
DEC 19 DECB 9
IW2 : 1@ L5TS 15
SXT 12 SETS 1g
TCALL 21 ADC 11
TIMP 16 ' SBc 11
FOR WORD OPS AND: FOR BYTE OPS:AND:
DM1 ' ADD 4 DM1. ADD
DM2. ADD 4 DpM2 ADD
DM3 ADD 8 DM3 ADD
DM4 ADD 6 DM4 ADD
DMS ADD 1g DM5 ADD
DM6 aADD 1g DM6 ADD
DM7 ADD 14 b7 ADD

*NOTE: Add 2 more if SP or PC.

ot 2 A R
»

’_.

FORMAT 8 OP CODES

OP CODE _ _ # CYCLES (ASSUMES NO INTERRUPTS)
‘MBWU 17 + {16 %X # words moved)
MBWD 15 + (16 X # words moved)
MBBU 17 # (15 X # bytes moved)
‘MBRIY 15 + (15 X # bytes moved)
MBWA 19 + (16 X # words moved)
MBBA 19 # (15 X # bytes moved)
‘MABW 19 + (16 X # words moved)
MABB 19 + (15 X # bytes moved)
FORMAT 9 OP CODES - DMJ
OP COLE. # CYCLES
JSR* 22
ASH 19 if DST = @; 22 + (5 X count) if DST>@; 25+(7 X count) if DST< @.
S0OR 1g if no branch, 13 if brancn '
XCH 23 _ . 4 _
ASHC 19 if DST = @; 38 + (7 X count) if DST>@; 38+(9 X count) if DST< @
MUL 183 . : .
DIv 29 if divisor error, 282 if no divisor error -

*NOTE: DM@ illegal. Used as base figure only.

FOR ALL OP CODES EXCEPT SOB AND:

DM1 adaa @

DM2 add 2

DM3I add 2

DM4 add. 2

DM5 add 4

DM6 add 4

DM7 add 8

FORMAT 1@ OP CODES — SM@ AMD DMQ

OP_(CODE ___# CYCLES
ADD - 11
‘SUB 11
AND 11
BIC 11
“BIS 11
XOR - 11
CMP : 11
BIT 11
MOV 11
CMPB 11
MOVE 12
BISB 11

For SM7; add

Fox DMl;iadd 4 for word ops, 3
For DM2;add 4 for word ops, 3
For DM3iadd 8 for word ops, 7
For DM4;add 6 for word ops, 5 for
 For DMS5;add 1@for word ops, 9
For DM63:;add 1@for woxd ops, 2
For DM7;add l4for word ops, 1

‘For MOVB and DM1-DM7 subtract 1 cycle. -

*NOTE :

FADD}

For SM1: add 3 for woxd ops, 1 for

For SM2: add 4 for word ops, 2 for

For SM3; add 7 for word ops, 5. for

For SM4; add 5 for woxrd ops., 3 for

For. SM5; add 9 for word ops, 7 for

For SM&; add 9 for word ops, 7 for
1

for
for
for

for.
for

adda 2 if 5P or PC

byte
byte
byte
byte
byte
byte

byte
byte
byte
byte
byte
byte

ops .
opSs.
ops.
ops.
opsS .
ops.

ops.
OPS.-

ops.

ops .

ops.
opS.

*

3 for word ops,'ll for byte ops.

3 for byte ops.

MODES-

FORMAT 11 OP - CODES ~ ALL ADDRESSING

If exponent difference » 39
wWorst Case
Typical

I1f.exponent difference » 39

Worst Case
Typical

If either operand = ¢
Worat Case

‘Typical

If divide by @
If divide into @

Worst Case

Typical

[T T

< eE e

1384145
638
180-420

141-148
641
190-430

108~111
805
520~780
96

118

1596
280-1210

49-86

